
Paravirtualized Paging Page 1 10/31/2008

Usenix First Workshop on I/O Virtualization (WIOV’08)

Paravirtualized Paging

Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt Hackel

{first.last}@oracle.com

Oracle Corporation

Abstract

Conceptually, fast server-side page cache storage

could dramatically reduce paging I/O. In this

workshop extended abstract, we speculate how such

a device might be used, then show how it can be

implemented virtually in a hypervisor. We then

introduce hcache (pronounced “aitch-cash”), our

prototype implementation built on the Xen

hypervisor and utilized by slightly modified Linux

paravirtualized domains. We discuss the

implementation and the current status of hcache,

present some performance results, compare it to

related work, and conclude with some speculation of

other possible uses for hcache.

1. Introduction

Imagine a new very fast but somewhat quirky device

that might someday become widely available on

many systems; let’s call it an “hcache” (pronounced

“aitch-cash”). The device is essentially a very fast,

page-granularity, fully-associative cache, which is so

fast that DMA requests take no longer than a few

times as long as a RAM-to-RAM copy. Thus an

operating system can access the device

synchronously, when a lock is held, and even when

interrupts are disabled. The driver for this device

might have the following very simple API, where a

“handle” is a unique identifier determined by the

operating system:

• hcache_put(page_frame, handle)

• hcache_get(empty_page_frame, handle)

• hcache_flush(handle)

The “put” function saves the data from the page and

associates it with the specified handle. The “get”

function finds a page in the hcache with the handle

and fills the empty page frame with the data. The

“flush” function disassociates the handle from any

data so that subsequent “get” calls with that handle

will fail.

Here’s the quirky part: the size of the cache is

unknown and cannot be determined. Sometimes a

page “put” will be found by a “get” and sometimes

not; it’s impossible to tell a priori. However, like

any cache, it’s fast enough and large enough that

using it is almost always a good thing.

How might an operating system use such a device?

Since persistence is not guaranteed, dirty pages

cannot be placed in the hcache, only clean pages. As

a result, the hcache unfortunately can’t be used as a

general-purpose storage device. But it still has at

least two interesting applications:

• Whenever the operating system is about to evict

a clean page from its page cache, it can “put” the

page to the hcache. And whenever the operating

system is about to request that a disk driver

DMA a page into a page frame, it would first try

a “get” from the hcache to see if a prior “put”

had saved the page in the hcache, thus saving the

cost and latency of a disk access. Depending on

access and eviction patterns, paging from disk

may be greatly reduced.

• In a partitioned, containerized, or virtualized

system running multiple operating systems, the

hcache could be used as a quickly accessible

copy of a read-only clustered filesystem. For

example, if different partitions are running the

same Linux operating system, the hcache might

contain a copy of a commonly executed program

such as the shell or compiler. After one partition

promotes a page of the program from the disk to

its buffer cache and “puts” it into the hcache,

other partitions can “get” the copy from the

hcache, thus similarly reducing paging from

disk.

The reader is invited to suggest additional uses as

there are certainly more.

Paravirtualized Paging Page 2 10/31/2008

Usenix First Workshop on I/O Virtualization (WIOV’08)

2. A hypervisor-based cache in the hypervisor

The physical device described in the previous

section is only metaphorical, but represents a very

realistic capability that can be implemented not

using physical storage media, but instead with

“spare” physical memory in the hypervisor of a

virtualized system. This hypervisor-based cache --

or “hcache” -- can be accessed by a slightly-

modified operating system using simple hypercalls

and can be viewed by such operating systems as a

second-chance page cache for evicted clean pages or

by a cluster of operating systems as a shared server-

side filesystem cache similar to, but much faster

than, the cache RAM in a modern disk array.

In a virtualized system with multiple hcache-aware

paravirtualized guests, available hcache memory

should be divided equitably and dynamically. To

each guest, hcache appears as a private page cache

of unknown size but since no persistence guarantees

are made, a mostly idle guest may be allocated a

smaller portion of the hcache, or even none at all,

while the allocation for a very active guest could be

increased dynamically as needed. This is sort of a

“fair share memory scheduler” for page cache space

and could be controlled with internally derived

policies, by administrator-supplied parameters, or by

derivation from parameters provided for virtual

machine CPU scheduling.

3. Hcache implementation

An hcache implementation has been prototyped with

changes to a paravirtualized Linux guest and with

code added to the Xen 3.3 hypervisor. To

accommodate real operating system usage, the

generic API has been extended in a number of ways:

First, each domain can allocate multiple independent

hcaches, and an explicit “initialize hcache” call has

been added with a parameter indicating whether it is

private or shared. (At the time of this writing, only

the second-chance page cache mechanism has been

implemented, so the shared-inclusive mechanism is

not yet used.) Next, the handle has been divided into

three components: a hcache identifier, a 64-bit object

identifier and a 32-bit page identifier. These are

roughly analogous to a “filesystem,” a “file” and a

page-granularity offset into a file. Finally, “flush

object” call and a “flush hcache’ call have been

added to the API to simplify implementation of file-

removal-like operations and filesystem “unmount”.

