
(Re)Design Considerations for
Scalable Large-File Content Distribution

Brian Biskeborn, Michael Golightly∗, KyoungSoo Park, and Vivek S. Pai
Department of Computer Science

Princeton University

Abstract
The CoBlitz system was designed to provide efficient
large file transfer in a managed infrastructure environ-
ment. It uses a content distribution network (CDN) cou-
pled with a swarm-style chunk distribution system to re-
duce the bandwidth required at origin servers. With 6
months of operation, we have been able to observe its be-
havior in typical usage, and glean information on how it
could be redesigned to better suit its target audience.

At its heart, this paper describes what happens when
a plausible conceptual design meets the harsh realities of
life on the Internet. We describe our experiences improv-
ing CoBlitz’s performance via a range of techniques, in-
cluding measurement-based feedback, heuristic changes,
and new algorithms. In the process, we triple CoBlitz’s
performance, and we reduce the load it places on origin
servers by a factor of five. In addition to improving per-
formance for CoBlitz’s users, we believe that our experi-
ences will also be beneficial to other researchers working
on large-file transfer and content distribution networks.

1 Introduction
Content distribution networks (CDNs) use distributed sets
of HTTP proxies to serve and cache popular web con-
tent. They increase perceived web browsing speed by
caching content at the edges of the network (close to end
users), but they also provide a high degree of reliability
when asked to serve very popular pages (by spreading
load across many proxies instead of concentrating it on
a single origin server). Large files such as movie trailers
and free software ISO images are another popular form of
content on the Internet, and they can place great strains
on servers and network connections. CoBlitz is a service
which layers efficient large-file distribution capabilities on
top of the PlanetLab-based CoDeeN [15] CDN.

In a CDN such as CoDeeN, which runs on shared hosts
owned by many different companies and educational insti-
tutions, the network infrastructure is very heterogeneous.
Sites display a wide range of Internet connectivity, with
available bandwidths ranging from a few hundred Kbps to
almost 100 Mbps. In addition to this nonuniformity, the
Internet itself is a hostile environment: TCP can take care
of packet loss, but occasional congestion on high-capacity

∗Current contact: UC Irvine Computer Science Department. Work
performed while a summer intern at Princeton

paths can slow data transfers to a crawl. In a system like
CoBlitz, where large file requests are spread over numer-
ous Web proxies, a few very slow downloads can have a
significant impact on the overall download speed.

In this work, we describe the optimizations made to
CoBlitz to improve its performance in the nonuniform en-
vironment of PlanetLab. Our changes have produced a
significant increase in throughput, thus providing bene-
fits for both public users and researchers. Futhermore,
we think the lessons learned from CoBlitz apply, at least
in part, to any project which aims to distribute content
quickly and efficiently.

2 Background
From a user’s perspective, CoBlitz provides a simple
mechanism for distributing large files, by simply prefac-
ing their URLs with a CoBlitz-enabling host name and
port number. From an internal design perspective, CoBlitz
is virtually the same as the CoDeploy system [9], which
was designed to provide file synchronization across Plan-
etLab. Both systems use the same infrastructure for trans-
ferring data, which is layered on top of the CoDeeN con-
tent distribution network [15].

To briefly summarize CoDeeN’s organization, each
node operates independently, from peer selection to for-
warding logic. Nodes periodically exchange heartbeats,
which carry local node health information. The timings
of these heartbeats allows nodes to determine network
health as well as node overload. Nodes independently se-
lect peers using these heartbeats. All nodes also act as
caches, and use the Highest Random Weight (HRW) al-
gorithm [13] to determine which peer should receive re-
quests that cannot be satisfied from the node’s local cache.
If a forwarded request cannot be satisfied from the cache,
the peer contacts the origin server to fetch the object, in-
stead of forwarding it yet again.

When a large file is requested from CoBlitz, it generates
a stream of requests for chunks of the file, and passes these
requests to CoDeeN. These requests are spread across the
CoDeeN nodes, which will either serve them from cache,
or will forward them to the origin server. Replies from
the origin server are cached at the CoDeeN nodes, and
are returned to the original requestor. The details of the
process are explained in our earlier work [9].

