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Abstract.  SR-IOV capable network devices 
offer the benefits of direct I/O throughput and 
reduced CPU utilization while greatly increasing 
the scalability and sharing capabilities of the 
device. SR-IOV allows the benefits of the 
paravirtualized driver’s throughput increase and 
additional CPU usage reductions in HVMs 
(Hardware Virtual Machines).  SR-IOV uses 
direct I/O assignment of a network device to 
multiple VMs, maximizing the potential for 
using the full bandwidth capabilities of the 
network device, as well as enabling unmodified 
guest OS based device drivers which will work 
for different underlying VMMs.   

Drawing on our recent experience in developing 
an SR-IOV capable networking solution for the 
Xen hypervisor we discuss the system level 
requirements and techniques for SR-IOV 
enablement on the platform. We discuss PCI 
configuration considerations, direct MMIO, 
interrupt handling and DMA into an HVM using 
an IOMMU (I/O Memory Management Unit).  
We then explain the architectural, design and 
implementation considerations for SR-IOV 
networking in Xen1 in which the Physical 
Function has a driver running in the driver 
domain that serves as a “master” and each 
Virtual Function exposed to a guest VM has its 
own virtual driver. 

1 Introduction 
I/O is an important part of any computing 
platform, including virtual machines running on 
top of a virtual machine monitor (VMM) such as 
Xen[14][11].  As has been noted many times 
before it’s possible to have all the CPU cycles 
needed but if there is no data for the CPU to act 
upon then CPU resources are either wasted on 
idle cycles, or in the case of software emulation 
of I/O devices, many CPU cycles are expended 
on I/O itself, reducing the amount of CPU 
available for processing of the data presented.  
For this reason much research and development 
has been focused on methods for reducing CPU 
usage for purposes of I/O while increasing the 
amount of data that can be presented to the VM 
for processing, i.e. “useful work”. 

Various strategies and techniques have been 
employed to this end, especially with respects to 
network I/O due to the high-bandwidth 
requirements. Paravirtualization techniques [5] 
and its enhancement utilizing network multiple 
queues [12] and Solarflare’s SolarStorm 
technology [1] are used to accelerate the 
presentation of data to the VM, both reducing 
CPU overhead and increasing data throughput.   

In October of 2007 the PCI-SIG released the SR-
IOV specification [2] which detailed how PCIe 
compliant I/O device HW vendors can share a 
single I/O device among many VMs.  In concert 
with other virtualization technologies such as 
Intel® VT-x [3] and VT-d [4] and AMD® 
AMD-V and the AMD Integrated Memory 
Controller [14] it has now become possible to 
greatly enhance the I/O capabilities of HVMs in 
a manner that are scalable, fast and highly 
resource efficient. 

Realizing the benefits of PCI-SIG SR-IOV 
involves integrating and making use of the 
capabilities of the entire platform and OS.  A 
SR-IOV implementation is dependent upon an 
array of enabling technologies, all of which are 
detailed in the following sections.   Network 
device drivers that take advantage of SR-IOV 
capabilities require specific changes and 
additional capabilities as well as new 
communication paths between the physical 
device and the virtual devices it supports. 

2 MSI for direct I/O 
Direct I/O access (also known as device pass 
through) is supported in the Xen driver domain 
to contain driver failure [6], and is further 
extended to the user domain for performance 
when PCIe devices are assigned. Guest MMIO 
(Memory Mapped IO) of pass through device is 
directly translated in shadow page table or direct 
page table to avoid CPU intervention for 
performance.  

One of the biggest challenges in direct I/O is 
interrupt sharing when working in legacy pin 
based interrupt signaling mechanism.  
Hypervisor, at the time physical interrupt fires, 
must inject a virtual interrupt to all guests whose 
pass through device shares interrupt. But 



interrupt sharing imposes more challenges in 
virtualization system for inter guest isolation 
both in performance and robustness. A group of 
guest sharing interrupt is depending on a set of 
devices, which may malfunction to generate 
unexpected interrupt storm if the owner guest is 
compromised, or mislead host to generate 
malicious interrupt clearance request such as 
EOI (End of Interrupt). 

