
JSMeter: Comparing the Behavior of JavaScript Benchmarks
with Real Web Applications

Paruj Ratanaworabhan
Kasetsart University

paruj.r@ku.ac.th

Benjamin Livshits and Benjamin G. Zorn
Microsoft Research

{livshits,zorn}@microsoft.com

Abstract
JavaScript is widely used in web-based applications
and is increasingly popular with developers. So-called
browser wars in recent years have focused on JavaScript
performance, specifically claiming comparative results
based on benchmark suites such as SunSpider and V8. In
this paper we evaluate the behavior of JavaScript web ap-
plications from commercial web sites and compare this
behavior with the benchmarks.

We measure two specific areas of JavaScript runtime
behavior: 1) functions and code and 2) events and han-
dlers. We find that the benchmarks are not representative
of many real web sites and that conclusions reached from
measuring the benchmarks may be misleading. Specific
common behaviors of real web sites that are underem-
phasized in the benchmarks include event-driven exe-
cution, instruction mix similarity, cold-code dominance,
and the prevalence of short functions. We hope our re-
sults will convince the JavaScript community to develop
and adopt benchmarks that are more representative of
real web applications.

1 Introduction

JavaScript is a widely used programming language that
is enabling a new generation of computer applications.
Used by large fraction of all web sites, including Google,
Facebook, and Yahoo, JavaScript allows web applica-
tions to be more dynamic, interesting, and responsive.
Because JavaScript is so widely used to enable Web 2.0,
the performance of JavaScript is now a concern of ven-
dors of every major browser, including Mozilla Fire-
fox, Google Chrome, and Microsoft Internet Explorer.
The competition between major vendors, also known as
the ‘browser wars” [24], has inspired aggressive new
JavaScript implementations based on Just-In-Time (JIT)
compilation strategies [8].

Because browser market share is extremely impor-
tant to companies competing in the web services mar-

ketplace, an objective comparison of the performance of
different browsers is valuable to both consumers and ser-
vice providers. JavaScript benchmarks, including Sun-
Spider [23] and V8 [10], are widely used to evaluate
JavaScript performance (for example, see [13]). These
benchmark results are used to market and promote brow-
ers, and the benchmarks influence the design of Java-
Script runtime implementations. Performance of Java-
Script on the SunSpider and V8 benchmarks has im-
proved dramatically in recent years.

This paper examines the following question: How rep-
resentative are the SunSpider and V8 benchmarks suites
when compared with the behavior of real JavaScript-
based web applications? More importantly, we examine
how benchmark behavior that differs quite significantly
from real web applications might mislead JavaScript run-
time developers.

By instrumenting the Internet Explorer 8 JavaScript
runtime, we measure the JavaScript behavior of 11 im-
portant web applications and pages, including Gmail,
Facebook, Amazon, and Yahoo. For each application, we
conduct a typical user interaction scenario that uses the
web application for a productive purpose such as read-
ing email, ordering a book, or finding travel directions.
We measure a variety of different program characteris-
tics, ranging from the mix of operations executed to the
frequency and types of events generated and handled.

Our results show that real web applications behave
very differently from the benchmarks and that there are
definite ways in which the benchmark behavior might
mislead a designer. Because of the space limitations, this
paper presents a relatively brief summary of our findings.
The interested reader is referred to a companion techni-
cal report [17] for a more comprehensive set of results.

The contributions of this paper include:

• We are among the first to publish a detailed char-
acterization of JavaScript execution behavior in real
web applications, the SunSpider, and the V8 bench-

marks. In this paper we focus on functions and code
as well as events and handlers. Our technical re-
port [17] considers heap-allocated objects and data.

• We conclude that the benchmarks are not represen-
tative of real applications in many ways. Focusing
on benchmark performance may result in overspe-
cialization for benchmark behavior that does not oc-
cur in practice, and in missing optimization oppor-
tunities that are present in the real applications but
not present in the benchmarks.

• We find that real web applications have code that
is one to two orders of magnitude larger than most
of the benchmarks and that managing code (both
allocating and translating) is an important activity
in a real JavaScript engine. Our case study in Sec-
tion 4.7 demonstrates this point.

• We find that while the benchmarks are compute-
intensive and batch-oriented, real web applications
are event-driven, handling thousands of events. To
be responsive, most event handlers execute only
tens to hundreds of bytecodes. As a result, functions
are typically short-lived, and long-running loops are
uncommon.

• While existing JavaScript benchmarks make mini-
mal use of event handlers, we find that they are ex-
tensively used in real web applications. The impor-
tance of responsiveness in web application design is
not captured adequately by any of the benchmarks
available today.

2 Background

JavaScript is a garbage-collected, memory-safe program-
ming language with a number of interesting proper-
ties [6]. Unlike class-based object-oriented languages
like C# and Java, JavaScript is a prototype-based lan-
guage, influenced heavily in its design by Self [22]. Java-
Script became widely used because it is standardized,
available in every browser implementation, and tightly
coupled with the browser’s Document Object Model [2].

Importance of JavaScript. JavaScript’s popularity
has grown with the success of the web. Scripts in
web pages have become increasingly complex as AJAX
(Asynchronous JavaScript and XML) programming has
transformed static web pages into responsive applica-
tions [11]. Web sites such as Amazon, Gmail, and Face-
book contain and execute significant amounts of Java-
Script code, as we document in this paper. Web appli-
cations (or apps) are applications that are hosted entirely
in a browser and delivered through the web. Web apps
have the advantage that they require no additional instal-
lation, will run on any machine that has a browser, and

provide access to information stored in the cloud. So-
phisticated mobile phones, such as the iPhone, broaden
the base of Internet users, further increasing the impor-
tance and reach of web apps.

