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Abstract 

Conceptually, fast server-side page cache storage 

could dramatically reduce paging I/O.  In this 

workshop extended abstract, we speculate how such 

a device might be used, then show how it can be 

implemented virtually in a hypervisor.  We then 

introduce hcache (pronounced “aitch-cash”), our 

prototype implementation built on the Xen 

hypervisor and utilized by slightly modified Linux 

paravirtualized domains.  We discuss the 

implementation and the current status of hcache, 

present some performance results, compare it to 

related work, and conclude with some speculation of 

other possible uses for hcache. 

1. Introduction 

 
Imagine a new very fast but somewhat quirky device 

that might someday become widely available on 

many systems; let’s call it an “hcache” (pronounced 

“aitch-cash”).  The device is essentially a very fast, 

page-granularity, fully-associative cache, which is so 

fast that DMA requests take no longer than a few 

times as long as a RAM-to-RAM copy.  Thus an 

operating system can access the device 

synchronously, when a lock is held, and even when 

interrupts are disabled.  The driver for this device 

might have the following very simple API, where a 

“handle” is a unique identifier determined by the 

operating system: 

• hcache_put(page_frame, handle) 

• hcache_get(empty_page_frame, handle) 

• hcache_flush(handle) 

 

The “put” function saves the data from the page and 

associates it with the specified handle.  The “get” 

function finds a page in the hcache with the handle 

and fills the empty page frame with the data.  The 

“flush” function disassociates the handle from any 

data so that subsequent “get” calls with that handle 

will fail. 

 

Here’s the quirky part:  the size of the cache is 

unknown and cannot be determined.  Sometimes a 

page “put” will be found by a “get” and sometimes 

not; it’s impossible to tell a priori.  However, like 

any cache, it’s fast enough and large enough that 

using it is almost always a good thing. 

 

How might an operating system use such a device?  

Since persistence is not guaranteed, dirty pages 

cannot be placed in the hcache, only clean pages.  As 

a result, the hcache unfortunately can’t be used as a 

general-purpose storage device.  But it still has at 

least two interesting applications: 

 

• Whenever the operating system is about to evict 

a clean page from its page cache, it can “put” the 

page to the hcache.  And whenever the operating 

system is about to request that a disk driver 

DMA a page into a page frame, it would first try 

a “get” from the hcache to see if a prior “put” 

had saved the page in the hcache, thus saving the 

cost and latency of a disk access.  Depending on 

access and eviction patterns, paging from disk 

may be greatly reduced. 

• In a partitioned, containerized, or virtualized 

system running multiple operating systems, the 

hcache could be used as a quickly accessible 

copy of a read-only clustered filesystem.  For 

example, if different partitions are running the 

same Linux operating system, the hcache might 

contain a copy of a commonly executed program 

such as the shell or compiler.  After one partition 

promotes a page of the program from the disk to 

its buffer cache and “puts” it into the hcache, 

other partitions can “get” the copy from the 

hcache, thus similarly reducing paging from 

disk. 

 

The reader is invited to suggest additional uses as 

there are certainly more. 

 



Paravirtualized Paging Page 2 10/31/2008 

Usenix First Workshop on I/O Virtualization (WIOV’08) 

2. A hypervisor-based cache in the hypervisor 

 
The physical device described in the previous 

section is only metaphorical, but represents a very 

realistic capability that can be implemented not 

using physical storage media, but instead with 

“spare” physical memory in the hypervisor of a 

virtualized system.  This hypervisor-based cache -- 

or “hcache” -- can be accessed by a slightly-

modified operating system using simple hypercalls 

and can be viewed by such operating systems as a 

second-chance page cache for evicted clean pages or 

by a cluster of operating systems as a shared server-

side filesystem cache similar to, but much faster 

than, the cache RAM in a modern disk array. 

 

In a virtualized system with multiple hcache-aware 

paravirtualized guests, available hcache memory 

should be divided equitably and dynamically.  To 

each guest, hcache appears as a private page cache 

of unknown size but since no persistence guarantees 

are made, a mostly idle guest may be allocated a 

smaller portion of the hcache, or even none at all, 

while the allocation for a very active guest could be 

increased dynamically as needed.  This is sort of a 

“fair share memory scheduler” for page cache space 

and could be controlled with internally derived 

policies, by administrator-supplied parameters, or by 

derivation from parameters provided for virtual 

machine CPU scheduling. 