MSI 

We extended Xen direct I/O to support message 
signaled interrupt (MSI) and its extension (MSI-
X) [7] to avoid interrupt sharing. MSI and MSI-
X mechanism provide software ability to 
program interrupt vector for individual MSI or 
MSI-X interrupt source. Dom0 cooperates with 
hypervisor to manage the physical interrupt and 
programs each MSI/MSI-X interrupt vector with 
a dedicated vector allocated from hypervisor. In 
the meantime, MSI and MSI-X support is 
required by SR-IOV devices where INTx is not 
implemented. 

Virtual MSI 

A virtual MSI/MSI-X model is introduced in the 
user level device model to support guest 
MSI/MSI-X when host has MSI/MSI-X 
capability. Full hardware MSI and MSI-X 
capabilities are presented to guest, in the 
meantime guest per vector mask and unmask 
operation is directly propagated to host while 
others are emulated. MSI/MSI-X vectors 
programmed to device are remapped since host 
side vectors must come from Xen to maintain 
host side identical.  

3 SR-IOV Network 
Device Design 

Single Root I/O Virtualization and Sharing 
Specification (SR-IOV) defines extensions to the 
PCI Express (PCIe) specification suite to enable 
multiple system images or guests to directly 
access subset portions of physical I/O resources 
for performance data movement and to natively 
share underlying hardware resources. An SR-
IOV device presents single or multiple Physical 
Functions (PFs) which are standard PCIe 
functions. Each PF can have zero or more Virtual 
Functions (VFs) which is a “light-weight” PCIe 
function that has enough resource for major data 
movement, as well as a unique requester 
identifier (RID) to index the IOMMU page table 
for address translation.  

3.1 Architecture 
Like a PCIe pass through device, a VF residing 
in an SR-IOV device can be assigned to a guest 
with direct I/O access for performance data 
movement. A Virtual Function Device Driver 
(VDD) running in the guest, as shown in Figure 
1, is VMM agnostic, and thus be able to run on 
other VMMs as well. The IOMMU, managed by 
Xen, will remap VF driver fed guest physical 
address to machine physical address utilizing the 
VF RID as the IO page table index.  

 

Figure 1: Xen SR-IOV Networking Architecture 

 

VF configuration space access from VDD is trap 
and emulated by VMM to present guest a 
standard PCIe device to reuse existing PCI 
subsystem for discovery, initialization and 
configuration, which simplifies guest OS and 
device driver. As shown in Figure 1, user level 
device mode [11][12] in dom0 emulates guest 
configuration space access, but some of guest 
access may be forwarded to HW directly if 
targets dedicated resource. 

PF driver, or Master Device Driver (MDD), 
running in driver domain (dom0 in Xen) controls 
underlying shared resources for all associated 
VFs, i.e. virtualizes non performance critical 
resources for VF (see 3.3 for details). SR-IOV 
network device shares physical resources and 
network bandwidth among VFs. The PF is 



designed to manage the sharing and coordinate 
between VFs. MDD in dom0 has the ability to 
directly access PF run time resources and 
configuration resources, as well as the ability to 
manage and configure VFs. Administrator tools 
such as control panel in dom0 manage PF 
behavior to set the number of VFs, globally 
enable or disable VFs, as well as network 
specific configurations such as MAC address and 
VLAN setting for each VF. 

3.1.1 VF assignment 
The VF, appearing as a “light-weight” PCIe 
function when enabled in hardware, doesn’t 
respond to ordinary PCI bus scan for vendor ID 
and device ID used in OS to discover PCI 
function, and thus can’t be enumerated by dom0 
Linux. Xen SR-IOV networking architecture 
utilizes Linux PCI hot plug API to dynamically 
add VFs to dom0 Linux when VFs are enabled 
and vice versa when VFs are disabled so that 
existing direct I/O architecture works for VF too.  

Xen SR-IOV networking architecture 
implements SR-IOV management APIs in the 
dom0 Linux kernel as a generic module rather 
than in the MDD itself, which simplifies 
potentially thousands of MDD implementations. 
In the meantime MDDs must be notified when 
the configuration is changed so that PF drivers 
can respond to the event. 

