A Shared Global Event Propagation System to Enable Next-Generation Distributed Services

Rob Knauerhase
Research Engineer
Intel Labs, Intel Corporation
knauer{at}jf.intel.com

With team: Mic Bowman, Paul Brett, Robert Adams, Jeff Sedayao, Aroon Nataraj, Michael Spindel
Infrastructure for Planetary-Scale Distributed Services

- How to accommodate dynamic / unreliable environment
 - Compute resources (load, availability)
 - Network resources (connections, bandwidth, latency, routes, load, address spaces)
- How to build infrastructure that supports new services
 - Can services “rendezvous” without ties to network address, allowing redundancy, migration, etc.? (location independence)
 - Do producers and consumers have to know specific details of each other’s existence? (service independence)
 - Can service interfaces be self-describing? (protocol independence)
 - Is asynchronous best-effort delivery sufficient and satisfactory for new types of distributed services? (timing independence)

“Loose binding” methodology == dynamic runtime discovery and composition of independent interoperating components.
PsEPR

- Planetary-Scale Event Propagation and Routing
 - Infrastructure supporting research into loosely-bound construction methods for distributed services
 - Event-based messaging abstraction (no guarantees)
 - Publish/subscribe semantics
 - Designed to support adaptability, scalability, and reusability of services and service components
 - ... a loosely-bound service itself
 - Registry component maintains subscriptions and event delivery to local clients
 - Router component distributes messages across an overlay network of registries
PsEPR details

- PsEPR Events
 - Unique “chunks” of information, in XML
 - Published asynchronously by services for consumption by anyone
- Addressing
 - Channel – arbitrary namespace, with hierarchical grouping
 - Participants don’t need to know about subscribers – subscriptions and routing are transparent to the services and clients
 - Service – authenticated participant (producer or consumer of events)
 - Instance – one particular runtime instantiation of a service
PsEPR implementation

- PsEPR servers are built atop Jabber™ IM servers
 - Object-level addressing: map service-instance to IM name
 - Endpoints independent of, e.g., socket
 - Authentication for “free”
 - Existing techniques for firewall/NAT traversal
- Communication among IM servers in overlay network
 - Ability to drop messages or restrict delivery/change routes as consumers change
 - Also allows flexibility to explore alternate route algorithms
- Client libraries abstract away IM characteristics
 - Transparently find and connect to (or re-connect to) “best” PsEPR server
PsEPR-based Services

- Monitors and sensors
 - Output Trumpet data on channels
 - ~500 monitors generating ~20,000 events per day
- Tuple store (PLDB v2)
 - Listens for and stores data events on channels
 - Listens for query events and emits satisfying events
- Management supervisor
 - Monitors health and distribution of tuple stores
 - Starts and stops instances according to need and system load
 - Adds/removes redundancy as needed for quality of service

Each of these is a loosely-bound service using PsEPR events. PsEPR assists in adaptation, redundancy/reliability, scalability, and ease of development.
PsEPR Developer Services

- PsEPR debugger
 - Displays timescale view of events on a channel
- PsEPR visualization
 - Displays clients, servers, connections, and traffic

These services work with any PsEPR service, without need of modification to the service or the infrastructure.

First-generation tools for PsEPR development...
Open research questions

• Tweaks on overlay routing
 • Combinations of overlay topologies (bus, star, tree, DHT) and dynamic reconfiguration between them
• Architecture and operation of loosely-bound systems
 • Toolkit for building and operating extremely large-scale decentralized services on PlanetLab
• Dynamic adaptation of services to environment
 • Within PsEPR (change overlay techniques with load)
 • PsEPR providing information to services
 • Hints for redundancy, migration, etc. based on environment
 – Number of subscribers, location of subscribers
 – Network considerations (load, latency, cost, ...)
Summary

- Infrastructure can help in building scalable, reliable systems in a dynamic distributed environment
 - Independence of location, service, timing, and protocol
 - Dynamic composition enables adaptive services
- PsEPR is a communication framework that facilitates construction of loosely-bound service components
 - Running on PlanetLab
 - Several examples of distributed, scalable, adaptable, transparently-interoperating services