In recent years, the complexity of web content has
spurred browser developers to increase browser perfor-
mance in a number of dimensions, including improv-
ing JavaScript performance. Many of the techniques for
improving traditional object-oriented languages such as
Java and C# can and have been applied to JavaScript [8,
9]. JIT compilation has also been effectively applied, in-
creasing measured benchmark performance of JavaScript
dramatically.

Value of benchmarks. Because browser performance
can significantly affect a user’s experience using a web
application, there is commercial pressure for browser
vendors to demonstrate that they have improved perfor-
mance. As a result, JavaScript benchmark results are
widely used in marketing and in evaluating new browser
implementations. The two most widely used JavaScript
benchmark suites are SunSpider, a collection of small
benchmarks available from WebKit.org [23], and the
V8 benchmarks, a collection of seven slightly larger
benchmarks published by Google [10]. The benchmarks
in both of these suites are relatively small programs;
for example, the V8 benchmarks range from approxi-
mately 600 to 5,000 lines of code.

Illustrative example. Before we discuss how we collect
JavaScript behavior data from real sites and benchmarks,
we illustrate how this data is useful. Figure 1 shows live
heap graphs for visits to the google and bing web sites1.
These graphs show the number of live bytes of different
types of data in the JavaScript heap as a function of time
(measured by bytes of data allocated). In the figures, we
show only the four most important data types: functions,
strings, arrays, and objects. When the JavaScript heap
is discarded, for example because the user navigates to
a new page, the live bytes drops to zero, as we see in
google.

These two search web sites shown offer very similar
functionality, and we performed the same sequence of
operations on them during our visit: we searched for
“New York” in both cases and then proceeded to page
through the results, first web page results and then the
relevant news items.

We see from our measurements of the JavaScript heap,
however, that the implementations of the two applica-
tions are very different, with google being implemented
as a series of visits to different pages, and bing imple-
mented as a single page visit. The benefit of the bing ap-

1Similar graphs for all the real web sites and benchmarks can be
found in our tech report [17].

(a) Live heap for google. (b) Live heap for bing.

Figure 1: Live heap contents as a function of time for two search applications.

proach is highlighted in this case by looking at the right
hand side of each subfigure. In the case of google, we
see that the contents of the JavaScript heap, including
all the functions, are discarded and recreated repeatedly
during our visit, whereas in the bing heap the functions
are allocated only once. The size of the google heap is
significantly smaller than the bing heap (approximately
an order of magnitude), so it could be argued that the
google approach is better. On the other hand, the bing
approach does not lead to the JavaScript heap being re-
peatedly recreated.

In conclusion, we note that this kind of dynamic heap
behavior is not captured by any of the V8 or SunSpider
benchmarks, even though it is common among real web
applications. Knowledge about such allocation behavior
can be useful when, for example, designing and optimiz-
ing the garbage collection systems.

3 Experimental Design

In this section, we describe the benchmarks and applica-
tions we used and provide an overview of our measure-
ments.

Figure 2 lists the 11 real web applications that
we used for our study2. These sites were selected
because of their popularity according to Alexa.com,
and also because they represent a cross-section of di-
verse activities. Specifically, our applications repre-
sent search (google, bing), mapping (googlemap,
bingmap), email (hotmail, gmail), e-commerce
(amazon, ebay), news (cnn, economist), and social

2Throughout this discussion, we use the terms web application and
web site interchangeably. When we refer to the site, we specifically
mean the JavaScript executed when you visit the site.

networking (facebook). Part of our goal was to under-
stand both the differences between the real sites and the
benchmarks as well as the differences among different
classes of real web applications. For the remainder of
this paper, we will refer to the different web sites using
the names from Figure 2.

The workload for each site mimics the behavior of a
user on a short, but complete and representative, visit
to the site. This approach is dictated partly by expedi-
ence — it would be logistically complicated to measure
long-term use of each web application — and partly be-
cause we believe that many applications are actually used
in this way. For example, search and mapping applica-
tions are often used for targeted interactions.

3.1 Web Applications and Benchmarks

In measuring the JavaScript benchmarks, we chose to
use the entire V8 benchmark suite, which comprises 7
programs, and selected programs from the SunSpider
suite, which consists of 26 different programs. In or-
der to reduce the amount of data collected and displayed,
for SunSpider we chose the longest running benchmark
in each of the 9 different benchmark categories — 3d:
raytrace, access: nbody, bitops: nseive− bits, con-
trolflow: recursive, crypto: aes, date: xparb, math:
cordic, regexp: dna, and string: tagcloud.

3.2 Instrumenting Internet Explorer

Our approach to data collection is illustrated in Figure 3.
The platform we chose for instrumentation is Internet
Explorer (IE), version 8, running on a 32-bit Windows
Vista operating system. While our results are in some
ways specific to IE, the methods described here can be

Site URL Actions performed
amazon amazon.com Search for the book “Quantita-

tive Computer Architecture,” add to
shopping cart, sign in, and sign out

bing bing.com Type in the search query “New
York” and look at resulting images
and news

bingmap maps.bing.com Search for directions from Austin
to Houston, search for a location in
Seattle, zoom-in, and use the bird’s-
eye view feature

cnn cnn.com Read the front-page news and three
other news articles

ebay ebay.com Search for a notebook computer,
sign in, bid, and sign out

economist economist.com Read the front-page news, read three
other articles, view comments

facebook facebook.com Log in, visit a friend’s page, browser
through photos and comments

gmail mail.google.com Sign in, check inbox, delete a mail
item, sign out

google google.com Type in the search query “New
York” and look at resulting images
and news

googlemap maps.google.com Search for directions from Austin
to Houston, search for a location in
Seattle, zoom-in, and use the street
view feature

hotmail hotmail.com Sign in, check inbox, delete a mail
item, sign out

Figure 2: Real web sites visited and actions taken.

applied to other browsers as well.
Our measurement approach works as follows: we have

instrumented the C++ code that implements the IE 8
JavaScript runtime. For IE, the code that is responsi-
ble for executing JavaScript programs is not bundled in
the main IE executable. Instead, it resides in a dynamic
linked library, jscript.dll. After performing the in-
strumentation, we recompiled the engine source code to
create a custom jscript.dll. (see Step 1 in Figure 3).