3.1.2 Control Interface 
PCI sysfs is extended for the PF to provide a 
user/kernel control interface. An additional “iov” 
inode is introduced to PF sysfs directory as 
shown in Table 1. Network SR-IOV devices, 
such as Intel® 82576 Gigabit Ethernet Controller, 
require administrator tools to set MAC address 
for each VF as well as VLAN, but this must be 
set by PF for security reason. Xen SR-IOV 
architecture employs “iov/n” (n start from 0) 2nd 
level inode for per VF configurations. The 
architecture provides APIs for the MDD to create 
and query device specific inodes in addition to 
nodes modification notification for MDD to 
respond immediately. 

inode Usage 

iov Subdirectory for all iov 
configurations 

iov/enable 1/0 for global VF enable / 

disable 

iov/numvfs Number of VFs that are 
available 

iov/n 

 

Per VF configuration 
subdirectory 

Table 1: SR-IOV extension inodes in PF sysfs 

 

Kernel / MDD communication APIs are 
introduced for the MDD to respond to a 
configuration change. A Virtual Function is a set 
of physical resources dynamically collected 
when it is enabled, it must be correctly 
configured in advance before it can function. All 
the resources available are initially owned by the 
Physical Function, but some of them will be 
transferred to VFs when VFs are enabled such as 
queue pairs. Pre-notification and post-
notification events are introduced so that MDDs 
can respond to IOV configuration changes before 
or after the hardware settings really take effect. 
The same applies to the per VF MAC and VLAN 
configuration change. 

 

Notification API 

� Typedef int (*vf_notification_fn) (struct 
pci_dev *dev, unsigned int event_mask); 

Bit definition of event_mask: 

� b31: 0/1 means pre/post event 

� b18-16: Event of enable, disable and 
configuration 

� b7-b0: VFn of event, or totalVFS 

3.2 PF Resource 
Management, Security 
and Configuration 

Enabling SR-IOV features in the network device 
will inevitably lead to changes in the number and 
types of resources available to the MDD.  Upon 
loading the MDD there can be no assumption as 
to whether the SR-IOV capabilities of the device 
have been enabled or not.  The software must be 
able to inspect its configuration and determine if 
SR-IOV capabilities are enabled and if they are 
enabled, how many virtual functions have been 
enabled.  The MDD will also add security and 
policy enforcement features to monitor VFs for 



harmful or malicious behavior as well as 
configuring anti-spoof features in the HW.  The 
ability of the MDD to monitor and control the 
VFs is one of the more attractive features of the 
SR-IOV I/O sharing model. 

Another consideration for the MDD is that 
implicit in the sharing of its network resources 
among several virtual function devices is that at 
some sort of layer 2 switching will be required to 
make sure that packets incoming from either the 
network or from other virtual function devices 
are properly routed and, in the case of broadcast 
or multicast packets, replicated to each of the 
physical and virtual functions as needed. 

 

3.2.1 PF Resource 
Management 

A SR-IOV capable network device such as the 
Intel® 82576 Gigabit Ethernet Controller [9] is 
equipped with a set number of resources as part 
of its HW design.  When the SR-IOV 
capabilities are enabled for the device, resources 
that were available to the PF are now distributed 
to the VFs.  Depending on the HW design and 
the number of VFs enabled the PF driver may 
have all or some of its resources reserved to the 
VFs.  When the MDD loads it will need to 
examine the SR-IOV configuration and number 
of VFs enabled to make a decision as to what 
resources are available and how they may be best 
used.  As an example, while the PF may have 
multi-queue capabilities such as RSS, those 
capabilities may not be available depending on 
how many VFs are enabled and how many 
resources they consume. 

3.2.2 PF MDD Security 
Considerations 

By the very nature of their architecture and 
design Virtual Function devices provide a better 
environment for secure computing.  
Paravirtualized drivers running in a guest OS 
with direct access to HW resources to an entire 
PCI device, without a monitoring entity such as a 
Physical Function device are inherently less 
secure.   Since there is a HW enforced hierarchy 
in SR-IOV in which the MDD on the physical 
function has full visibility of all HW resources of 
the device while the VDD on the virtual function 
has visibility only into it’s own subset of the 
device resources, it is possible to create secure 
policies and safeguards that the MDD will be 
able to enforce upon the VF device driver.   
Depending on HW and SW design 
considerations it would be possible to monitor 
and enforce policies concerning VF device 
bandwidth usage,  interrupt throttling, congestion 
control, broadcast/multicast storms and a number 
of conditions that might be the result of a rogue 
agent in a guest attempting to use the VF device 
for malicious purposes. 