 

3. Hcache implementation 

 
An hcache implementation has been prototyped with 

changes to a paravirtualized Linux guest and with 

code added to the Xen 3.3 hypervisor.  To 

accommodate real operating system usage, the 

generic API has been extended in a number of ways:  

First, each domain can allocate multiple independent 

hcaches, and an explicit “initialize hcache” call has 

been added with a parameter indicating whether it is 

private or shared.  (At the time of this writing, only 

the second-chance page cache mechanism has been 

implemented, so the shared-inclusive mechanism is 

not yet used.)  Next, the handle has been divided into 

three components: a hcache identifier, a 64-bit object 

identifier and a 32-bit page identifier.  These are 

roughly analogous to a “filesystem,” a “file” and a 

page-granularity offset into a file.  Finally, “flush 

object” call and a “flush hcache’ call have been 

added to the API to simplify implementation of file-

removal-like operations and filesystem “unmount”. 

Linux-side changes require the addition of “put” 

hypercalls at a single code location in the generic 

page cache removal code and a single “get” 

hypercall in the generic filesystem code.  The 

difficult part is the correct placement of a handful of 

“flush” hypercalls to ensure that data consistency is 

maintained between the hcache and the operating 

system page cache.  Fortunately, the potential race 

conditions are the same as for managing the page 

cache vs persistent storage, so are well understood.  

The object identifier is the Linux inode number and 

the index is the page offset into the inode.  When 

Linux discards or truncates an inode, a flush-object 

hypercall is made and when a filesystem is 

unmounted, a flush-hcache call is made. 

The Xen-side hcache code efficiently implements 

the basic get/put/flush/flushobject operations 

utilizing a hierarchy of dynamic data structures:  A 

domain-private hcache is explicitly created when a 

filesystem is mounted or dynamically when the first 

hcache_put hypercall is performed with a page 

belonging to a filesystem.  This hcache is 

implemented as a hashed-list of objects; each object 

is created as needed and serves as the root of a 

“radix tree” [1] of nodes for fast lookup of indices.  

The leaf nodes of the radix tree point to page 

descriptors, which in turn point to pageframes 

containing the actual data.  The page descriptors are 

kept in two doubly-linked LRU lists: one private list 

for each domain, and one global list across all 

domains.  Thus, unutilized pages can easily be 

recycled as needed to accommodate constantly 

changing “memory scheduling” needs.  Finally, 

counters are kept for all data structures and pages are 

timestamped so that utilization can be easily 

determined and rebalanced as necessary. 

When a guest performs an hcache_put hypercall, the 

Xen hcache code allocates an unused memory page 

and any necessary data structures and copies the 

page of data from the guest.  If there is insufficient 

memory, one or more pages may be first evicted 

from either the global LRU list or private LRU list, 

depending on memory scheduler parameters and 

policy.  If memory is still not available, the 

hcache_put simply fails -- since there is no guarantee 

of persistence, there is no requirement that a put is 
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successful; no indication of failure is even necessary, 

though one is provided in the hypercall return value. 

 

For an hcache_get, the specified object identifier is 

hashed and the corresponding radix tree found.  The 

radix tree is searched for the index and, if a match is 

found, the data is copied to the guest.  In the case of 

a private-exclusive hcache_get, the page and 

associated data structures are then freed; for a 

shared-inclusive get, the page and data structures are 

left intact but the lists are updated to mark the page 

as recently used. 

An hcache_flush is simply a private hcache_get with 

no copying.  An hcache_flush_object walks the radix 

tree and flushes and frees all pages and data 

structures associated with that object.  Finally, a 

function is provided to destroy and recyle an entire 

private hcache, so that memory can be proactively 

recovered when Xen destroys an entire domain; 

technically this is not necessary as all unused pages 

will eventually move to the end of the LRU queues 

and be evicted. 

 

There are some interesting locking challenges, 

memory allocation issues, and hypercall sequence 

corner cases.  For example, in a put-get-get sequence 

of the same handle, is it possible that the first get 

will fail but the second get will succeed?  And what 

is the cause and proper response to a put when the 

handle already maps to existing data in the hcache? 

These are beyond the scope of this introductory 

abstract. 

 

 

4. Hcache status 

 
We have completed a prototype implementation of 

the second-chance cache functionality of hcache and 

the cluster/sharing functionality is currently under 

development.  We have only as yet measured hcache 

with small workloads on a single domain; 

comprehensive testing will require multiple 

simultaneous virtual machines with real or simulated 

workloads.  Still, preliminary results are promising.  