Next, we set up IE to use the instrumented
jscript.dll. We then visit the web sites and run the
benchmark programs described in the previous section
with our special version of IE. A set of binary trace
files is created in the process of visiting the web site or
running a benchmark. These traces typically comprise
megabytes of data, often up to 800 megabytes in the case
of instruction traces. Finally, we use offline analyzers
to process these custom trace files to obtain the results
presented here.

3.3 Behavior Measurements

In studying the behavior of JavaScript programs, we fo-
cused on three broad areas: functions and code, ob-
jects and data (omitted here), and events and handlers.
In each of these dimensions, we consider both static
measurements (e.g., number of unique functions) and
dynamic measurements (e.g., total number of function
calls). We measure mostly the logical behavior of

\ie\jscript*.cpp

Source-level
instrumentation

custom jscript.dll

custom trace files
website visits

Offline
analyzers 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Constant

Other Str Ops

Concat Op

measurement results
custom trace files

1

2

3

Figure 3: Instrumentation framework for measuring JavaScript
execution using Internet Explorer.

JavaScript programs, avoiding characteristics that are
browser-dependent. Thus, our measurements are largely
machine-independent. However, we also look at spe-
cific characteristics of the IE’s JavaScript engine (e.g.,
we count IE 8 bytecodes as a measure of execution) that
pertain to interpreter-based engines. We leave measure-
ments for characteristics relevant to JIT-based engines
such as those found in Firefox and Chrome for future
work.

3.3.1 Functions and Code

The JavaScript engine in IE 8 interprets JavaScript
source after compiling it to an intermediate representa-
tion called bytecode. The interpreter has a loop that reads
each bytecode instruction and implements its effect in a
virtual machine. Because no actual machine instructions
are generated in IE 8, we cannot measure the execution
of JavaScript in terms of machine instructions. The byte-
code instruction set implemented by the IE 8 interpreter
is a well-optimized, traditional stack-oriented bytecode.

We count each bytecode execution as an “instruction”
and use the term bytecode and instruction interchange-
ably throughout our evaluation. In our measurements, we
look at the code behavior at two levels, the function and
the bytecode level. Therefore, we instrument the engine
at the points when it creates functions as well as in its
main interpreter loop. Prior work measuring architecture
characteristics of interpreters also measures behavior in
terms of bytecode execution [19].

3.3.2 Events and Handlers

JavaScript has a single-threaded event-based program-
ming model, with each event being processed by a non-
preemptive handler. In other words, JavaScript code runs
in response to specific user-initiated events such as a

Behavior Real applications Benchmarks Implications

CODE AND FUNCTIONS

Code size 100s of kilobytes to a few
megabytes

100s of bytes to 10s of kilo-
bytes

Efficient in-memory function and bytecode repre-
sentation

Number of functions 1000s of functions 10s to 100s of functions Minimize per-function fixed costs
Number of hot func-
tions 10s to 100s of functions 10 functions or less Size hot function cache appropriately

Instruction mix Similar to each other Different across benchmarks
and from real applications Optimize for real application instruction mix

Cold code Majority of code Minority of code Download, parse, and JIT code lazily

Function duration Mostly short Mostly short, some very long
running Loop optimizations less effective

EVENTS AND EVENT HANDLERS

Handler invocations 1000s of invocations Less than 10 invocations Optimize for frequent handler calls
Handler duration 10s to 100s of bytecodes Very long Make common short handler case fast

MEMORY ALLOCATION AND OBJECT LIFETIMES

Allocation rate Significant, sustained Only significant in a few GC performance not a factor in benchmark results

Data types Functions and strings domi-
nate

Varies, JS objects dominate in
some Optimize allocation of functions, strings

Object lifetimes Depends on type, some long-
lived Very long or very short Approaches like generational collection hard to

evaluate with benchmarks

Heap reuse Web 1.0 has significant reuse
between page loads No heap reuse Optimize code, heap for reuse case—cache func-

tions, DOM, possibly heap contents

Figure 4: A summary of lessons learned from JSMeter.

mouse click, becomes idle, and waits for another event to
process. Therefore, to completely understand behaviors
of JavaScript that are relevant to its predominant usage,
we must consider the event-driven programming model
of JavaScript. Generally speaking, the faster handlers
complete, the more responsive an application appears.

However, event handling is an aspect of program be-
havior that is largely unexplored in related work measur-
ing C++ and Java execution (e.g., see [5] for a thorough
analysis of Java execution). Most related work consid-
ers the behavior of benchmarks, such as SPECjvm98 [4]
and SPECcpu2000 [1], that have no interactive compo-
nent. For JavaScript, however, such batch processing is
mostly irrelevant.

For our measurements, we insert instrumentation
hooks before and after event handling routines to mea-
sure characteristics such as the number of events handled
and the dynamic size of each event handler invocation as
measured by the number of executed bytecode instruc-
tions.

4 Evaluation

We begin this section with an overview of our results.
We then consider the behavior of the JavaScript func-
tions and code, including the size of functions, opcodes
executed, etc. Next, we investigate the use of events
and event handlers in the applications. We conclude
the section with a case study showing that introducing

cold code, i.e., code that is never executed, into exist-
ing benchmarks has a substantial effect on performance
results.