Linux-side changes require the addition of “put”

hypercalls at a single code location in the generic

page cache removal code and a single “get”

hypercall in the generic filesystem code. The

difficult part is the correct placement of a handful of

“flush” hypercalls to ensure that data consistency is

maintained between the hcache and the operating

system page cache. Fortunately, the potential race

conditions are the same as for managing the page

cache vs persistent storage, so are well understood.

The object identifier is the Linux inode number and

the index is the page offset into the inode. When

Linux discards or truncates an inode, a flush-object

hypercall is made and when a filesystem is

unmounted, a flush-hcache call is made.

The Xen-side hcache code efficiently implements

the basic get/put/flush/flushobject operations

utilizing a hierarchy of dynamic data structures: A

domain-private hcache is explicitly created when a

filesystem is mounted or dynamically when the first

hcache_put hypercall is performed with a page

belonging to a filesystem. This hcache is

implemented as a hashed-list of objects; each object

is created as needed and serves as the root of a

“radix tree” [1] of nodes for fast lookup of indices.

The leaf nodes of the radix tree point to page

descriptors, which in turn point to pageframes

containing the actual data. The page descriptors are

kept in two doubly-linked LRU lists: one private list

for each domain, and one global list across all

domains. Thus, unutilized pages can easily be

recycled as needed to accommodate constantly

changing “memory scheduling” needs. Finally,

counters are kept for all data structures and pages are

timestamped so that utilization can be easily

determined and rebalanced as necessary.

When a guest performs an hcache_put hypercall, the

Xen hcache code allocates an unused memory page

and any necessary data structures and copies the

page of data from the guest. If there is insufficient

memory, one or more pages may be first evicted

from either the global LRU list or private LRU list,

depending on memory scheduler parameters and

policy. If memory is still not available, the

hcache_put simply fails -- since there is no guarantee

of persistence, there is no requirement that a put is

Paravirtualized Paging Page 3 10/31/2008

Usenix First Workshop on I/O Virtualization (WIOV’08)

successful; no indication of failure is even necessary,

though one is provided in the hypercall return value.

For an hcache_get, the specified object identifier is

hashed and the corresponding radix tree found. The

radix tree is searched for the index and, if a match is

found, the data is copied to the guest. In the case of

a private-exclusive hcache_get, the page and

associated data structures are then freed; for a

shared-inclusive get, the page and data structures are

left intact but the lists are updated to mark the page

as recently used.

An hcache_flush is simply a private hcache_get with

no copying. An hcache_flush_object walks the radix

tree and flushes and frees all pages and data

structures associated with that object. Finally, a

function is provided to destroy and recyle an entire

private hcache, so that memory can be proactively

recovered when Xen destroys an entire domain;

technically this is not necessary as all unused pages

will eventually move to the end of the LRU queues

and be evicted.

There are some interesting locking challenges,

memory allocation issues, and hypercall sequence

corner cases. For example, in a put-get-get sequence

of the same handle, is it possible that the first get

will fail but the second get will succeed? And what

is the cause and proper response to a put when the

handle already maps to existing data in the hcache?

These are beyond the scope of this introductory

abstract.

4. Hcache status

We have completed a prototype implementation of

the second-chance cache functionality of hcache and

the cluster/sharing functionality is currently under

development. We have only as yet measured hcache

with small workloads on a single domain;

comprehensive testing will require multiple

simultaneous virtual machines with real or simulated

workloads. Still, preliminary results are promising.

We have heavily instrumented the hcache code in

order to collect a large set of internal statistics for

analysis; this has already pointed out some tuning

opportunities we have fixed. For example, an

unexpectedly high ratio of hcache_flush_object()

calls led us to rewrite the linux-side interface to

utilize inode numbers instead of the linux “address

space” abstraction as an identifier for objects. This

not only reduced hcache overhead, but also led to a

cleaner linux-side implementation. Another

example: Profiling hcache identified the Xen

dynamic memory allocation (“xmalloc”) code as a

horrible bottleneck, driving worst case hcache call

times into the millions of cycles. This led to the

wholesale replacement of Xen xmalloc with a much

faster TLSF-based [8] allocator, a change which has

already been pushed upstream into xen-unstable.