Our initial expectation for these systems was that
CoDeploy would be used by PlanetLab researchers to

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 31

WORLDS ’05: Second Workshop on Real, Large Distributed Systems

deploy and synchronize their experiments across nodes,
while CoBlitz would be used for distributing content to
the public, such as CD-ROM images. What we have
found is that CoBlitz HTTP interface is quite simple to
use, and can easily be integrated into deployment scripts
or other infrastructure. As a result, we have seen indi-
vidual researchers, other PlanetLab-based services, such
as Stork [12] and PLuSH [10], and even our own group
using CoBlitz to deploy and update files on PlanetLab.

This change in expected usage is significant for our de-
sign decisions, because it affects both the caching behav-
ior as well as the desired goals. If the user population
is large and the requested files are spread across a long
period of time, high aggregate throughput, possibly at the
expense of individual download speed, is desirable. At the
same time, even if the number of copies fetched from the
origin server is not minimal, the net benefit is still large.

In comparison, if the user population is mostly Planet-
Lab researchers deploying experiments, then many factors
in the usage scenario change: the total number of down-
loads per file will be on the order of the number of nodes
in PlanetLab (currently 583), all downloads may start at
nearly the same time, the download latency becomes more
important than the aggregate capacity, and extra fetches
from the origin server reduces the benefits of the system.

Our goal in this work is to examine CoBlitz’s design
in light of its user population, and to make the necessary
adjustments to improve its behavior in these conditions.
At the same time, we want to ensure that the original au-
dience for CoBlitz, non-PlanetLab users, will not be neg-
atively affected. Since CoBlitz and CoDeploy share the
same infrastructure, we expect that CoDeploy users will
also see a benefit.

3 Observations & Redesign
In this section we discuss CoBlitz’s behavior, the origins
of the behavior, and what changes we made to address
them. We focus on three areas: peering policies, reducing
origin load, and reducing latency bottlenecks.

3.1 Peering
Background – When CoBlitz sends a stream of requests
for chunks of a file into CoDeeN, these requests are dis-
persed across that CoDeeN node’s peers, so the quality
of CoDeeN’s peering decisions can affect CoBlitz’s per-
formance. When CoDeeN’s deployment was expanded
from only North American PlanetLab nodes to all Plan-
etLab nodes, its peering strategy was changed such that
each node tries to find the 60 closest peers within a 100ms
round-trip time (RTT). The choice of using at most 60
peers was so that a once-per-second heartbeat could cy-
cle through all peers within a minute, without generating
too much background traffic. While techniques such as
gossip [14] could reduce this traffic, we wanted to keep
the pairwise measurements, since we were also interested

in link health in addition to node status. Any heartbeat
aggregation scheme might miss links between all pairs of
peers. The 100ms cutoff was to reduce noticeable lag in
interactive settings, such as Web browsing. In parts of the
world where nodes could not find 20 peers within 100ms,
this cutoff is raised to 200ms and the 20 best peers are
selected. To avoid a high rate of change in the peer sets,
hysteresis was introduced such that a peer was replaced
only if another node showed consistently better RTTs.

Problem – To our surprise, we found that nodes at the
same site would often have relatively little overlap be-
tween their peer lists, which could then have negative im-
pacts on our consistent hashing behavior. The root of the
problem was a high variance in RTT estimates being rein-
forced by the hysteresis. CoDeeN used application-level
UDP “pings” in order to see application response time at
remote nodes, and the average of a node’s last 4 pings was
used to determine its RTT. In most cases, we observed that
at least one of the four most recent pings could be signifi-
cantly higher than the rest, due to scheduling issues, appli-
cation delays, or other non-network causes. Whereas stan-
dard network-level pings rarely show even a 10% range of
values over short periods, the application-level pings rou-
tinely vary by an order of magnitude. Due to the high
RTT variances, nodes were picking a very random subset
of the available peers. The hysteresis, which only allowed
a peer to be replaced if another was clearly better over
several samples, then provided significant inertia for the
members of this initial list – nodes not on the list could
not maintain stable RTTs long enough to overcome the
hysteresis.

