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ABSTRACT 
A dynamic binary translator is a just-in-time compiler that translates 
source architecture binaries into target architecture binaries on the 
fly. It enables the fast running of the source architecture binaries on 
the target architecture. Traditional dynamic binary translators 
invalidate their translations when a module is unloaded, so later re-
loading of the same module will lead to a full retranslation. 
Moreover, most of the loading and unloading are performed on a 
few “hot” modules, which causes the dynamic binary translator to 
spend a significant amount of time on repeatedly translating these 
“hot” modules. Furthermore, the retranslation may lead to excessive 
memory consumption if the code pages containing the translated 
codes that have been invalidated are not timely recycled. In addition, 
we observed that the overhead for translating real-life desktop 
applications is a big challenge to the overall performance of the 
applications, and our detailed analysis proved that real-life desktop 
applications dynamically load and unload modules much more 
frequently as compared to popular benchmarks, such as SPEC 
CPU2000. To address these issues, we propose a translation reuse 
engine that uses a novel verification method and a module-aware 
memory management mechanism. The proposed approach was fully 
implemented in IA-32 Execution Layer (IA-32 EL) [1], a 
commercial dynamic binary translator that enables the execution of 
IA-32 applications on Intel® Itanium® processor family. Collected 
results show that the module-aware translation improves the 
performance of Adobe* Illustrator by 14.09% and Microsoft* 
Publisher by 9.73%. The overhead brought by the translation reuse 
engine accounts for no more than 0.2% of execution time.  

Categories and Subject Descriptors 
D.3.4 [Processors]: Compilers, Optimization 

General Terms: Algorithms, Design, Performance 

Keywords: Dynamic binary translation, dynamic loaded 
module, translation reuse, memory management 

1. INTRODUCTION 
Dynamic binary translation offers solutions for transparently 
running existing applications of source architecture on a new 
architecture without recompiling the source code [2] [3] [4].  The 

dynamic binary translator takes the control when the user launches a 
source architecture application on the target architecture. It decodes 
the source binary, translates each instruction of the source 
architecture into instruction(s) of the target architecture, optimizes 
the instructions into the final translated binary, and then executes the 
translated binary to simulate the application. The translation is often 
performed on demand, and usually on a block-by-block basis. It will 
be triggered again when the execution reaches the code that has not 
been translated before. To improve the performance of dynamic 
binary translators, researchers in this field typically study relatively 
small applications [5] [6] [7], such as the SPEC benchmarks [8]. 
For most SPEC benchmarks, the computation are dominated by 
several hot “spots”, which indicates that these studies usually focus 
on improving the performance of the translated code block of the 
hottest blocks.  

Efficiently running real-life applications is the key to ensure the 
adoption of a commercial dynamic binary translator. As most users 
tend to port server applications to achieve best performance, we 
expect that most of applications running on dynamic binary 
translators are desktop applications. However, our research proved 
that the study based on SPEC benchmarks cannot lead to practical 
optimizations that can be applied to porting real-life desktop 
applications. First of all, the translation overhead for executing real-
life desktop applications on a different architecture impacts the 
performance more remarkably than executing the SPEC programs, 
because the execution requires translating a lot more instructions, 
which consumes considerable time and resource. Secondly, focusing 
only on improving the translated code can be insufficient, because 
real-life desktop applications spend less time in the translated code 
since they invoke OS system calls frequently to access I/O devices, 
which usually execute native code directly. When running Sysmark* 
2000 [9] with IA-32 EL, only 61% of the total time is spent on the 
translated code, while the percentage is 98% for SPEC CPU2000 
[1]. Compared with the relatively heavy workload of the Sysmark* 
applications, real-life desktop applications spend much less time on 
the translated code. Different from other researchers, we will focus 
on exploiting optimization opportunities in translating real-life 
desktop applications in this paper.  