5. Hcache performance

We have measured hcache on a simple but widely

used “benchmark”, compiling the Linux kernel. We

test on two hardware platforms: a dual core 3GHz

processor and 2GB physical memory; and a 2.9GHz

quad core with hyperthreading and 4GB physical

memory. The software foundation is an hcache-

modified 64-bit Xen 3.3 hypervisor with Oracle

Enterprise Linux 5.2 (OEL) as domain0. At boot,

Xen absorbs about 42MB of memory and domain0

is restricted to 512MB via boot parameter. Our test

domain is a 32-bit OEL guest configured to use a

“tap:aio” virtual disk, with between 256MB and

2GB of memory and with either 2 vcpus or 4 vcpus.

For our workload, we use a “make -j 10” of linux-

2.6.25.10 accelerated with the “ccache” [2]

preprocessor. Our methodology is to measure five

runs, discard the lowest and highest measurements

and average the remaining three. We reset the

environment before each compile with a “make

clean” and a command to flush the page cache. We

time the compile (only) rounded to the nearest

second and bracket the compile with “iostat” to

measure disk block reads and round this metric to

the nearest thousand.

Table 1, at the end of the paper, shows our

measurements. To briefly summarize, hcache on

this workload reduces disk reads by nearly 95% and

as a result increases throughput by between 22% and

50%, with best results when more CPU resources are

available to the guest.

Paravirtualized Paging Page 4 10/31/2008

Usenix First Workshop on I/O Virtualization (WIOV’08)

Some additional interesting data we gleaned from

our instrumentation when hcache is enabled:

• hcache_get hit ratio is about 80%

• average cost for hcache get’s and put’s is about

2.5x the cost of an average page copy, which we

measure at about 1.5usec on one platform and

about half that on the other; maximum cost is

about twice the maximum cost for a page copy

• about 80% of the 1.7M hcache calls do an

hcache_flush, showing we may be over-paranoid

on the linux side to guarantee data consistency,

and so our implementation may still have room

to improve

• hcache data structures are comfortably managing

over 100K pages, belonging to 20K unique

objects (inodes) in four hcaches (filesystems);

note that this also reveals some insight into the

working set size of the workload

• one hash table is seeing a maximum hash chain

length of over 50 entries, showing yet another

opportunity for improvement

Since the single guest, large memory environment,

cold page cache, and the diskbound workload all

favor hcache, some may argue that the benchmark is

a bit contrived. To counter this concern, we provide

a second set of test runs, where we disable compiler

acceleration, remove the command to drop the page

cache between compiles, and even “warm” the page

cache with a pre-measurement compile. But we also

reduce the guest memory size to simulate a poorly

provisioned guest. As shown in Table 2, without

hcache on a 128MB guest, some thrashing occurs

and, as a result, disk reads climb dramatically and

performance plummets. But with hcache enabled,

performance is roughly the same as if the guest were

properly provisioned with twice as much memory --

or greatly overprovisioned with eight times as much.

Our intent is certainly not to claim that hcache will

demonstrate such outstanding results on a much

wider variety of environments and workloads, but

rather merely to show that hcache has strong

potential in some cases -- and more room to

improve.

6. Related work

Lu and Shen [6] introduce the concept of a

hypervisor-based page cache, which influenced the

ideas behind hcache. However, cached pages in

their implementation are stored not in the hypervisor

but in the “service” domain (dom0), which requires

costly interdomain transfer and coordination; this is

because they do not constrain the cache to clean

pages and must map and track physical device I/O

performed in the service domain. The exclusiveness

also obviates its use for sharing between multiple

virtual machines.

Geiger [5] studiously avoids changes to the OS but

uses a hypervisor to passively infer useful

information about a guest’s unified buffer cache

usage, with goals of working set size estimation and

improving hit rate in remote storage caches.

Interestingly, Geiger’s success is measured against

“the ideal eviction detector” -- an OS modified

exactly as needed for hcache.

Much of the excellent analysis in Wong and Wilkes

[10] reapplies easily to hcache. Indeed, the DEMOTE

operation is analogous to hcache_put, though the

data is copied to a remote disk-array cache rather

than a server-side hypervisor cache. In particular,

we intend to try some of the same benchmarks and

compare some of the resulting curves, and we are

eager to attempt some of the adaptive cache insertion

policies.

Finally, the transparent content-based page sharing

described by Disco [3] and by Waldspurger [9]

likely utilizes a hypervisor-cache-like mechanism to

assist in memory overcommitment. We wonder

whether the explicit white-box sharing we intend to

employ with read-only clustered filesystems might

prove superior on some consolidated workloads to

the black-box copy-on-write mechanisms used in

VMware ESX.

Paravirtualized Paging Page 5 10/31/2008

Usenix First Workshop on I/O Virtualization (WIOV’08)

7. Conclusions and future work

We have introduced hcache, a hypervisor-based

non-persistent page cache that allows underutilized

memory to act as a “second-chance” page cache and,

potentially, as a shared page cache for clustered

filesystems. We have implemented a prototype of

the second-chance cache functionality and have

measured it against a single but non-trivial

workload, demonstrating preliminary but surprising

performance improvement potential in some

environments and workloads.