Redesign – Switching from an average application-
level RTT to the minimum observed RTT (an approach
also used in other systems [3, 5, 11]) and increasing the
number of samples yielded significant improvement, with
application-level RTTs correlating well with ping time on
all functioning nodes. Misbehaving nodes still showed
large application-level minimum RTTs, despite having
low ping times. The overlap of peer lists for nodes at the
same site increasing from roughly half to almost 90%. At
the same time, we discovered that many intra-PlanetLab
paths had very low latency, and restricting the peer size
to 60 was needlessly constrained. We increased this limit
to 120 nodes, and issued 2 heartbeats per second. Of the
nodes regularly running CoDeeN, two-thirds tend to now
have 100 or more peers.

3.2 Reducing Origin Load
Background – When many nodes simultaneously down-
load a large file via CoBlitz, the origin server will receive
many requests for each chunk, despite the use of consis-
tent hashing algorithms [13] designed to have multiple
nodes direct requests for the same chunk to the same peer.
In environments where each node will only download the

USENIX Association32

file once (such as software installs on PlanetLab), the rel-
ative benefit of CoBlitz drops as origin load increases.

Problem – When we originally tested using 130 North
American nodes all downloading the same file, each
chunk was downloaded by 15 different nodes on aver-
age, thereby reducing the benefit of CoBlitz to only 8.6
times that of contacting the origin directly. This problem
stemmed from two sources: divergence in the peer lists,
and the intentional use of multiple peers. CoBlitz’s use
of multiple peers per chunk stems from our earlier mea-
surements indicating that it produced throughput benefits
for cache hits [9]. However, increasing peer replication
is a brute-force approach, and we are interested in deter-
mining how to do better from a design standpoint. The
peer list divergence issue is more subtle – even if peer
lists are mostly similar, even a few differences between
the lists can cause a small fraction of requests to be sent
to “non-preferred” peers. These peers will still fetch the
chunks from the origin servers, since they do not have the
chunks. These fetches are the most wasteful, since the
peer that gets them will have little re-use for them.

Redesign – To reduce the effects of differing peer
lists without requiring explicit peer list exchange between
nodes, we make the following observation: with consis-
tent hashing, if a node receives a forwarded request, it can
determine whether it concurs that it is the best node to
handle the request. In practice, we can determine when a
request seems to have been inappropriately forwarded to
a node, and then send it to a more suitable peer. To de-
termine whether a request should be forwarded again or
not, the receiving node calculates the list of possible peers
for this request via consistent hashing, as though it had
received it originally. If the node is not one of the top can-
didates on the list, then it concludes that the request was
sent from a node with a differing peer list, and forwards it
along. Due to the deterministic order of consistent hash-
ing, this approach is guaranteed to make forward progress
and be loop-free. While the worst case is a number of
hops linear in the number of peer groups, this case is also
exponentially unlikely. Even so, we limit this approach
to only one additional hop in the redirection, to avoid for-
warding requests across the world and to limit any damage
caused by bugs in the forwarding logic. Observations of
this scheme in practice indicated that typically 3-7% of all
chunks require an extra hop, so restricting it to only one
additional hop appears sufficient.

3.3 Addressing Latency Bottlenecks
Background – Much of the latency in downloading a
large file stems from a small subset of chunks that re-
quire much more time to download than others. The agent
on each CoDeeN node that generates the stream of chunk
requests is also responsible for timing the responses and
retrying any chunks that are taking too long. A closer ex-
amination of the slow responses indicates that some peers

are much more likely than others to be involved. These
nodes result in lower bandwidth for all CoBlitz transfers,
even if they may not impact aggregate capacity.