4.1 Overview

Before drilling down into our results, we summarize the
main conclusions of our comparison in Figure 4. The
first column of the table indicates the specific behavior
we measured, and the next two columns compare and
contrast results for the real web applications and bench-
marks. The last column summarizes the implications of
the observed differences, specifically providing insights
for future JavaScript engine designers. Due to space con-
straints, a detailed comparison of all aspects of behavior
is beyond the scope of this paper, and we refer the reader
to our tech report for those details [17].

4.2 Functions and Code Behavior

We begin our discussion by looking at a summary of
the functions and behavior of the real applications and
benchmarks. Figure 5 summarizes our static and dy-
namic measurements of JavaScript functions.

The real web sites. In Figure 5a, we see that the
real web applications comprise many functions, rang-
ing from a low of around 1,000 in google to a high
of 10,000 in gmail. The total amount of JavaScript

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

amazon 1,833 692,173 312,056 210 808 158,953 9,941,596 62.54 44.08%

bing 2,605 1,115,623 657,118 50 876 23,759 1,226,116 51.61 33.63%

bingmap 4,258 1,776,336 1,053,174 93 1,826 274,446 12,560,049 45.77 42.88%

cnn 1,246 551,257 252,214 124 526 99,731 5,030,647 50.44 42.22%

ebay 2,799 1,103,079 595,424 210 1,337 189,805 7,530,843 39.68 47.77%

economist 2,025 899,345 423,087 184 1,040 116,562 21,488,257 184.35 51.36%

facebook 3,553 1,884,554 645,559 130 1,296 210,315 20,855,870 99.16 36.48%

gmail 10,193 2,396,062 2,018,450 129 3,660 420,839 9,763,506 23.20 35.91%

google 987 235,996 178,186 42 341 10,166 427,848 42.09 34.55%

googlemap 5,747 2,024,655 1,218,119 144 2,749 1,121,777 29,336,582 26.15 47.83%

hotmail 3,747 1,233,520 725,690 146 1,174 15,474 585,605 37.84 31.33%
(a) Real web application summary.

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

richards 67 22,738 7,617 3 59 81,009 2,403,338 29.67 88.06%

deltablue 101 33,309 11,263 3 95 113,276 1,463,921 12.92 94.06%

crypto 163 55,339 31,304 3 91 103,451 90,395,272 873.80 55.83%

raytrace 90 37,278 15,014 3 72 214,983 5,745,822 26.73 80.00%

earley 416 203,933 65,693 3 112 813,683 25,285,901 31.08 26.92%

regexp 44 112,229 35,370 3 41 96 935,322 9742.94 93.18%

splay 47 17,167 5,874 3 45 678,417 25,597,696 37.73 95.74%
(b) V8 benchmark summary.

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

3d-raytrace 31 14,614 7,419 2 30 56,631 5,954,264 105.14 96.77%

access-nbody 14 4,437 2,363 2 14 4,563 8,177,321 1,792.09 100.00%

bitops-nsieve 6 939 564 2 5 5 13,737,420 2,747,484.00 83.33%

controlflow 6 790 564 2 6 245,492 3,423,090 13.94 100.00%

crypto-aes 22 17,332 6,215 2 17 10,071 5,961,096 591.91 77.27%

date-xparb 24 12,914 5,341 4 12 36,040 1,266,736 35.15 50.00%

math-cordic 8 2,942 862 2 6 75,016 12,650,198 168.63 75.00%

regexp-dna 3 108,181 630 2 3 3 594 198.00 100.00%

string-tagcloud 16 321,894 55,219 3 10 63,874 2,133,324 33.40 62.50%
(c) SunSpider benchmark summary.

Figure 5: Summary measurements of web applications and benchmarks.

cnn

gmail
googlemap

access-nbody

richards

deltablue

crypto

raytrace
earley

regexp

splay

bitops-nsieve

controlflow

crypto-aes

date-xparb

math-cordic regexp-dna

string-

tagcloud

bingmap

bing
amazon

hotmail

SunSpider

aggregate

V8

aggregate

3d-raytrace
economist

facebook

ebay

google

Figure 6: Opcode frequency distribution comparison.

source code associated with these web sites is signif-
icant, ranging from 200 kilobytes to more than two
megabytes of source. Most of the JavaScript source code
in these applications has been “minified”, that is, had
the whitespace removed and local variable names min-
imized using available tools such as JScrunch [7] or JS-
min [3]. This source code is translated to the smaller
bytecode representation, which from the figure we see is
roughly 60% the size of the source.

In the last column, which captures the percentage of
static unique functions executed, we see that as many
as 50–70% are not executed during our use of the ap-
plications, suggesting that much of the code delivered
applies to specific functionality that we did not exer-
cise when we visited the sites. Code-splitting approaches
such as Doloto [15] exploit this fact to reduce the wasted
effort of downloading and compiling cold code.

The number of bytecodes executed during our visits
ranged from around 400,000 to over 20 million. The
most compute-intensive applications were facebook,
gmail, and economist. As we show below, the large
number of executed bytecodes in economist is an
anomaly caused by a hot function with a tight loop. This
anomaly is also clearly visible from the opcodes/call col-
umn. We see that economist averages over 180 byte-
codes per call, while most of the other sites average be-
tween 25 and 65 bytecodes per call. This low num-
ber suggests that a majority of JavaScript function exe-
cutions in these programs do not execute long-running
loops. Our discussion of event handler behavior in Sec-
tion 4.6 expands on this observation.

Because it is an outlier, the economist application de-
serves further comment. We looked at the hottest func-
tion in the application and found a single function which
accounts for over 50% of the total bytecodes executed
in our visit to the web site. This function loops over

the elements of the DOM looking for elements with a
specific node type and placing those elements into an
array. Given that the DOM can be quite large, us-
ing an interpreted loop to gather specific kinds of ele-
ments can be quite expensive to compute. An alternative,
more efficient implementation might use DOM APIs like
getElementById to find the specific elements of inter-
est directly.