Our study shows that dynamic module loading and unloading, the 
typical behavior of many desktop applications, seriously impacts the 
translation time, memory consumption, and profiling information 
collection. As modular design is popularly used for building desktop 
applications, typically a few modules will be frequently loaded and 
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unloaded during the application execution. We call these modules 
hot modules. In the traditional binary translators that we have 
previously discussed [1], the translation of a module is invalidated 
upon unloading and the same piece of code is retranslated when the 
module is loaded again for execution. Since some common 
functions, like DLLMain in windows DLL, are certain to be called 
upon module loading and unloading, and programmers usually call 
a small number of functions in the module, repeatedly loading and 
unloading the same hot module results in repetitively translating 
these functions, which consumes excessive time and resource 
undesirably. Furthermore, a memory management mechanism that is 
unaware of module translation may keep the translated code of the 
hot modules and the other modules in one code page, which leads to 
inefficient memory management--If the translations of the hot 
modules are invalidated upon module unloading, the memory may 
contain lots of internal fragments afterwards; even if the translations 
of the hot modules can be reused, the frequently reused hot module 
translations may be accidentally collected as garbage because the 
surrounding translations are out of date. Finally, since the profiling 
information is also lost when the translated codes are invalidated 
upon unloading, and the translated codes that are newly generated 
are stored in a different memory location, the profiling information 
is inaccurate and hard to be collected. For example, the hot spot in a 
hot module that is frequently loaded and unloaded may not be 
recognized, because its profiling information is lost after each 
unloading – the binary translator is unable to realize that the binaries 
in the module are translated and executed frequently.  

To address these issues, we propose to add two components into the 
binary translator: a module translation reuse engine and a module-
aware memory management mechanism. First, the translation reuse 
engine reserves and reuses the translated code blocks or pages of the 
module. To ensure the correctness of the reuse, the engine needs to 
verify the consistency of the binaries in the reloaded module. Simply 
checking the modification date of the file containing the module 
cannot ensure the consistency, because it’s possible to keep the date 
unaltered before and after changing the content of the file. Without 
the special support from  the OS, a possible way of consistency 
verification is to save and compare all the binaries of the module. 
However, this is very space and time consuming, and even 
impossible if some pages of the module are prohibited to be read. 
This paper proposes a verification method which is characterized by 
100% correctness, high speed, compactness, and high quality of the 
translated code. Second, the module-aware memory management 
mechanism divides the memory resource into two categories: 
module-private code pages and general code pages. Each hot 
module has its corresponding private code page pool, and the rest of 
the modules share a general code page pool. With this categorization, 
the memory manager can better support the translation reuse, and 
deploy more efficient garbage collection policies for different pools. 

The contributions of this paper include: 

1. A powerful reuse engine that avoids repetitive translation 
of hot modules  

2. A verification method that features 100% correctness, 
high speed, compactness, and high quality of the translated code 

3. A module-aware memory management mechanism 
specially tailored for hot module translation 

We incorporate the module-aware translation in IA-32 Execution 
Layer (IA-32EL) [1], a commercial dynamic binary translator that 

enables execution of IA-32 applications on Intel® Itanium® 
processor family. Real-life desktop applications of various types are 
selected to compose our benchmark suit and representative 
workloads are built for them. Our results show that the performance 
can be improved up to 14.09% for Adobe* Illustrator and 9.73% for 
Microsoft* Publisher, which frequently reload hot modules. The 
translation time drops by 28.85% in Microsoft* Publisher and 
28.71% in Adobe* Illustrator, and the memory consumption drops 
by 59.46% and 24.04% respectively. The overhead brought by the 
translation reuse engine is almost ignorable, which merely accounts 
for less than 0.2% of the translation time.  

The rest of the paper is organized as follows: We’ll describe the 
general architecture of dynamic binary translators in section 2, 
followed by section 3, in which the characteristic and the 
performance impact of dynamic loading and unloading are analyzed. 
In section 4, we’ll introduce the module translation reuse engine and 
illustrate the verification method used in the reuse engine. Then 
we’ll describe the module-aware memory management mechanism 
in section 5. We’ll present our performance data in section 6 and 
discuss the related work in section 7. Finally we’ll summarize the 
paper in section 8. 

2. GENERAL STRUCTURE OF DYNAMIC 
BINARY TRANSLATORS  
Generally, a dynamic binary translation is composed of two stages: 
translation stage and execution stage [1] [10] [11]. At the translation 
stage, the binary translator reads the source binaries and translates 
them into target binaries. At the execution stage, the binary 
translator branches to execute the translated target binaries. 
Correspondingly, there are 2 vital components in a dynamic binary 
translator: an execution engine and a translation engine. 