Problem – When many requests begin synchronously,
many nodes will simultaneously send requests for the
same chunk to the peer(s) handling that chunk, result-
ing in bursty traffic demands. Nodes with less bandwidth
will therefore take longer to satify this bursty traffic, in-
creasing overall latency. While random request arrivals
are not as affected, we have a user population that will of-
ten check for software updates using cron or some other
periodic tool, resulting in synchronized request arrival.
Though the download agent does issue multiple requests
in parallel to reduce the impact of slower chunks, its to-
tal download rate is limited by the slowest chunk in the
download window. Increasing the window size only in-
creases the buffering requirement, which is unappealing
since main memory is a limited resource.

Redesign – We observe that a simple way to reduce la-
tency is to avoid peers that are likely to cause it, rather
than relying on the agent to detect slow chunks and retry
them. At the same time, improvements in the retry logic of
the download agent can help eliminate the remaining la-
tency bottlenecks. We experimented with two approaches
to reducing the impact of the slowest nodes – reducing
their frequency in the consistent hashing algorithms, and
eliminating them entirely from the peering lists. Based
on our bandwidth measurements of the various peers, de-
scribed in Section 4.1, we tested both approaches and de-
cided that avoiding slow peers entirely is preferable to
modifying the hashing algorithms to use them. We present
a discussion of our modified algorithm, along with its ben-
efits and weaknesses, in Section 3.4. We also opted to
make our download agent slightly more aggressive, draw-
ing on the approach used in LoCI [2]. Previously, when
we decided a chunk was taking too long to download, we
stopped the transfer and started a new one with a differ-
ent peer. In the majority of cases, no data had begun re-
turning on the slow chunks, so this approach made sense.
We modified the download agent to allow the previous
transfer to continue, and let the two transfers compete to
finish. With this approach, we can be more aggressive
about starting the retry process earlier, since any work per-
formed by the current download may still be useful.

3.4 Fractional Highest Random Weight
While the standard approach for handling heterogeneous
capacities in consistent hashing has been the use of vir-
tual nodes [7], we are not aware of any existing counter-
part for the Highest Random Weight (HRW) [13] hashing
scheme used in CoDeeN. Our concern is that using virtual
nodes increases the number of items needed in the hash-
ing scheme, and the higher computational cost of HRW
(N * logN or N * # replicas versus logN for consistent
hashing) makes the resulting computational requirements

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 33

WORLDS ’05: Second Workshop on Real, Large Distributed Systems

0 25 50 75 100 125 150
Node Number Hsorted by meanL

0

20

40

60

80

100
Ba
nd
wi
dt
h
H
Mb
it
�
sL

Figure 1: Mean node bandwidths & standard deviations

grow quickly. Our approach, Fractional HRW (F-HRW),
does not introduce virtual nodes, and therefore requires
only a modest amount of additional computation. HRW
consists of three steps to assign a URL to a node: (1) hash
the URL with every peer in the list, producing a set of hash
values, (2) sort the peers according to these hash values,
and (3) select the set of replicas with the highest values.

Our modification to HRW takes the approach of reduc-
ing the peer list based on the low-order bits of the hash
value, such that peers are still included deterministically,
but that their likelihood of being included on a particular
HRW list is in proportion to their weight. For each peer,
we assume we have a fractional weight in the range of 0 to
1, based on the expected capacity of the peer. In step (1),
once we have a hash value for each node, we examine the
low order bits (we arbitrarily choose 10 bits, for 1024 val-
ues), and only include the peer if the (low bits / 1024 <
weight). We then sort as normal (or just pick the highest
values via linear searches), as would standard HRW. Us-
ing the low-order bits to decide which peers to includes
ensures that the decision to affect a peer is orthogonal to
its rank in the sorted HRW list.

While F-HRW solves the issue of handling weights in
HRW-based hashing, we find that it does not reduce la-
tency for synchronized downloads. With F-HRW, the
slow nodes do receive fewer requests overall versus the
faster peers. However, for synchronized workloads, they
still receive request bursts in short time frames, making
them the download bottlenecks. For workloads where
synchronization is not an issue, F-HRW can provide
higher aggregate capacity, making it possibly attractive
for some CDNs. However, when we examined the total
capacity of the slower nodes in PlanetLab, we decided that
the extra capacity from F-HRW was less valuable than the
reduced latency from eliminating the slow peers entirely.