On a final note, in column five of Figure 5 we show the
number of instances of separate matching < script >
tags that appeared in the web pages that implemented the
applications. We see that in the real applications, there
are many such instances, ranging to over 200 in ebay.
This high number indicates that JavaScript code is com-
ing from a number of sources in the applications, includ-
ing different modules and/or feature teams from within
the same site, and also coming from third party sites, for
advertising, analytics, etc.

The benchmarks. In Figure 5, we also see the summary
of the V8 and SunSpider benchmarks. We see imme-
diately that the benchmarks are much smaller, in terms
of both source code and compiled bytecode, than the
real applications. Furthermore, the largest of the bench-
marks, string− tagcloud, is large not because of the
amount of code, but because it contains a large number
of string constants. Of the benchmarks, earley has the
most real code and is an outlier, with 400 functions com-
pared to the average of the rest, which is well below 100
functions. These functions compile down to very com-
pact bytecode, often more than 10 times smaller than the
real applications. Looking at the fraction of these func-
tions that are executed when the benchmarks are run, we
see that in many cases the percentage is high, ranging
from 55–100%. The benchmark earley is again an out-
lier, with only 27% of the code actually executed in the
course of running the benchmark.

The opcodes per call measure also shows significant
differences with the real applications. Some of the
SunSpider benchmarks, in particular, have long-running
loops, resulting in high average bytecodes executed per
call. Other benchmarks, such as controlflow, have ar-
tificially low counts of opcodes per call. Finally, none
of the benchmarks has a significant number of distinct
contexts in which JavaScript code is introduced (global
scope), emphasizing the homogeneous nature of the code
in each benchmark.

4.3 Opcode Distribution

We examined the distribution of opcodes that each of the
real applications and benchmarks executed. To do this,
we counted how many times each of the 160 different
opcodes was executed in each program and normalized

these values to fractions. We then compared the 160-
dimensional vector generated by each real application
and benchmark.

Our goal was to characterize the kinds of operations
that these programs perform and determine how repre-
sentative the benchmarks are of the opcode mix per-
formed by the real applications. We were also interested
in understanding how much variation exists between the
individual real applications themselves, given their di-
verse functionality.

To compare the resulting vectors, we used Princi-
pal Component Analysis (PCA) [12] to reduce the 160-
dimensional space to two principal dimensions. This di-
mension reduction is a way to avoid the curse of dimen-
sionality problem. We found that components after the
third are insignificant and chose to present only the two
principal components for readability. Figure 6 shows the
result of this analysis. In the figure, we see the three
different program collections (real, V8, and SunSpider).
The figure shows that the real sites cluster in the center
of the graph, showing relatively small variation among
themselves.

For example, ebay and bingmap, very different in
their functionality, cluster quite closely. In contrast, both
sets of benchmarks are more widely distributed, with
several obvious outliers. For SunSpider, controlflow
is clearly different from the other applications, while
in V8, regexp sits by itself. Surprisingly, few of the
benchmarks overlap the cluster of real applications, with
earley being the closest in overall opcode mix to the
real applications. While we expect some variation in
the behavior of a collection of smaller programs, what
is most surprising is that almost all the benchmarks have
behaviors that are significantly different than the real ap-
plications. Furthermore, it is also surprising that the real
web applications cluster as tightly as they do. This result
suggests that while the external functionality provided
may appear quite different from site to site, much of the
work being done in JavaScript on these sites is quite sim-
ilar.

4.4 Hot Function Distribution

We next consider the distribution of hot functions in the
applications, which tells us what code needs to be highly
optimized. Figure 7 shows the distribution of hot func-
tions in a subset of the real applications and the V8
benchmarks (full results, including the SunSpider bench-
marks are included in [17]). Each figure shows the cu-
mulative contribution of each function, sorted by hottest
functions first on the x-axis, to normalized total opcodes
executed on the y-axis. We truncate the x-axis (not con-
sidering all functions) to get a better view of the left end
of the curve. The figures show that all programs, both

0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of functions

E
xe

cu
tio

n
co

ve
ra

ge

gmail
googlemap
hotmail
bingmap
facebook

(a) Real web application hot function distribution.

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of functions

E
xe

cu
tio

n
co

ve
ra

ge

richards
deltablue
crypto
raytrace
earley
regexp
splay

(b) V8 benchmarks hot function distribution.

Figure 7: Hot function distribution.

real applications and benchmarks, exhibit high code lo-
cality, with a small number of functions accounting for
a large majority of total execution. In the real applica-
tions, 80% of total execution is covered by 50 to 150
functions, while in the benchmarks, at most 10 functions
are required. facebook is an outlier among the real ap-
plications, with a small number of functions accounting
for almost all the execution time.

4.5 Implications of Code Measurements

We have considered static and dynamic measures of
JavaScript program execution, and discovered numerous
important differences between the behaviors of the real
applications and the benchmarks. Here we discuss how
these differences might lead designers astray when build-
ing JavaScript engines that optimize benchmark perfor-
mance.

First, we note a significant difference in the code size
of the benchmarks and real applications. Real web ap-
plications have large code bases, containing thousands
of functions from hundreds of individual < script >
bodies. Much of this code is never or rarely executed,
meaning that efforts to compile, optimize, or tune this
code are unnecessary and can be expensive relative to
what the benchmarks would indicate. We also observe
that a substantial fraction of the downloaded code is not
executed in a typical interaction with a real application.
Attempts to avoid downloading this code, or minimizing
the resources that it consumes once it is downloaded, will
show much greater benefits in the real applications than
in the benchmarks.

