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Abstract

This paper presents the management overlay network
(MON) system that we are building and running on the
PlanetLab testbed. MON is a distributed system de-
signed to facilitate the management of large distributed
applications. Toward this goal, MON builds on-demand
overlay structures that allow users to execute instant
management commands, such as query the current sta-
tus of the application, or push software updates to all
the nodes. The on-demand approach enables MON to
be light-weight, requiring minimum amount of resources
when no commands are executed. It also frees MON
from complex failure repair mechanisms, since no over-
lay structure is maintained for a prolonged time. MON is
currently running on more than 300 nodes on the Planet-
Lab. Our initial experiments on the PlanetLab show that
MON has good performance, both in terms of command
response time and achieved bandwidth for software push.

1 Introduction

In recent years, large distributed computing systems such
as the PlanetLab [18] are increasingly being used by re-
searchers to experiment with real world, large scale ap-
plications, including media streaming, content distribu-
tion, and DHT based applications. While a realistic en-
vironment like the PlanetLab can often provide valuable
insights lacking in simulations, running an application
on it has been a difficult task, due to the large scale of
the system, and the various kinds of failures that can oc-
cur fairly often [8]. Thus an important tool is needed that
helps application developers to manage their applications
on such systems.

Imagine a researcher who wants to test a new ap-
plication on the PlanetLab. To do this, the researcher
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needs to first push the application code to a set of se-
lected nodes, then start the application on all the nodes.
Once the application is running, the researcher may want
to query the current status of the application, for exam-
ple, whether the application has crashed on some nodes,
and whether some error message has been printed out.
Later, if a bug is identified, the researcher may want to
stop the application, upload the corrected version, and
start it again. To accomplish the above tasks, what the
researcher needs is the ability to execute some instant
management commands on all the selected nodes, and
get the results immediately. Although many useful tools
exist on the PlanetLab, such as status monitoring and
query [1, 15, 4, 10, 11], resource discovery [16], and soft-
ware distribution [17, 6], few of them allow users to ex-
ecute instant management commands pertaining to their
own applications.

PSSH [5] and vxargs [7] are two tools for execut-
ing commands on large number of machines in parallel.
However, both tools use a centralized approach, where
each remote machine is directly contacted by a local pro-
cess. This may have scalability problems when the sys-
tem becomes large, or when large amount of data needs
to be transferred. The centralized approach also means
there is no in-network aggregation. Thus all the exe-
cution results are returned to the local machine, even
though only their aggregates are of interest.

In this paper we present the management overlay net-
work (MON) system that we are building and running on
the PlanetLab. MON facilitates the management of large
distributed applications by allowing users to execute in-
stant management commands pertaining to their appli-
cations. For scalability, MON adopts a distributed man-
agement approach. An overlay structure (e.g., a span-
ning tree) is used for propagating the commands to all
the nodes, and for aggregating the results back.

Maintaining an overlay structure for a long time is dif-
ficult, due to the various kinds of failures that can oc-
cur in a large system. For example, if a tree overlay has
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been created and some interior node has crashed, the tree
structure must be repaired by the disconnected nodes re-
joining the tree. The rejoin could become very complex,
if multiple nodes fail at the same time. As a result, MON
takes an on-demand approach. Each time a user wants
to execute one or more management commands (called
a management session), an overlay structure is dynam-
ically created for the commands. Once the commands
are finished, the overlay structure is discarded. This on-
demand approach has several advantages. First, the sys-
tem is simple and lightweight, since no overlay structure
is maintained when no commands are executed. Sec-
ond, on-demand overlays are likely to have good per-
formance, since they are built based on the current net-
work conditions. Long-running overlays, even if they
can be correctly maintained, may have degraded perfor-
mance over time. Third, since the overlays are created
on-demand, different structures can be created for differ-
ent tasks. For example, trees for status queries and DAGs
(directed acyclic graphs) for software push.

MON is currently running on more than 300 nodes on
the PlanetLab, and supports both status query (e.g., the
aggregate information of different resources, the list of
nodes that satisfy certain conditions, etc.) and software
push commands. Our initial experiments show that MON
has good performance. For a simple status query on more
than 300 nodes, MON can propagate the command to all
the nodes and get the results back in about 1.3 seconds
on average. For a software push to 20 nodes, MON can
achieve an aggregate bandwidth that is several times that
an individual node can get from our local machine.

In the rest of the paper, we first present the architec-
ture and design of MON in Section 2, then provide our
evaluation results in Section 3. Section 4 provides more
discussion about MON and Section 5 is the conclusion.