4 Evaluation
In this section, we describe our measurements of node
bandwidths and of the various CoBlitz improvements.

Site (# nodes) Node Avgs Site Avg Fastest
uoregon.edu (3) 2.46 - 2.66 2.59 4.63
cmu.edu (3) 3.50 - 3.95 3.67 5.74
csusb.edu (2) 3.93 - 4.21 4.07 6.76
rice.edu (3) 4.27 - 4.98 4.66 7.88
uconn.edu (2) 4.24 - 6.11 5.15 42.08

Table 1: Worst site bandwidths, measured in Mbps.

Site (# nodes) Node Avgs Site Avg Slowest
neu.edu (2) 94.5 - 97.4 95.9 60.1
pitt.edu (1) 88.7 88.7 57.3
unc.edu (2) 84.6 - 87.1 85.9 66.1
rutgers.edu (2) 83.3 - 86.1 84.7 60.1
duke.edu (3) 80.5 - 89.9 84.2 59.6

Table 2: Best site bandwidths, measured in Mbps.

4.1 Measuring Node Bandwidths
To determine which peers are slow and should be ex-
cluded from CoBlitz, we perform continuous monitoring
using a simple node bandwidth test. For each “edu” node
on PlanetLab (corresponding to North American univer-
sities), we select the 10 closest peers, with no more than
one peer per site, and synchronously start multiple TCP
connections to the node from its peers. We measure the
average aggregate bandwidth for a 30 second period, and
repeat the test every 4 hours. Tests are run sequentially
on the nodes, to avoid cross traffic that would occur with
simultaneous tests. The results of 50 tests per node are
shown in Figure 1. We show both the average bandwidth
for each node, which ranges from 2.5 Mbps to 97.4 Mbps,
as well as the standard deviation.

This straightforward testing reveals some interesting in-
formation regarding the characteristics of peak node band-
widths across these nodes: per-node bandwidth tends to
be stable across time, all nodes at a site tend to be simi-
lar, and the disparities are quite large. While some nodes
achieve very high bandwidths, we also observe a distinct
group of poorly performing nodes that have significantly
slower bandwidth speeds than the rest. There is a very
large discrepancy between the best and worst sites, as out-
lined in Tables 1 and 2. We note that these properties are
well-suited for our approach – slow nodes can be safely
eliminated from consideration as peers via periodic mea-
surements. In the event that fast nodes become slow due
to congestion, the retry logic in the download agent can
handle the change.

4.2 CoBlitz Improvements
To determine the effect of our redesign on CoBlitz, we
measure client download times for both cached and un-
cached data, using various versions of the software. We
isolate the impact of each design change, producing a set
of seven different versions of CoBlitz. While these ver-
sions are intended to reflect our chronological changes,

USENIX Association34

1000 2000 3000 4000 5000 6000 7000 8000
Bandwidth HKbpsL

0

0.2

0.4

0.6

0.8

1
F
r
a
c

o
f

n
o
d
e
s

w
i
t
h

B
W
£

x

1 2 3 4 5 6 7

BT

Figure 2: CDFs of mean node bandwidths for all design changes. Line numbers correspond to their entries in Table 3. Lines on
the right have better bandwidths than lines on the left.

many of our changes occurred in overlapping steps, rather
than a progression through seven distinct versions. In
all scenarios, we use approximately 115 clients, running
on North American university nodes on PlanetLab. All
clients start synchronously, and download a 50 MB file
located on a server at Princeton – once when the file is not
cached by CoBlitz, and twice when it has already been
downloaded once. We repeat each test three times and
report average numbers.