We have heavily instrumented the hcache code in 

order to collect a large set of internal statistics for 

analysis; this has already pointed out some tuning 

opportunities we have fixed.  For example, an 

unexpectedly high ratio of hcache_flush_object() 

calls led us to rewrite the linux-side interface to 

utilize inode numbers instead of the linux “address 

space” abstraction as an identifier for objects.  This 

not only reduced hcache overhead, but also led to a 

cleaner linux-side implementation.  Another 

example: Profiling hcache identified the Xen 

dynamic memory allocation (“xmalloc”) code as a 

horrible bottleneck, driving worst case hcache call 

times into the millions of cycles.  This led to the 

wholesale replacement of Xen xmalloc with a much 

faster TLSF-based [8] allocator, a change which has 

already been pushed upstream into xen-unstable. 

 

 

5. Hcache performance 

 
We have measured hcache on a simple but widely 

used “benchmark”, compiling the Linux kernel.  We 

test on two hardware platforms: a dual core 3GHz 

processor and 2GB physical memory; and a 2.9GHz 

quad core with hyperthreading and 4GB physical 

memory.  The software foundation is an hcache-

modified 64-bit Xen 3.3 hypervisor with Oracle 

Enterprise Linux 5.2 (OEL) as domain0.  At boot, 

Xen absorbs about 42MB of memory and domain0 

is restricted to 512MB via boot parameter.  Our test 

domain is a 32-bit OEL guest configured to use a 

“tap:aio” virtual disk, with between 256MB and 

2GB of memory and with either 2 vcpus or 4 vcpus. 

For our workload, we use a “make -j 10” of linux-

2.6.25.10 accelerated with the “ccache” [2] 

preprocessor.  Our methodology is to measure five 

runs, discard the lowest and highest measurements 

and average the remaining three. We reset the 

environment before each compile with a “make 

clean” and a command to flush the page cache.   We 

time the compile (only) rounded to the nearest 

second and bracket the compile with “iostat” to 

measure disk block reads and round this metric to 

the nearest thousand. 

Table 1, at the end of the paper, shows our 

measurements.  To briefly summarize, hcache on 

this workload reduces disk reads by nearly 95% and 

as a result increases throughput by between 22% and 

50%, with best results when more CPU resources are 

available to the guest. 
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Some additional interesting data we gleaned from 

our instrumentation when hcache is enabled: 

• hcache_get hit ratio is about 80% 

• average cost for hcache get’s and put’s is about 

2.5x the cost of an average page copy, which we 

measure at about 1.5usec on one platform and 

about half that on the other; maximum cost is 

about twice the maximum cost for a page copy 

• about 80% of the 1.7M hcache calls do an 

hcache_flush, showing we may be over-paranoid 

on the linux side to guarantee data consistency, 

and so our implementation may still have room 

to improve 

• hcache data structures are comfortably managing 

over 100K pages, belonging to 20K unique 

objects (inodes) in four hcaches (filesystems);  

note that this also reveals some insight into the 

working set size of the workload 

• one hash table is seeing a maximum hash chain 

length of over 50 entries, showing yet another 

opportunity for improvement 

Since the single guest, large memory environment, 

cold page cache, and the diskbound workload all 

favor hcache, some may argue that the benchmark is 

a bit contrived.  To counter this concern, we provide 

a second set of test runs, where we disable compiler 

acceleration, remove the command to drop the page 

cache between compiles, and even “warm” the page 

cache with a pre-measurement compile. But we also 

reduce the guest memory size to simulate a poorly 

provisioned guest.  As shown in Table 2, without 

hcache on a 128MB guest, some thrashing occurs 

and, as a result, disk reads climb dramatically and 

performance plummets.  But with hcache enabled, 

performance is roughly the same as if the guest were 

properly provisioned with twice as much memory -- 

or greatly overprovisioned with eight times as much. 

Our intent is certainly not to claim that hcache will 

demonstrate such outstanding results on a much 

wider variety of environments and workloads, but 

rather merely to show that hcache has strong 

potential in some cases -- and more room to 

improve. 

 

 

 

6. Related work 

 
Lu and Shen [6] introduce the concept of a 

hypervisor-based page cache, which influenced the 

ideas behind hcache.  However, cached pages in 

their implementation are stored not in the hypervisor 

but in the “service” domain (dom0), which requires 

costly interdomain transfer and coordination; this is 

because they do not constrain the cache to clean 

pages and must map and track physical device I/O 

performed in the service domain.  The exclusiveness 

also obviates its use for sharing between multiple 

virtual machines. 

