
 

Dynamic Memory Management with Garbage Collection
for Embedded Applications

 

Roberto Brega and Gabrio Rivera

 

brega@ifr.mavt.ethz.ch and rivera@inf.ethz.ch

 

Swiss Federal Institute of Technology Zurich (ETHZ) 
CH–8092 Zurich

 

Abstract

 

A software system can be called a 

 

safe-system

 

 with
respect to memory, when it supports only strong-typing
and it does not allow for the manual disposal of dynamic
memory [2]. The first aspect guarantees that untyped,
potentially dangerous operations are caught by the com-
piler or by run-time checks. The second issue is solved
by the utilisation of an automatic memory reclamation
scheme, i.e. a garbage collector.

In this paper we argue that the careful choice of the
programming language, along with an automatic mem-
ory reclamation scheme can optimise memory usage,
while ensuring that many of the logical errors related to
memory can be avoided.

 

1  Introduction

 

Implementors of modern embedded machines must face
two opposing tendencies. On the one hand, the system
should behave like a modern desktop system, with its
latest standards, the support for inter-networking, and
ease-of-use. On the other hand, unlike a modern desktop
system, it is not allowed to fail and must be able to run
on tight memory conditions. Therefore implementors
will often need to trade-off features for reliability.

This same issue was faced by the Institute of Robot-
ics of the ETH Zurich, Switzerland and by Mechatronic
Research Systems, an ETH spin-off company special-
ised in robotic control systems, as they were asked to
realise state-of-the art control solutions for high-end
mechatronic products by two Swiss companies.

Meyco Equipment AG needed a robot controller for a
redundant manipulator spraying liquid concrete for tun-
nelling work. Besides the inherent difficulty of control-
ling the redundant, hydraulically actuated manipulator,
the system needed to provide remote diagnostics
through standard web services and remote controlling
from an embedded console through TCP connections.
Similar requirements were to be addressed for a fully
autonomous fork-lift truck used in a warehouse of a
Swiss manufacturing plant. The two machines needed to
have months of up-time, while providing complex soft-
ware services that could lead to small but inevitable

memory leaks, thus having their long-term reliability
undermined. 

Unwilling to compromise on run-time safety, the
Institute of Robotics chose to attack these problems at
their roots, by deploying its in-house developed real-
time operating system XO/2 [1].

 

2  The Role of Strong-Typed Programming 
Languages in Safe Systems

 

System components are the tools of a software engineer.
The safer the tools, the more reliable is the system. It is
well-known that languages, or more precisely proper
language paradigms and type systems, can do a lot to
help programmers. Strangely enough, despite the exist-
ence of better alternatives, a lot of safety-critical soft-
ware gets implemented by means of programming
languages that do a poor job of ensuring static or
dynamic safety. In those cases, tools are used for uncov-
ering errors that should not have been made possible in
the first place, such as array indexes out of range, dan-
gling pointers, casting errors, and memory leaks.

A type-system, as can be found in strong-typed lan-
guages, can be seen as the primary method for annotat-
ing all entities of a given program. The programmer can
no longer tinker with memory addresses and he is forced
to play by the rules of the language, in order that his pro-
gram correctly compiles and is not trapped in a run-time
assertion. The assertions bound to program entities
enforce a more well-thought structural design, thus they
can help in diminishing the chances of deep conceptual
errors in the application as well.

 

3  Automatic Disposal of Dynamic Memory

 

The central knowledge of all references that exist for a
particular object becomes hard to maintain as the
dynamic loading of extensions increases. Even worse, it
becomes impossible for a programmer to keep track of
references in a safe way when the programming lan-
guage does not impose restrictions on the passing and
copying of references. This brings us to the conclusion
that in a dynamically extensible system, explicit deallo-
cation of objects is not feasible. Failing to realise this



 

introduces a new class of run-time problems, such as
dangling references and memory leaks.

The only safe possibility for object disposal is by
means of a system-wide mechanism performing auto-
matic storage reclamation: a 

 

garbage collector

 

. A gar-
bage collector defines the liveness of heap objects by
their reachability, starting from a working set of global
and local references: an object is live only when there is
some path that reaches it; on the other hand, an object is
not live when no path can be found that reaches the
object. When an object is not reachable, it can be dis-
posed of safely.