As a security precaution the MDD must be 
prepared for the eventuality that the VDD may 
have been taken over by a rogue agent or that the 
VDD itself has been replaced by a rogue driver 
with malicious intent.  The rogue agent or driver 
may attempt to cause an interrupt storm or 
overwhelm the MDD with what amounts to a 
denial of service attack by sending a huge 
volume of spurious or undefined messages.  Two 
primary approaches to handling this type of 
attack would be to: 

a) Drop undefined or repetitious messages 
and disable the VF when such activity is 
detected as well as notifying 
management SW in the VMM that the 
guest OS to which the VF was assigned 
has suffered a security breach. 

b) Employ heuristics to detect when a 
malicious agent in the guest OS is 
attempting to cause an interrupt storm 
by repeatedly ringing the doorbell. 

c) Use the anti-spoof capabilities of the 
82576 to prevent MAC and VLAN 
spoofing, detect which VM is engaging 
in this behavior and shut it down. 



Care in the design and implementation of the 
MDD should be sufficient to handle such 
security threats. 

3.2.3 VF Configuration 
The SR-IOV network PF driver has unique 
requirements that must be considered during the 
design and implementation phase.  Standard 
Ethernet network drivers already have to support 
a number of common network configurations 
such as multicast addresses and VLAN setup 
along with their related hardware supported 
offloads.  Other cases which are not universally 
supported yet still commonly used involve 
support for interrupt throttling, TCP offloads, 
jumbo frames, and others. 

When the SR-IOV capabilities for distributing 
resources to virtual functions come into 
consideration, the complexity of these 
configuration requests becomes more 
complicated.  The PF driver must handle 
multiple, and sometimes conflicting request, for 
configuration from the virtual function device 
drivers.   Good hardware design will help the PF 
driver manage this complexity by allowing it to 
configure resources and offloads effectively on a 
per VF basis. 

3.3 PF/VF Communication 
The MDD and VDD will require a method of 
communication between them. One of the SR-
IOV hardware design rules is to implement only 
those performance critical resources in VF side, 
while leaving non-performance critical resources 
virtualized by an I/O virtualization intermediary  
[2] (dom0 and hypervisor in Xen). PF/VF 
communications are designed for MDD and 
VDD to cooperatively share the global network 
resources. 

There are two approaches to handling 
communications between the PF and the VF.  
One is to implement a private HW based 
interface that is specific to the device.  The other 
would be to use a communication channel 
provided by the VMM vendors.   

The primary advantage to using the private HW 
based interface is that there would be a single, 
consistent interface for communication between 
the PF/VF. The SW based channel would have 
the advantage of providing a consistent interface 
that all drivers could use for common tasks and 
event communications. Guest configuration 

space access which is emulated by device model 
could also be treated as a kind of PF/VF 
communication channel, with standard interface 
per PCI specification,  

At this time no VMM vendor has implemented 
or specified a SW communication channel 
between the PF and the VF.  While the SW 
based communication channel is likely the ideal 
method of communication, until such a 
communication channel is specified and 
implemented among the various VMM vendors 
it will be necessary for those who wish to 
develop and release SR-IOV products to use a 
private HW based communication method. 

Intel Corporation has implemented such a HW 
based communication method in its SR-IOV 
capable network devices.  It is implemented as a 
simple mailbox and doorbell system.  The MDD 
or VDD establishes ownership of the shared 
mailbox SRAM through a handshaking 
mechanism and then writes a message to the 
mailbox.  It then “rings the doorbell” which will 
interrupt the PF or VF as the case may be, 
sending notification that a message is ready for 
consumption.  The MDD or VDD will consume 
the message, take appropriate action and then set 
a bit in a shared register indicating 
acknowledgement of message reception. 