2 MON Architecture and Design

The MON system consists of a daemon process (called
a MON server) running on each node of the distributed
system. Each MON server has a three layer architec-
ture as shown in Figure 1. The bottom layer is respon-
sible for membership management. The middle layer is
responsible for creating overlays (e.g., trees and DAGs)
on-demand, using the membership information from the
bottom layer. Once an overlay structure has been created,
the top layer is responsible for propagating management
commands down to the nodes, and aggregating the re-
sults back.

2.1 Distributed membership management

Maintaining up-to-date global membership for a large
distributed system is difficult, especially when nodes

Membership Management

Overlay Construction

Distributed System Management

Figure 1: MON Architecture

can fail and recover fairly often. As a result, we adopt
a gossip-style membership management. Specifically,
each node maintains a partial list of the nodes in the sys-
tem (called a partial view). Periodically, a node picks a
random target from its partial view, and sends a Ping
message to it, together with a small number of mem-
bership entries randomly selected from the partial view.
A node receiving a Ping message will respond with a
Pong message, which also includes some random mem-
bership entries. The Ping and Pong messages allow
the nodes to learn about new nodes and to detect node
failures. They also allow nodes to estimate the delay be-
tween each other. Such delay information can be used by
the middle layer to construct locality aware overlays.

In order to maintain the freshness of membership en-
tries, each entry is associated with an age, which esti-
mates the time since a message is last received from the
corresponding node. When the partial view is full and
some entries need to be dropped, the oldest entries are
dropped first.

2.2 On-demand overlay construction

On-demand overlay construction is a central component
of our MON system. In this paper we consider the con-
struction of two kinds of overlay structures, trees and di-
rected acyclic graphs (DAGs). A tree structure is suited
for instant status query, and a DAG is suited for software
push. Since an overlay is created on-demand, we would
like the construction algorithm to be quick and efficient,
involving minimum startup delay and message overhead.

Ideally one may want to create an overlay that includes
all the current live nodes (i.e., has full coverage). How-
ever, “all current live nodes” is a slippery term in a large
dynamic system. In fact, merely counting the number of
such nodes is a difficult task [14]. As a result, we are con-
tent with probabilistic node coverage and focus on quick
and efficient overlay construction algorithms 1.

Tree Construction. The first algorithm we consider
is random tree construction. To create an on-demand
overlay tree, a client side software (called a MON client)
sends a Session message to a nearby MON server.
Each node (MON server) that receives a Session mes-
sage for the first time will respond with a SessionOK
message and become a child of the Session sender. It
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also randomly picks k nodes from its partial view, and
send the Session message to these nodes. k is called
the fanout of the overlay and is specified in the Ses-
sion message. If a node receives a Session message
for a second time, it will respond with a Prune mes-
sage. It has been shown that assuming the partial views
represent uniform sampling of the system, such tree con-
struction will cover all the nodes with high probability, if
k = Ω(log N), where N is the total number of nodes in
the system [12].

The random tree construction algorithm is simple and
has good coverage (with sufficient fanout k). However,
it is not locality aware. Therefore we have designed a
second algorithm called two stage, which attempts to im-
prove the locality of a tree, while still achieve high cov-
erage. To do this, the membership layer of each node is
augmented with a local list in addition to the partial view,
which consists of nodes that are close by. Each node is
also assigned a random node id, and the local list is di-
vided into left and right neighbors (those with smaller
and larger node ids).

The tree construction is divided into two stages. Dur-
ing the first several hops, each node selects its children
randomly from the partial view, just like the random al-
gorithm. The goal is to quickly spread the Session
message to different areas of the network. In the sec-
ond stage, each node first selects nodes from its local list,
then from the partial view if not enough local neighbors
are present. To prevent nearby nodes from mutually se-
lecting each other as children, equal number of children
are selected from the left and right neighbors.

DAG construction The above tree construction algo-
rithms can be modified to create DAGs (directed acyclic
graphs). Specifically, each node is assigned a level l. The
level of the root node is set to 1. The level of a non-root
node is 1 plus the level of its first parent. Suppose a node
has set its level to l and a second Session message is
received, it can accept the sender as an additional parent,
as long as its level is smaller than l. This ensures the
resulting overlay contains no loop, thus a DAG.

2.3 Instant command execution

Once an overlay structure is dynamically created, one
or more management commands can be executed on it.
We discuss two types of management commands: status
query and software push.

Status Query All the status query commands are ex-
ecuted in a similar fashion. First the command is prop-
agated down the overlay tree to all the nodes. Next the
command is executed locally on each node. Finally the
results from the children nodes and from the local execu-
tion are aggregated and returned to the parent. Below is
a (partial) list of the status query commands that we have
implemented.