Second, we observe that based on the distribution
of opcodes executed, benchmark programs represent a
much broader and skewed spectrum of behavior than the
real applications, which are quite closely clustered. Tun-
ing a JavaScript engine to run controlflow or regexp
may improve benchmark results, but tuning the engine to
run any one of the real applications is also likely to sig-
nificantly help the other real applications as well. Sur-
prisingly, few of the benchmarks approximate the in-
struction stream mix of the real applications, suggesting
that there are activities being performed in the real ap-
plications that are not well emulated by the benchmark
code.

Third, we observe that each individual function execu-
tion in the real applications is relatively short. Because
these applications are not compute-intensive, bench-
marks with high loop counts, such as bitops− nsieve,
distort the benefit that loop optimizations will provide
in real applications. Because the benchmarks are batch-
oriented to facilitate data collection, they fail to match a
fundamental characteristic of all real web applications —
the need for responsiveness. The very nature of an inter-
active application prevents developers from writing code
that executes for long periods of time without interrup-
tion.

Finally, we observe that a tiny fraction of the code ac-
counts for a large fraction of total execution in both the
benchmarks and the real applications. The size of the hot
code differs by one to two orders of magnitude between
the benchmarks and applications, but even in the real ap-
plications the hot code is still quite compact.

4.6 Event Behavior

In this section, we consider the event-handling behavior
of the JavaScript programs. We observe that handling
events is commonplace in the real applications and al-
most never occurs in the benchmarks. Thus the focus of
this section is on characterizing the handler behavior of
the real applications.

of unique executed instructions
events events handler total

richards 8 6 2,403,333 2,403,338

deltablue 8 6 1,463,916 1,463,921

crypto 11 6 86,854,336 86,854,341

raytrace 8 6 5,745,817 5,745,822

earley 11 6 25,285,896 25,285,901

regexp 8 6 935,317 935,322

splay 8 6 25,597,691 25,597,696

Figure 9: Event handler characteristics in the V8 benchmarks.

Before discussing the results, it is important to explain
how handlers affect JavaScript execution. In some cases,
handlers are attached to events that occur when a user
interacts with a web page. Handlers can be attached to
any element of the DOM, and interactions such as click-
ing on an element, moving the mouse over an element,
etc., can cause handlers to be invoked. Handlers also are
executed when a timer times out, when a page loads, or
when an asynchronous XMLHttpRequest is completed.
JavaScript code is also executed outside of a handler con-
text, such as when a < script > block is processed as
part of parsing the web page. Often code that initializes
the JavaScript for the page executes outside of a handler.

Because JavaScript has a non-preemptive execution
model, once a JavaScript handler is started, the rest of the
browser thread for that particular web page is stalled un-
til it completes. A handler that takes a significant amount
of time to execute will make the web application appear
sluggish and non-responsive.

Figures 8 and 9 present measures of the event han-
dling behavior in the real applications and the V8 bench-
marks3. In both tables, unique events are defined as fol-
lows. Events are nominally unique when they invoke the
same sequences of handler instructions with the same
inputs. Our measurements in the figures only approxi-
mate this definition. We associate each event with three
attributes: name, the set of handler functions invoked,
and the total number of instructions executed. If the two
events have the same three attributes, we say that they are
unique.

We see that the real applications typically handle
thousands of events while the benchmarks all handle
11 or fewer. In all the benchmarks, one onload event
(for loading and, subsequently, running the benchmark
program) is responsible for almost 100% of all JavaScript
execution. We will see shortly that this is in stark contrast
to the behavior seen in the real applications. Even though
real web sites typically process thousands of events, the
unique events column in the figure indicates that there are
only around one hundred unique events per application.
This means that a given event is likely to be repeated and

3SunSpider results are similar to V8 results, so we omit them here.

of unique executed instructions % of handler handler size
events events handler total instructions average median maximum

amazon 6,424 224 7,237,073 9,941,596 72.80% 1,127 8 1,041,744

bing 4,370 103 598,350 1,226,116 48.80% 137 24 68,780

bingmap 4,669 138 8,274,169 12,560,049 65.88% 1,772 314 281,887

cnn 1,614 133 4,939,776 5,030,647 98.19% 3,061 11 4,208,115

ebay 2,729 136 7,463,521 7,530,843 99.11% 2,735 80 879,798

economist 2,338 179 21,146,767 21,488,257 98.41% 9,045 30 270,616

facebook 5,440 143 17,527,035 20,855,870 84.04% 3,222 380 89,785

gmail 1,520 98 3,085,482 9,763,506 31.60% 2,030 506 594,437

google 569 64 143,039 427,848 33.43% 251 43 10,025

googlemap 3,658 74 26,848,187 29,336,582 91.52% 7,340 2,137 1,074,568

hotmail 552 194 474,693 585,605 81.06% 860 26 202,105

Figure 8: Event handler characteristics in real applications.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

Number of events (normalized)

S
iz

e
of

 h
an

dl
er

s
(#

 o
f e

xe
cu

te
d

in
st

ru
ct

io
ns

)

amazon
bing
bingmap
cnn
ebay
economist
facebook
google
googlemap
gmail
hotmail

Figure 10: Distribution of handler durations.

handled many times throughout the course of a user visit
to the site.

We see the diversity of the collection of handlers in
the results comparing the mean, median, and maximum
of handler durations for the real applications. Some han-
dlers run for a long time, such as in cnn, where a sin-
gle handler accounts for a significant fraction of the to-
tal JavaScript activity. Many handlers execute for a very
short time, however. The median handler duration in
amazon, for example, is only 8 bytecodes. amazon is
also unusual in that it has the highest number of events.
We hypothesize that such short-duration handlers proba-
bly are invoked, test a single value, and then return.