3.4 Network Sharing 
Most network configurations are shared among 
VFs such as security, synchronization, etc., and 
thus must use PF/VF communication to pass 
guest side request on to the MDD for 
virtualization by the VDD.  For example, the 
VDD may have a request from the guest OS to 
set up a list of multicast addresses.  In this case 
the VDD would send a request to the MDD with 
the attached list of multicast addresses.  The 
MDD would examine the list of multicast 
addresses from the guest, determine if there are 
duplicates from other guests and then add the 
new multicasts to its multicast address filter 
entries.  The MDD will use its layer 2 switch 
capabilities to direct the duplicate multicast 
addresses that are already in the filters to the 
requesting VF. 

Other common network configuration requests 
from the guest OS to the VDD would be VLAN 
setup, enabling jumbo frames, enabling or 
disabling various offloads such as TSO or check-
summing and others.  These requests will be 



handled via the PF/VF communications 
discussed in section 3.3. 

3.5 Network Event 
Notifications 

Physical network event happening in MDD side 
will have to be forwarded to notify each VDD 
for the shared resource status change, as another 
part of VDD/MDD cooperative virtualization 
process. These include but are not necessarily 
limited to: 

• impending global device reset 

• link status change  

• impending driver removal and, if 
appropriate, a matching MDD re-insertion.   

4 Performance analysis 

4.1 Virtual Functions Benefit 
from Direct I/O 

The VF device has direct access to its own 
registers and IOMMU technology allows 
translation of guest physical addresses (GPA) 
into host physical addresses for direct I/O the VF 
will achieve near native (or bare metal) 
performance running in a guest OS.  Each VM 
using a VF device will get the benefits of higher 
throughput with lower CPU utilization compared 
to the standard software emulated NIC.  Another 
significant benefit of a Virtual Function device 
using Direct I/O is that register reads and writes 
do not have to be trapped and emulated.  The 
CPU paging features are used to directly map the 
VF device MMIO space into the guest.  Trapping 
and emulating register reads and writes are very 
expensive in terms of CPU utilization and extra 
task switches. 

4.2 Virtual Functions Benefit 
from Improved Interrupt 
Remapping 

Newer IOMMUs that are being developed right 
now and are soon to be released into the market 
have improved interrupt remapping technology 
that will reduce latency from the time the HW 
interrupt is triggered to when the actual interrupt 
handler in the guest is invoked.  Interrupt latency 
is one of the primary bottlenecks in a virtualized 
environment.  By using streamlined MSI-X 

interrupt technology with IOMMU interrupt 
remapping latency will be reduced which will 
lead to even more performance gains. 

4.3 Virtual Functions Benefit 
from Improved 
Scalability 

Directly assigned NICs provide the benefits of 
native, bare metal performance to a guest VM 
under Xen, however the problem with this 
approach is that the entire bandwidth of a 
physical Ethernet port can only be utilized by a 
single VM.  In most cases this defeats the 
original purpose of virtualization, i.e. sharing of 
machine and I/O resources to achieve maximum 
utilization of the end user’s expensive hardware 
investment.  Unless the VM is continuously 
running a high bandwidth consumption 
application it is likely that the resources of the 
directly assigned or paravirtualized NIC are 
under utilized and could be used by other VMs.  
The solution to this problem is PCI SIG SR-IOV 
virtual devices. 

A single virtual device can provide near native 
bandwidth performance to a VM or multiple 
virtual devices can provide aggregate near native 
bandwidth performance to multiple VMs.  In this 
manner the SR-IOV capable network device is 
much more scalable and a far better investment 
than a network device without this capability.  
Additional flexibility in the deployment and 
allocation of resources to VMs is an advantage 
over directly assigned PCI devices which 
actually place such a burden on system 
administrators that they are only used under the 
most demanding circumstances.   

5 Conclusion 
SR-IOV enabled network devices provide a high 
degree of scalability in a virtualized environment 
as well as improved I/O throughput and reduced 
CPU utilization.  Even in cases where only a 
single VF is allocated for the physical device and 
dedicated to a single VM the increased security 
capability makes the SR-IOV solution superior 
to the traditional direct assignment of the entire 
physical PCI device to a VM as the MDD is 
capable of monitoring the VF(s) for security 
violations, preventing spoofing and in cases 
where a rogue driver has been installed in the 
VM it can even shut down the device. 
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