• The execution engine directs control flow through the 
translated blocks. When the control flow reaches a source 
architecture instruction that doesn’t correspond to a valid translation 
or the translation of which is performance critical and thus is worth 
a retranslation for further optimization, the translation engine is 
triggered.  

• The translation engine translates the source architecture 
binaries into target architecture binaries (translated code blocks) in 
an adaptive way. Typically there are 3 phases: the interpretation 
phase, the fast translation phase, and the optimization phase. When 
an instruction is executed for the first time, it is interpreted to 
simulate the instruction on the target architecture. In the 
interpretation phase, no translation is saved and the instruction 
needs to be interpreted again if it is executed for the second time. As 
the instruction is executed more times, the translation engine transits 
to the fast translation phase. In this phase, the translation engine 
explores source fragments from the given instruction pointer, forms 
basic blocks, and constructs a control flow graph. Thereafter, a fast 
translation method, which only adopts light-weighted optimization, 
is used to generate the target code blocks. The translated target code 
blocks are saved in the memory, and can be reused when the control 
is transferred to the first instruction of the block. The translated 
codes that are performance critical are known as hot spots, which 
are discovered by the profiler. These codes are retranslated in the 
optimization phase. The optimization phase uses most optimization 
techniques used in static compilers, and can be very sophisticated 
and time consuming. Based on the profiling information, different 
optimizations are adopted in generating the translated code, so that 

90



the translation time and the quality of translated code are balanced. 
There are various approaches to collect profiling information, such 
as inserting instrumentation code into the translated or interpreted 
code[1] [12], using low overhead dynamic profiling tools[13], etc. 
The implementation of a dynamic binary translator may not contain 
all the phases mentioned above. However, it is critical to have both 
the fast translation phase and the optimization phase, so that the 
translator can generate optimal translation for the hot spots and 
translate the “cold” source binaries swiftly.  

 

 
Typically, dynamic translators use a low overhead memory 
management mechanism to exploit temporal locality by attempting 
to keep useful, active translations in the code pages [1] [10] . As 
shown in Figure 2, the translated code blocks are saved in the code 
pages that are organized into two pools: a used page pool and a free 
page pool. Once a new translated code block is generated, it is 
added to the latest allocated code page in the used page pool. If 
there is no space in the page to hold the block, the memory allocator 
is invoked to provide a new code page. The memory allocator first 
tries to allocate a page from the free page pool. If there is no page in 
the free page pool, it requests memory  resource from the system. 
The allocated page is added to the used page pool. If the pages in the 
used page pool exceed a threshold, the garbage collector is triggered 
to recycle code pages by moving them from the used page pool to 
the free page pool. The pages in the free page pool can be freed and 
returned to the system if there are too many free pages. The arrows 
in the Figure 2 show the page flow among these two pools and the 
memory provided by the system. With very low overhead, the 
garbage collector tries to identify a selection of translated blocks that 
are not likely to be executed in the near future. A commonly used 
policy is Least-Recently Created (LRC), which marks each 
translated code page with its age, and recycles the old pages in the 
same order as they were created [14].  

 

 

3. THE CHARACTERISTICS OF 
DYNAMICALLY LOADING MODULES 
AND ITS PERFORMNACE IMPACT  
In the characteristic analysis， 4 real-life desktop applications are 
studied, namely Microsoft* Publisher 2000, Adobe* Illustrator 9.0.1, 
Acrobat* Reader 4.0, and Macromedia* Dreamweaver MX, 
covering the fields of desktop publishing, graphic design, document 
reading, and Web page editing. The 4 applications are from 3 well-
known companies and are assumed to represent different 
programming styles. Their workload is carefully designed to reflect 
real users’ typical operations and to prevent repetitive operations 
from misleading the analysis result (Details of the workload are 
described in section 6.)  