• count

• depth

• topology

• avg <resource>

• top <num> <resource>

• histo <resource>

• filter <operation>

The first three commands return information about the
overlay itself, such as the number of nodes covered, the
depth of the tree/DAG, and the topology of the overlay.
The next three commands return the aggregate informa-
tion (e.g., average, top k, and histogram) of different re-
source. Currently MON supports resources such as the
CPU load, free memory, disk usage, number of slices,
etc. Most of these resources are obtained from the Co-
Top [2] server on each PlanetLab node.

The last command allows (in theory) any arbitrary op-
eration to be executed on each node, and to return some
information based on the result of the operation. We
have implemented the operations that compare some re-
source with a threshold value. For example, filter
load G 20.0 will return the list of nodes that have
a CPU load greater than 20.0. To demonstrate the util-
ity of the command, we have also implemented a more
powerful grep operation. For example, filter grep
<keyword> <file> will return the list of nodes on
which the keyword <keyword> has occurred in the file
<file>. This grep operation can be used for diagnos-
ing failures of distributed applications. In fact, we have
frequently used it to see if our MON server has reported
some error message on some nodes.

Software Push When running an application on a
large distributed system, a user may need to push the ap-
plication code to a large number of nodes from time to
time. Our on-demand overlays can also be used for such
software push 2. A tree structure is unsuited for software
push, because the downloading rate of a node is limited
by that of its parent. Therefore, we use DAG structures
for software push, so that each node can download data
from multiple parents at the same time. The DAG struc-
ture also improves the failure resilience of the system,
because the downloading of a node is not affected by a
parent failure, as long as it has other parents.

When a node can download data from multiple parents
at the same time, some kind of coordination is needed be-
tween the parents. In our MON design, we adopt a multi-
parent, receiver driven downloading approach similar to
those used in recent P2P streaming systems [19]. Fig-
ure 2 illustrates how the approach works. Suppose a node
p has three parents, q1, q2 and q3. The file to be down-
loaded is divided into blocks. Whenever a node down-
loads a block, it will notify its children about the new
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Figure 2: Multi-parent, receiver driven download

Table 1: Tree construction performance
rand5 rand6 rand8 twostage

coverage 314.89 318.64 320.52 321.59
create time(ms) 3027.21 3035.46 2972.46 2792.03
count time(ms) 1539.19 1512.07 1369.92 1354.79

block. As a result, node p knows about the blocks that
are available at each parent. Node p will then make a
scheduling decision, and request different blocks to be
received from different parents. For simplicity, we have
used a “first fit” scheduling algorithm. For each parent,
we request the first block that this parent can provide, and
that is still needed by the requesting node. For example,
for the scenario shown in Figure 2, node p will request
block 5 from q1, block 7 from q2, and block 8 from q3.

Our MON system uses UDP for most of the commu-
nication. However, for software push, we use TCP con-
nections. Suppose a DAG has been created, a user can
issue a Push command to push a file to all the nodes.
Each MON server that receives a Push message from a
parent will first establish a TCP connection to the parent,
then create a TCP server socket to serve its children (if
the server socket has not been created). Finally it will
send the Push message to all of its children. Once all
the children have established TCP connections to a node,
it begins to request blocks from its parents, and advertise
the downloaded blocks to its children.

3 Evaluation Results

Our MON has been implemented and running on the
PlanetLab for several months. The current deployment
includes about 330 nodes. We have also created a web
interface for people to try out MON [3]. In this section,
we present some initial experiment results to evaluate our
tree construction and software push algorithms.

Table 1 shows the performance of different tree con-
struction algorithms. The experiments are conducted on
our current MON deployment. For each algorithm, we
create about 200 overlays and compute the average of
the number of nodes covered (coverage), tree creation
time, and the count response time. rand5, rand6 and
rand8 are the random algorithm with k = 5, 6 and 8,
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Figure 3: CDF of count time for twostage.

respectively. twostage is the two stage algorithm with
k = 5. The tables shows that the two stage algorithm
has better performance compared with random tree con-
struction. On average, the two stage algorithm can create
a tree in less than 3 seconds and cover about 321 nodes 3.
And a simple count query takes about 1.3 seconds. In
comparison, rand5 covers only about 315 nodes, and its
count response time is more than 180ms larger. Fig-
ure 3 shows the CDF of the count response time for the
two stage algorithm. We can see that the response time
is less than 1500ms about 65% of the time, and less than
2000ms about 97% of the time.