Our seven test scenarios incrementally make one
change at a time, and so that the final scenario represents
the total of all of our modifications. The modifications
are as follow: Original – CoBlitz as it started, with 60
peers, no exclusion of slow nodes, and the original down-
load agent, NoSlow – exclude slow nodes (bandwidth <
20 Mbps) from being peers, MinRTT – replaces the use
of average RTT values with minimum RTTs, 120Peers
– raises the limit of peers to 120, RepFactor – reduces
the replication factor from 5 peers per chunk to 2 peers,
MultiHop – bounces misdirected requests to more suit-
able peers, NewAgent – the more aggressive download
agent. The download bandwidth for all clients on the un-
cached test is shown in Figure 2, and the summary data is
shown in Table 3. We also include a run of BitTorrent on
the same set of clients, for comparison purposes.

The most obvious change in this data is the increase in
mean uncached bandwidth, from 2.1 to 6.1 Mbps, which
improves our most common usage scenario. The CDFs
show the trends more clearly – the design changes cause
a rightward shift in the CDFs, indicating improved per-
formance. The faster strategies also yield a wider spread
of node bandwidths, but a wider spread of bandwidths is
probably preferable to all nodes doing uniformly poorly.
Not shown in the table is the average number of nodes re-
questing each chunk from the origin server, which starts at
19.0, drops to 11.5 once the number of peers is increased
to 120, and drops to 3.8 after the MultiHop strategy is in-
troduced. So, not only is the uncached bandwidth almost

Name uncached cached-1 cached-2
1 Original 2.1 5.8 6.6
2 NoSlow 2.5 5.3 6.8
3 MinRTT 3.9 6.7 6.9
4 120Peers 5.0 6.2 6.6
5 RepFactor 5.0 5.5 5.4
6 MultiHop 5.2 5.2 5.6
7 NewAgent 6.1 6.5 6.7

BT BitTorrent 2.9 – –

Table 3: Mean bandwidths in Mbps for the various redesign
steps, for both uncached and cached downloads. Also included
is the value for BitTorrent, for comparison

three times the original value, but load on the origin server
is reduced to one-fifth its original amount.

This behavior also explains the trend in the cached
bandwidths – the original numbers for the cached band-
widths are achieved through brute force, where a large
number of peers are being contacted for each chunk.
The initial reduction in cached bandwidth occurs because
chunk downloads times become less predictable as the
number of nodes serving each chunk drops. The cached
bandwidths are finally restored using the more aggressive
download agent, since more of the download delays are
avoided by more tightly controlling retry behavior.

Note that our final version completely dominates our
original version in all respects – not only is uncached
bandwidth higher, but so is bandwidth on the cached tests.
All of these improvements are achieved with a reduction
of load to the origin server, so we feel confident that per-
formance across other kinds of usage will also be im-
proved. If CoBlitz traffic suddenly shifted toward non-
PlanetLab users downloading large files from public Web
sites, not only would they receive better performance than
our original CoBlitz, but the Web sites would also receive
less load.

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 35

WORLDS ’05: Second Workshop on Real, Large Distributed Systems

System # nodes Median Mean

CoBlitz cached 115 6.5 6.7
CoBlitz uncached 115 6.1 6.1
BitTorrent 115 2.0 2.9
Shark 185 1.0
CoBlitz cached 41 7.3 8.1
CoBlitz uncached 41 7.1 7.4
BulletPrime 41 7.0

Table 4: Bandwidth results (in Mbps) for various systems at
specified deployment sizes on PlanetLab. All measurements are
for 50MB files, except for Shark, which uses 40MB.

5 Related Work

Due to space considerations, we cannot cover all related
work in detail. The most obvious comparable system is
BitTorrent [4], and our measurements show that we are
twice as fast as it in these scenarios. Since BitTorrent was
designed to handle large numbers of clients rather than
high per-client performance, our results are not surprising.
A more directly-related system is BulletPrime [8], which
has been reported to achieve 7 Mbps when run on 41 Plan-
etLab hosts. In testing under similar conditions, CoBlitz
achieved 7.4 Mbps (uncached) and 8.1 Mbps (cached) on
average. We could potentially achieve even higher results
by using a UDP-based transport protocol like Bullet’s, but
our current approach is TCP-friendly and is not likely to
cause trigger any traffic concerns.