These results demonstrate that handlers are written so
that they almost always complete in a short time. For
example, in bing and google, both highly optimized for
delivering search results quickly, we see low average and
median handler times. It is also clear that google, bing,
and facebook have taken care to reduce the duration of
the longest handler, with the maximum of all three below
100,000 bytecodes.

Figure 10 illustrates the distribution of handler dura-
tions for each of the applications. The x-axis depicts the
instances of handler invocations, sorted by smallest first
and normalized to one. The y-axis depicts the number
of bytecodes executed by each handler invocation. For
example, in the figure, approximate 40% of the handlers
in googlemap executed for 1000 bytecodes or less.

Figure 10 confirms that most handler invocations are
short. This figure provides additional context to under-
stand the distribution. For example, we can determine
the 95th percentile handler duration by drawing a verti-
cal line at 0.95 and seeing where each line crosses it. The
figure also illustrates that the durations in many of the ap-
plications reach plateaus, indicating that there are many
instances of handlers that execute for the same number of
instructions. For example, we see a significant number of
bingmap instances that take 1,500 bytcodes to complete.

4.7 Cold Code Case Study

Our results show that real web applications have much
more JavaScript code than the SunSpider and V8 bench-
marks and that most of that code is cold. We were curious
how much impact the presence of such cold code would
have on benchmark performance results. Based on our
understanding of the complexity and performance over-
head of code translation, especially in a JIT-compiler,
we hypothesized that simply increasing the amount of
cold code in existing benchmarks would have a signifi-
cant non-uniform impact on benchmark results. If this
hypothesis is true, then a simple way to make results
from current benchmarks more representative of actual
web applications would be to add cold code to each of
them.

To test this hypothesis, we selected six SunSpider
benchmarks that are small and have mostly hot code. To
each of these benchmarks, we added 200 kilobytes, 400
kilobytes, 800 kilobytes, 1 megabyte and 2 megabytes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
%

 o
ve

rh
e

ad

200K

400K

800K

1M

2M

2
9
0
%

2
9
4
%

4
3
3
%

1
0
4
%

2
0
4
%

1
6
3
%

2
0
0
%

3
7
9
%

2
7
8
%

3
1
4
%

4
5
7
%

1
2
7
%

1
4
4
%

2
8
8
%

(a) Impact of cold code in Chrome.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

ve
rh

e
ad

200K

400K

800K

1M

2M

(b) Impact of cold code Internet Explorer 8.

Figure 11: Impact of cold code using a subset of the SunSpider benchmarks.

of cold code from the jQuery library. The added code
is never called in the benchmark but the JavaScript run-
time still processes it. We executed each benchmark with
the added code and recorded its performance on both the
Google Chrome and Internet Explorer browsers4.

Figure 11 presents the results of the experiment. It
shows the execution overhead observed in each browser
as a function of the size of the additional cold code added
in each benchmark. At a high level, we see immediately
that the addition of cold code affects the benchmark per-
formance on the two browsers differently. In the case
of Chrome (Figure 11a), adding two megabytes of cold
code can add up to 450% overhead to the benchmark per-
formance. In Internet Explorer (Figure 11b), cold code
has much less impact.

In IE, the addition of 200 to 400 kilobytes does not
impact its performance significantly. On average, we
observe the overhead due to cold code of 1.8% and
3.2%, respectively. With 1 megabyte of cold code, the
overhead is around 13%, still relatively small given the
large amount of code being processed. In Chrome, on
the other hand, even at 200 kilobytes, we observe quite
a significant overhead, 25% on average across the six
benchmarks. Even between the benchmarks on the same
browser, the addition of cold code has widely varying ef-
fects (consider the effect of 1 megabyte of cold code on
the different benchmarks in Chrome).

There are several reasons for these observed differ-
ences. First, because Chrome executes the benchmarks
faster than IE, the additional fixed time processing the
cold code will have a greater effect on Chrome’s over-
all runtime. Second, Chrome and IE process Java-
Script source differently, and large amounts of additional

4We use Chrome version 3.0.195.38 and Internet Explorer version
8.0.6001.18865. We collected measurements on a machine with a 1.2
GHz Intel Core Duo processor with 1.5 gigabytes of RAM, running
32-bit Windows Vista operating system.

source, even if it is cold code, will have different ef-
fects on runtime. The important takeaway here is not that
one browser processes cold code any better than another,
but that results of benchmarks containing 1 megabyte of
cold code will look different than results without the cold
code. Furthermore, results with cold code are likely to be
more representative of browser performance on real web
sites.

5 Related Work

There are surprisingly few papers measuring specific as-
pects of JavaScript behavior, despite how widely used
it is in practice. A concurrently submitted paper by
Richards et al. measures static and dynamic aspects of
JavaScript programs, much as we do [18]. Like us, their
goals are to understand the behavior of JavaScript appli-
cations in practice, and specifically they investigate the
degree of dynamism present in these applications (such
as uses of eval). They also consider the behavior of Java-
Script benchmarks, although this is not a major focus of
the research. Unlike us, they do not consider the use of
events in applications, or consider the size and effect of
cold code.

One closely related paper focuses on the behavior of
interpreted languages. Romer et al. [19] consider the run-
time behavior of several interpreted languages, including
Tcl, Perl, and Java, and show that architectural charac-
teristics, such as cache locality, are a function of the in-
terpreter itself and not the program that it is interpreting.
While the goals are similar, our methods, and the lan-
guage we consider (JavaScript), are very different.

Dieckmann and Hölzle consider the memory alloca-
tion behavior of the SPECJVM Java benchmarks [4]. A
number of papers have examined the memory reference
characteristics of Java programs [4, 14, 16, 20, 21] specif-
ically to understand how hardware tailored for Java ex-

ecution might improve performance. Our work differs
from this previous work in that we measure JavaScript
and not Java, we look at characteristics beyond memory
allocation, and we consider differences between bench-
marks and real applications.