Table 1.   The Number of DLL Loading and Unloading  

Application Number of 
Loading 

Number of 
Unloading 

Microsoft* Publisher 2000 3684 3645 

Adobe* Illustrator 9.0.1 1010 966 

Acrobat* Reader 4.0 142 92 

Macromedia* Dreamweaver MX 180 115 

CPU2000 INT Programs 9 (average) 0 

CPU2000 FP Programs 8 (average) 0 
 

The number of DLL loading and unloading performed during the 
execution of the 4 real-life desktop applications and SPEC 
CPU2000 programs are listed in Table 1. (The number of loading 
and unloading can be unequal, because some modules are not 
unloaded until the program terminates.)  It is obvious that 
Microsoft* Publisher 2000 and Adobe* Illustrator 9.0.1 load and 
unload DLLs a lot, while Acrobat* Reader 4.0 and Macromedia* 
Dreamweaver MX perform less such operations. The SPEC 
programs load only a few DLLs and don’t unload them at all.  

Figure 2. Memory Management Mechanism    

Figure 1. The General Architecture of Dynamic Binary 
Translators 
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Table 2.  Hot module  
Application Number of  

Loadings 
Number 
of Hot 

Modules 

Number of 
Loadings 
performed 

for Hot 
Modules 

Number of 
Loadings 
performed 

for the 
Hottest 
Module 

Microsoft* 
Publisher 

3684 121 3515 323 

Adobe* 
Illustrator 

1010 148 649 125 

Acrobat* 
Reader 

142 10 42 11 

Macromedia* 
Dreamweaver 

180 14 61 11 

 

For real-life desktop applications, a number of DLL loadings and 
unloadings are caused by repeatedly loading and unloading hot 
modules, where we define the hot module as the modules that have 
been loaded for more than twice in a program’s execution,. 
According to Table 2, on average, each hot module has been loaded 
for 22 times during the execution of Publisher and Illustrator. 

Loading and unloading DLLs frequently can amplify the translation 
overhead, including the execution time spent on the translation and 
the memory consumed by the translated code. The translation 
overhead is a notable performance issue to real-life desktop 
applications though it’s not so important to CPU2000 programs. In 
Figure 3, we listed the translation time of the 4 real-life desktop 
applications and the CPU2000 programs, running on an IA-32 
Execution Layer version without the translation reuse mechanism 
and module-aware memory management, and in Figure 4, the 
memory consumption are listed correspondingly. From these figures, 
we can see that the translation overhead is ignorable for the 
performance of CPU2000 programs: Less than 1% of the execution 
time is spent on the translation and the translated codes occupy only 
2.66 MB. But the translation overhead is much higher in the 4 real-
life desktop applications: On average, 12.2% of the execution time 
is spent on the translation and 98.21 MB are consumed by the 
translated code. In addition, the data also indicates that the 
translation overhead of Microsoft* Publisher and Adobe* Illustrator, 
which load and unload DLLs frequently, is higher than the other two, 
which load and unload DLLs less frequently. In the applications that 
load and unload DLLs a lot, hot modules consume a considerable 
part of the translation time and memory, as shown in Figure 5 and 
Figure 6.  

Frequently loading and unloading DLLs may result in redundant 
translations. Since some functions are always called upon DLL 
loading, like DLLMain, and some programmers have the habit of 
unloading a DLL immediately after calling functions in it and 
reloading the DLL when those functions are needed again, a 
possible approach to decrease the translation overhead is reusing 
DLL translations rather than simply discarding them when the DLL 
is unloaded and regenerating them when the DLL is reloaded. The 
approach can speed up programs that suffer from repetitively 
translating functions caused by frequently loading and unloading 
DLLs. 
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Figure 3. Translation Time 

                            Figure 4. Memory Consumption
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Memory Consumption Breakdown
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4. MODULE TRANSLATION REUSE 
ENGINE 
4.1 Framework 
The module translation reuse engine is added to the dynamic binary 
translator as shown in Figure 7. Once a module is recognized as a 
hot module, the reuse engine saves the source binaries and their 
translations in a dedicated memory area. The reuse engine only 
saves and compares minimum amount of binaries to ensure the 
reusability of the preserved translations. This is described in detail in 
the section 4.2. Before the translation engine translates a piece of the 
source binary, it requests the reuse engine to check whether these 
binaries are translated before and the previous translations can be 
reused. The reuse engine first checks whether the entry address of 
the source binary belongs to a hot module. The module to which the 
entry address belongs can be easily determined by searching the 
module list that contains all the modules. Each module distinguishes 
itself by name, image size and the base address. If the current 
module is found to be a hot module, the reuse engine searches for its 
saved translations to check whether the binaries have been translated 
before, then compares the saved binaries to verify whether the 
translated code blocks can be reused.   