 

Geiger [5] studiously avoids changes to the OS but 

uses a hypervisor to passively infer useful 

information about a guest’s unified buffer cache 

usage, with goals of working set size estimation and 

improving hit rate in remote storage caches.  

Interestingly, Geiger’s success is measured against 

“the ideal eviction detector” -- an OS modified 

exactly as needed for hcache.  

Much of the excellent analysis in Wong and Wilkes 

[10] reapplies easily to hcache.  Indeed, the DEMOTE  

operation is analogous to hcache_put, though the 

data is copied to a remote disk-array cache rather 

than a server-side hypervisor cache.  In particular, 

we intend to try some of the same benchmarks and 

compare some of the resulting curves, and we are 

eager to attempt some of the adaptive cache insertion 

policies. 

Finally, the transparent content-based page sharing 

described by Disco [3] and by Waldspurger [9] 

likely utilizes a hypervisor-cache-like mechanism to 

assist in memory overcommitment.  We wonder 

whether the explicit white-box sharing we intend to 

employ with read-only clustered filesystems might 

prove superior on some consolidated workloads to 

the black-box copy-on-write mechanisms used in 

VMware ESX. 
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7. Conclusions and future work 

 
We have introduced hcache, a hypervisor-based 

non-persistent page cache that allows underutilized 

memory to act as a “second-chance” page cache and, 

potentially, as a shared page cache for clustered 

filesystems.  We have implemented a prototype of 

the second-chance cache functionality and have 

measured it against a single but non-trivial 

workload, demonstrating preliminary but surprising 

performance improvement potential in some 

environments and workloads. 

We expect mixed benefit in other workloads:  For 

example, large memory domains and applications 

with large sequential datastreams may not benefit 

much and will likely challenge the memory 

scheduler.  Domains with limited memory, or high 

density consolidations using automatic ballooning 

techniques [7,9] may benefit much more.  Indeed we 

are already considering combining self-ballooning 

with hcache to potentially better optimize memory 

utilization.  Memory consumption may also be 

further reduced when hcache is leveraged to share 

read-only cluster filesystem data.  And we speculate 

that Geiger’s goals such as working set size 

estimation and remote storage cache hit rate 

improvement may be achieved more effectively with 

an hcache-based approach. 

As hcache is applied to a wide variety of 

simultaneous workloads, we expect to focus on 

challenges in implementing policy code.  For 

example, how do we balance hcache usage between 

multiple competing memory-hungry domains?  

Other less ambitious but potentially advantageous 

ideas for future work have been proposed:  1) 

Compress pages in the OS prior to cacheing [4], or 

optionally in the hypervisor.  2) Add an 

hcache_flush_range() hypercall to make file 

truncation more efficient.  We are eager to hear 

additional ideas. 3) Use part of hcache memory to 

serve as a ghost cache [10] to assist in determining if 

increasing or decreasing cache size would be 

beneficial. 
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physical 

cpus 

virtual 

cpus 

guest 

memory 

(MB) 

hcache 

enabled 
time (s) 

relative 

to hcache 

disk reads 

(K) 

relative 

to hcache 

2 2 256 yes 51 -- 6 -- 
2 2 256 no 62 122% 98 1633% 

2 2 1024 no 63 123% 98 1633% 

4 2 256 yes 45 -- 6 -- 
4 2 256 no 56 124% 98 1633% 

4 2 1024 no 57 127% 97 1616% 

4 4 256 yes 26 -- 6 -- 
4 4 256 no 39 150% 98 1633% 

4 4 1024 no 38 146% 98 1633% 

4 4 2048 no 39 150% 98 1633% 

 

Table 1. Linux compiles (using cold page cache and ccache) -- hcache is superior

 

 

 

physical 

cpus 

virtual 

cpus 

guest 

memory 

(MB) 

hcache 

enabled 
time (s) 

relative 

to hcache 

disk reads 

(K) 

relative 

to hcache 

4 4 128 yes 53 -- 323 -- 
4 4 128 no 114 215% 537 166% 

4 4 256 no 52 98% 18 6% 

4 4 1024 no 52 98% 0 0% 

 

Table 2. Linux compiles (with warm page cache and not using ccache) -- hcache compensates for 

underprovisioned memory

 