Dufour et al. present a framework for categorizing the
runtime behavior of programs using precise and concise
metrics [5]. They classify behavior in terms of five gen-
eral categories of measurement and report measurements
of a number of Java applications and benchmarks, using
their results to classify the programs into more precise
categories. Our measurements correspond to some met-
rics mentioned by Dufour et al., but we consider some
dimensions of execution that they do not, such as event
handler metrics, and compare benchmark behavior with
real application behavior.

6 Conclusions

We have presented detailed measurements of the behav-
ior of JavaScript applications, including commercially
important web applications such as Gmail and Facebook,
as well as the SunSpider and V8 benchmark suites. We
measure two specific areas of JavaScript runtime behav-
ior: 1) functions and code and 2) events and handlers. We
find that the benchmarks are not representative of many
real web sites and that conclusions reached from measur-
ing the benchmarks may be misleading.

Our results show that JavaScript web applications are
large, complex, and highly interactive programs. While
the functionality they implement varies significantly, we
observe that the real applications have much in com-
mon with each other as well. In contrast, the JavaScript
benchmarks are small, and behave in ways that are sig-
nificantly different than the real applications. We have
documented numerous differences in behavior, and we
conclude from these measured differences that results
based on the benchmarks may mislead JavaScript engine
implementers.

Furthermore, we observe interesting behaviors in real
JavaScript applications that the benchmarks fail to ex-
hibit. Our measurements suggest a number of valuable
follow-up efforts. These include working on building
a more representative collection of benchmarks, modi-
fying JavaScript engines to more effectively implement
some of the real behaviors we observed, and building de-
veloper tools that expose the kind of measurement data
we report.

Acknowledgments

We thank Corneliu Barsan, Trishul Chilimbi, David
Detlefs, Leo Meyerovich, Karthik Pattabiraman, David

Simmons, Herman Venter, and Allen Wirfs-Brock for
their support and feedback during the course of this re-
search. We thank the anonymous reviewers for their
feedback, and specifically Wilson Hsieh, who made a
number of concrete and helpful suggestions.

References

[1] B. Calder, D. Grunwald, and B. Zorn. Quantifying behavioral differences
between C and C++ programs. Journal of Programming Languages, 2:313–
351, 1995.

[2] W. W. W. Consortium. Document object model (DOM). http://www.
w3.org/DOM/.

[3] D. Crockford. JSMin: The JavaScript minifier. http://www.crockford.
com/javascript/jsmin.html.

[4] S. Dieckmann and U. Hölzle. A study of the allocation behaviour of the
SPECjvm98 Java benchmarks. In Proceedings of European Conference on
Object Oriented Programming, pages 92–115, July 1999.

[5] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics
for Java. SIGPLAN Not., 38(11):149–168, 2003.

[6] ECMA International. ECMAScript language specification. Standard
ECMA-262, Dec. 1999.

[7] C. Foster. JSCrunch: JavaScript cruncher. http://www.cfoster.net/
jscrunch/.

[8] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based just-
in-time type specialization for dynamic languages. In Proceedings of the
Conference on Programming Language Design and Implementation, pages
465–478, 2009.

[9] Google. V8 JavaScript engine. http://code.google.com/apis/v8/
design.html.

[10] Google. V8 benchmark suite - version 5. http://v8.googlecode.com/
svn/data/benchmarks/v5/run.html, 2009.

[11] A. T. Holdener, III. Ajax: The Definitive Guide. O’Reilly, 2008.
[12] I. T. Jolliffe. Principal Component Analysis. Series in Statistics. Springer

Verlag, 2002.
[13] G. Keizer. Chrome buries Windows rivals in browser drag race.

http://www.computerworld.com/s/article/9138331/Chrome_
buries_Windows_rivals_in_browser_drag_race, 2009.

[14] J.-S. Kim and Y. Hsu. Memory system behavior of Java programs: method-
ology and analysis. In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems, pages 264–274, 2000.

[15] B. Livshits and E. Kiciman. Doloto: code splitting for network-bound Web
2.0 applications. In Proceedings of the International Symposium on Foun-
dations of Software Engineering, pages 350–360, 2008.

[16] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A. Sivasubramaniam,
J. Rubio, and J. Sabarinathan. Java runtime systems: Characterization and
architectural implications. IEEE Trans. Computers, 50(2):131–146, 2001.

[17] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn. JSMeter: Char-
acterizing real-world behavior of JavaScript programs. Technical Report
MSR-TR-2009-173, Microsoft Research, Dec. 2009.

[18] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic
behavior of JavaScript programs. In Proceedings of the ACM SIGPLAN
2010 Conference on Programming Language Design and Implementation
(PLDI’10), pages 1–12, 2010.

[19] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong, J.-L. Baer,
B. N. Bershad, and H. M. Levy. The structure and performance of inter-
preters. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 150–
159, Oct. 1996.

[20] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Characterizing the mem-
ory behavior of Java workloads: a structured view and opportunities for
optimizations. In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems, pages 194–205, 2001.

[21] T. Systä. Understanding the behavior of Java programs. In Proceedings of
the Working Conference on Reverse Engineering, pages 214–223, 2000.

[22] D. Unger and R. B. Smith. Self: The power of simplicity. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 227–242, Dec. 1987.

[23] WebKit. Sunspider JavaScript benchmark, 2008. http://www2.webkit.
org/perf/sunspider-0.9/sunspider.html, 2008.

[24] Wikipedia. Browser wars. http://en.wikipedia.org/wiki/
Browser_wars, 2009.