To evaluate our software push algorithm, we pick
21 PlanetLab nodes mostly from universities in North
America, and push a file of 1MB to the nodes. The
file is divided into 50KB blocks. We first push the
file to each node directly from our local node, and
measure the bandwidth achieved. The bandwidth be-
tween our local node and most of the nodes is be-
tween 1Mbps and 3Mbps. However, for one node
(planet2.cs.rochester.edu) the bandwidth is
less than 400Kbps 4. We then create a DAG and push
the file to all the nodes. We repeat the experiment for 20
times and show the CDF of the bandwidth in Figure 4(a).
The figure shows that most of the time, we can achieve a
bandwidth between 400Kbps and 600Kbps, and the aver-
age is about 490Kbps. Figure 4(b) shows the result when
we remove planet2.cs.rochester.edu. We can
see most of the time the bandwidth is between 900Kbps
and 1.3Mbps, and the average is about 1.1Mbps. Since
all the nodes are receiving the data at the same time, this
means on average we can achieve an effective aggregate
bandwidth of about 22Mbps, which is about 7 times the
largest bandwidth that our local node can provide to an
individual node (planetlab2.cs.uiuc.edu). The
above experiments allowed each node to have a maxi-
mum of 3 parents (the actual number of parents may be
smaller). Figure 4(b) also shows the result for 20 nodes
when each node has at most 1 parent (i.e. trees). We can
see that about 20% of the time, the bandwidth is less than
700Kbps, and on average the bandwidth is about 10%
smaller than the DAG case. This shows the advantage of
DAG based multi-parent downloading schemes.
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Figure 4: Software push bandwidth of MON.

4 Discussions

Many useful tools have been developed to make a dis-
tributed system such as the PlanetLab easier to use.
CoMon [1], Ganglia [15] and many other tools provide
resource monitoring for each PlanetLab node. The Ap-
plication Manager [4] can monitor the status of individ-
ual applications. SWORD [16] provides resource discov-
ery services. And PIER [10, 11] allows SQL like queries
in large scale networks. However, these systems gener-
ally do not allow a user to execute instant management
commands pertaining their own applications. In contrast,
the filter command of MON can potentially be used
to execute any operations (e.g., shell commands) on a
node, just like PSSH and vxargs. Different from these
two tools, however, MON is based on a distributed over-
lay structure, thus it has better scalability and allows in-
network aggregations 5.

Since MON makes it easier to execute simultaneous
commands on large number of nodes, it is important
to have built-in security mechanisms to prevent misuse
of the system. Although MON currently does not have
any authentication mechanism, it is relatively easy to use
public key of the user for authentication, which is al-
ready available on the PlanetLab nodes. For example,
each time an overlay is created on demand, the private
key of the user is used to “encrypt” some information

about the user, such as the slice name and IP address. A
MON server will continue with the overlay construction
only if it can verify the message using the slice’s public
key. Timestamps can be used to prevent replay of the
message, and a session key can be included for the en-
cryption and decryption of subsequent session messages.
Although encryption/decryption may increase the end to
end delay, we do not expect the impact to be significant.

5 Conclusion

We have presented the design and preliminary evalua-
tion of MON, a management overlay network designed
for large distributed applications. Different from existing
tools, MON focuses on the ability of a user to execute
instant management commands such as status query and
software push, and builds on-demand overlay structures
for such commands. The on-demand approach enables
MON to be lightweight, failure resilient, and yet simple.
Our results further demonstrate that MON has good per-
formance, both in command response time and aggregate
bandwidth for software push.

MON is an on going project and we are continuing
working on it. Specifically, our software push component
is not mature yet. We will improve the system and exper-
iment on significantly larger scales. We will also explore
other on-demand overlay construction algorithms, for ex-
ample, those that cover a specified subset of nodes, and
those that can scale to even larger networks.
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Notes
1In practice, due to transient and permanent node failures, a user is

often prepared if not all the desired nodes can be accessed.
2 We note that previous research work including SplitStream [9],

Bullet [13] and CoBlitz [17] has addressed the problem of content dis-
tribution from one node to a large number of receivers. Our goal in
developing the software push component, however, is to provide a easy-
to-use system that can be integrated with our status query component,
so that the user can accomplish most management tasks with the MON
deployment.

3Note although we deploy MON on about 330 nodes, the precise
number of live nodes may vary during the experiment.

4 Note the bandwidth is the “end-to-end” bandwidth that in-
cludes the initial delay for sending the Push message, creating
TCP server sockets, and waiting for the child connections. The ef-
fect of this initial delay will become less significant for large files.

For example, the bandwidth between our local node and planet-
lab2.cs.uiuc.edu is about 3Mbps for 1MB files, and about
13Mbps for 8MB files.

5 Aggregating the results of arbitrary operations may need some
workaround. For example, instead of executing an operation on every
node and return the result, we can execute the command, return the
nodes on which the operation succeeded (or failed). This way only
small amount of data is returned, which may be less distracting and
more interesting to the user.
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