Finally, Shark [1], built on top of Coral [6], also per-
forms a similar kind of file distribution, but uses the
filesystem interface instead of HTTP. Shark’s perfor-
mance for transferring a 40MB file across 185 PlanetLab
nodes shows a median bandwidth of 0.96 Mbps. Their
measurements indicate that the origin server is sending
the file 24 times on average in order to satisfy all 185
requests, which suggests that their performance may im-
prove if they use techniques similar to ours to reduce ori-
gin server load. The results for all of these systems are
shown in Table 4. The missing data for BulletPrime and
Shark reflect the lack of information in the publications,
or difficulty extracting the data from the provided graphs.

6 Conclusions
In this paper, we have shown how a detailed re-evaluation
of several CDN design choices have significantly boosted
the performance of CoBlitz. These design choices
stemmed from two sources: our observations of our users’
behavior, which differed substantially from what we had
expected when launching the service, and from observing
how our algorithms were behaving in practice, rather than
just in theory. We believe we have learned two lessons
that are broadly applicable: observe the workload your
service receives to see if it can be optimized, and test the
assumptions that underly your design once your service is

deployed. For researchers working in content distribution
networks or related areas, we believe that our experiences
in hazards of peer selection and our algorithmic improve-
ments (multi-hop, fractional HRW) may be directly appli-
cable in other environments.

Acknowledgements

We would like to thank the anonymous reviewers for
their useful feedback on the paper. This work was sup-
ported in part by NSF Grants ANI-0335214 and CNS-
0439842 and by Princeton University’s Summer Under-
graduate Research Experience (PSURE) program.

References
[1] S. Annapureddy, M. J. Freedman, and D. Mazires. Shark: Scaling

file servers via cooperative caching. In 2nd USENIX/ACM Sym-
posium on Networked Systems Design and Implementation (NSDI
’05), Boston, MA, May 2005.

[2] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J. Don-
garra, T. Moore, G. Obertelli, J. Plank, M. Swany, S. Vadhiyar, and
R. Wolski. Logistical computing and internetworking: Middleware
for the use of storage in communication. In 3rd Annual Interna-
tional Workshop on Active Middleware Services (AMS), 2001.

[3] L. Brakmo, S. O’Malley, and L. Peterson. Tcp vegas: New tech-
niques for congestion detection and avoidance. In Proceedings of
the SIGCOMM ’94 Symposium, 1994.

[4] B. Cohen. Bittorrent, 2003. http://bitconjurer.org/BitTorrent.
[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decen-

tralized network coordinate system. In Proceedings of the ACM
SIGCOMM ’04 Conference, Portland, Oregon, August 2004.

[6] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing
content publication with coral. In 1st USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI ’04), San
Francisco, CA, 2004.

[7] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web.
In ACM Symposium on Theory of Computing, 1997.

[8] D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson,
A. C. Snoeren, and A. Vahdat. Maintaining high bandwidth un-
der dynamic network conditions. In Proceedings of 2005 USENIX
Annual Technical Conference, 2005.

[9] K. Park and V. Pai. Deploying Large File Transfer on an HTTP
Content Distribution Network. In Proceedings of the First Work-
shop on Real, Large Distributed Systems(WORLDS ’04), 2004.

[10] PLuSH. http://sysnet.ucsd.edu/projects/plush/.
[11] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn

in a DHT. In Proceedings of the USENIX Annual Technical Con-
ference, 2004.

[12] Stork. http://www.cs.arizona.edu/stork/.
[13] D. Thaler and C. Ravishankar. Using Name-based Mappings to

Increase Hit Rates. In IEEE/ACM Transactions on Networking,
volume 6, 1, 1998.

[14] W. Vogels, R. van Renesse, and K. Birman. Using epidemic tech-
niques for building ultra-scalable reliable communications sys-
tems. In Workshop on New visions for Large-Scale Networks: Re-
search and Applications, Vienna, VA, 2001.

[15] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and
security in the CoDeeN content distribution network. In Proceed-
ings of the USENIX Annual Technical Conference, 2004.

USENIX Association36