 

4  The XO/2 Heap-Manager

 

XO/2 follows the guidelines presented in sections 2 and
3 in its dynamic memory manager: Each allocated
object is bound to a type, and the responsibility of its
reclamation is left to the system-wide garbage collector.
The heap manager in XO/2 implements a 

 

mark-and-
sweep

 

 garbage collector. This scheme has been chosen
because of the possibility of an incremental implemen-
tation, and its non-destructive behavior during conserva-
tive-marking of the procedure’s activation frames [3].

The algorithm consists of two distinct phases. The
first one, the 

 

marking phase

 

, traverses the objects graph,
by starting from a well-defined 

 

root-set

 

. The root-set is
made up of the global pointers declared in a module
variables-block, and all of the local pointers present in
the processes’ stacks and registers. Every traversed
object is marked and their descendants traversed until
every reachable object in the heap space has been
marked. During the second phase, the 

 

sweep-phase

 

, the
collector disposes of the objects in the heap that have
not been traversed.

The pre-emptive, real-time nature of the XO/2 task
scheduling explicitly requires the collector to be incre-
mental, interruptible and with a low-overhead with
respect to the concurrent running programs, without
blocking or delaying accesses to heap-objects.

The traversal phase (marking) of the collector is very
sensitive to outside changes of the objects graph brought
by pointer operations. Pointer assignment operations
such as 

 

p:=q

 

 (where p and q are pointers of the same
type or where q is a subtype of p) would invalidate the
marking of the graph performed by the collector during
the heap traversal. 

In order to handle these operations, the compiler gen-
erates code for notifying the collector that a change in
the graph has occurred. The newly injected code pro-
duces only a 1% overhead.

 

5  Space and Time Considerations

 

It is of outmost importance that the collector can be
started when a low-memory condition occurs. Although

memory-efficient traversal algorithms exist—such as the
pointer-reversal descent—they are not suitable for pre-
empted operation. Another possibility is the classic
stack-based traversal. Unfortunately the stack-space
needed for marking the heap is proportional to the depth
of the graph: When the heap grows too much, the
amount of memory available to the traversal decreases
accordingly, thus potentially inhibiting the completion
of the marking phase. 

We devised a scheme that allows the collector to
completely mark the heap without allocating additional
memory. Consequently, the collector can always com-
plete marking and sweeping regardless of the amount of
free memory

 

.

 

6  Real-World Experiences

 

The autonomous fork-lift truck and the RoboJet manip-
ulator have been benchmarked against memory usage
under different memory load conditions.

We inspected two different heap configurations: the
first one with a 512 KB heap-size (basic product func-
tionality), the second one with a 4 MB heap-size (con-
tinuous networked monitoring enabled), both of them
with an average objects’ size of 128 bytes. For complet-
ing one mark-and-sweep pass, while the full tasks con-
stellation was running, the average collection time for
the 512 KB heap-size amounts to 8 ms, and that for the 4
MB heap-size to 24ms. The tests show that the time
needed for a complete collection pass remains low for
heap-sizes that are common for our mechatronic appli-
cations.

 

7  Conclusion

 

As the list of requirements for embedded machines
grows, application programmers can find themselves
overwhelmed. A careful choice of the programming lan-
guage, along with a system-wide mechanism for auto-
matic storage reclamation provide invaluable help in
keeping the system complexity low. We believe an incre-
mental garbage collection mechanism, supporting trans-
parent execution with respect to real-time tasks should
find its way into today's mechatronic products.

 

References

 

[1] R. Brega. A real-time operating system designed for pre-
dictability and run-time safety. In 

 

Proceedings of The
Fourth International Conference on Motion and Vibra-
tion Control (MOVIC)

 

, pages 379–384, Zurich, August
1998.

[2] C. Szyperski and J. Gough. The role of programming lan-
guages in the life-cycle of safe systems. 

 

Second Interna-
tional Conference on Safety Through Quality (STQ'95)

 

,
Kennedy Space Center, Cape Canaveral, Florida, USA,
October 1995.

[3] Paul R. Wilson, Uniprocessor Garbage Collection Tech-
niques,

 

 Submitted to ACM Computing Surveys.