We expect mixed benefit in other workloads: For

example, large memory domains and applications

with large sequential datastreams may not benefit

much and will likely challenge the memory

scheduler. Domains with limited memory, or high

density consolidations using automatic ballooning

techniques [7,9] may benefit much more. Indeed we

are already considering combining self-ballooning

with hcache to potentially better optimize memory

utilization. Memory consumption may also be

further reduced when hcache is leveraged to share

read-only cluster filesystem data. And we speculate

that Geiger’s goals such as working set size

estimation and remote storage cache hit rate

improvement may be achieved more effectively with

an hcache-based approach.

As hcache is applied to a wide variety of

simultaneous workloads, we expect to focus on

challenges in implementing policy code. For

example, how do we balance hcache usage between

multiple competing memory-hungry domains?

Other less ambitious but potentially advantageous

ideas for future work have been proposed: 1)

Compress pages in the OS prior to cacheing [4], or

optionally in the hypervisor. 2) Add an

hcache_flush_range() hypercall to make file

truncation more efficient. We are eager to hear

additional ideas. 3) Use part of hcache memory to

serve as a ghost cache [10] to assist in determining if

increasing or decreasing cache size would be

beneficial.

8. References

1. Bovet, D.P and Cesati, M. Understanding the

Linux Kernel, Third Edition, O’Reilly &

Associates, Inc. 2005

2. Brown, M. Improve collaborative build times

with ccache, http://www.ibm.com/

developerworks/linux/library/l-ccache.html

3. Bugnion, E., Devine, S., Rosenblum, M. Disco:

Running commodity operating systems on

scalable multiprocessors. In Proc. 6
th
 Usenix

Symp. on Operating System Principles

(SOSP’97), pp 143-146, Saint-Malo France,

October 1997.

4. Gupta, N. Compressed Caching for Linux

http://code.google.com/p/compcache/

5. Jones, S.T., Arpaci-Dusseau, A.C., and Arpaci-

Dusseau R.H. Geiger: Monitoring the buffer

cache in a virtual machine environment. In Proc

12
th
 ASPLOS, San Jose CA, October 2006.

6. Lu, P. and Shen, K. Virtual machine memory

access tracing with hypervisor exclusive cache.

In Proc. 2007 Usenix Annual Technical

Conference, Santa Clara CA, June 2007.

7. Magenheimer, D., Memory Overcommit…

without the commitment. Xen Summit 2008.

http://wiki.xensource.com/xenwiki/Open_Topic

_For_Discussion?action=AttachFile&do=get&ta

rget=Memory+Overcommit.pdf

8. Masamo, M., Ripoli I., et al. Implementation of

a constant-time dynamic storage allocator.

Software Practice and Experience. vol 38 issue

10, pp 995-1026. 2008.

9. Waldspurger, C.A.. Memory Resource

Management in VMware ESX Server. In Proc.

5
th
 Usenix Symp. on Operating System Design

and Implementation (OSDI’02), pp 181-194,

Boston MA, December 2002.

10. Wong, T.M. and Wilkes, J. My Cache or

Yours? Making Storage More Exclusive. In

Proc 2002 Usenix Annual Technical

Conference, pp. 161-175, Monterey CA, June

2002.

Paravirtualized Paging Page 6 10/31/2008

Usenix First Workshop on I/O Virtualization (WIOV’08)

physical

cpus

virtual

cpus

guest

memory

(MB)

hcache

enabled
time (s)

relative

to hcache

disk reads

(K)

relative

to hcache

2 2 256 yes 51 -- 6 --
2 2 256 no 62 122% 98 1633%

2 2 1024 no 63 123% 98 1633%

4 2 256 yes 45 -- 6 --
4 2 256 no 56 124% 98 1633%

4 2 1024 no 57 127% 97 1616%

4 4 256 yes 26 -- 6 --
4 4 256 no 39 150% 98 1633%

4 4 1024 no 38 146% 98 1633%

4 4 2048 no 39 150% 98 1633%

Table 1. Linux compiles (using cold page cache and ccache) -- hcache is superior

physical

cpus

virtual

cpus

guest

memory

(MB)

hcache

enabled
time (s)

relative

to hcache

disk reads

(K)

relative

to hcache

4 4 128 yes 53 -- 323 --
4 4 128 no 114 215% 537 166%

4 4 256 no 52 98% 18 6%

4 4 1024 no 52 98% 0 0%

Table 2. Linux compiles (with warm page cache and not using ccache) -- hcache compensates for

underprovisioned memory