There are three stages to accomplish the translation reuse:  

1. Translation Reservation 

When a translated code block is invalidated, for example, due 
to module unloading, it is preserved by the reuse engine and 
saved by the execution engine. The reuse engine does the 
bookkeeping about where the translations are saved, to which 
hot module the translations belong, and the translated code 
block descriptors that describes the entry addresses of the 
source binaries and their translated blocks. 

2. Source Binaries Verification 

There are two steps in this stage: save and comparison. 

a) If the reuse engine decides to reuse the translation 
for a piece of the source binaries, such as the binaries in hot 
modules, it saves the source binaries after translating them 
successfully. The reuse engine minimizes the verification 
overhead by saving a minimum set of source binaries that 
determine the semantics of the translation.  

b) Before the translation engine translates a piece of the 
source binary, it requests the reuse engine to check whether 
a preserved translation associated with the current 
instruction address exists, and whether the translation is 
reusable. The reuse engine compares the saved source 
binaries with their counterpart in the module image. If 
they’re exactly the same, the reserved translations associated 
with the piece of binaries are declared as reusable. No new 
translation is needed for these binaries.  

3. Translation Revivification 

Before executing the reserved translation that is declared as 
reusable, the reuse engine is requested to revive the reserved 
translations. After the revivification, the reserved translation 
can be seen by the execution engine. 

 

4.2 Source Binaries Verification 
Before reusing a piece of the translation, we must check if the 
source binary, which the reused translation is about to simulate, is 
exactly the same as the binary from which the translation was 
translated. If they’re different, the reuse is possibly incorrect in 
functionality, because the behaviors of the reused code fragment 
may be different from the source binary it simulates. In this paper, 
we define checking the source binaries as source binaries  

Figure 7. Framework for Module Translation Reuse Engine 

Figure 6. Memory Consumption for Hot Modules 

93



verification, which is performed by the reuse engine. The reuse 
engine saves the source binaries as they’re translated and compares 
them, in bitwise, with the corresponding parts of the executable 
image to get the translations’ reusability. For performance reasons, 
the verification overhead must be minimized. Apparently, the 
verification overhead is proportional to the amount of source 
binaries that are saved and compared. We don’t want to save and 
compare the entire text section of a DLL, because this will take 
much time and memory, and can negate the improvements gained 
from the translation reuse. We don’t want to use the checksums of 
the source binaries in the verification either, because the checksum 
computation is time consuming.  

The proposed method in this paper decreases the overhead by saving 
and comparing only those source binaries that determine 
translations’ behavior and thus affect the correctness of the 
translation reuse. We use Referred Source Binaries (RSB) to denote 
the minimum set of source binaries, which must be verified to 
achieve the reusability of a translated code block..  

Definition: Referred Source Binaries (RSB) 

For a translated code block T, if there is a set of source binaries that 
determines its behaviors, then this set is defined as the Referred 
Source Binaries of T, denoted as RSB (T).  
This can be implemented by following algorithm: 

Input : A source fragment T and 

Output: Its RSB set.  

Algorithm:  

RSB(T) = {T}; 

for each optimization O applied to T 

            for each source fragment S referenced in applying O to T 

RSB(T) = RSB(T)  U {O}; 

 end 

end 

For the translated code block T, if every element in RSB (T) is 
unchanged, reusing T would be 100% correct, even if there are 
changes in other parts of the source binaries in the same module. 
Since RSB (T) is the minimum set of source binaries that determine 
the semantics of T, comparing any real subset of the Referred 
Source Binaries cannot ensure the 100% correctness of reusing T. 
Therefore, for each translated code block, saving and comparing its 
RSB is the most efficient way to verify its reusability.  

 
Figure 8. Example for Referred Source Binaries Affected by 

Global Optimization 

Global optimization may refer to the information passed from some 
predecessors or successors of the source code block, and thus adds 
more binaries into the RSB set of translated code block. The 
predecessor and successor should also be added to the RSB set since 
they determine the semantics of the translated block. In the example 
shown in Figure 8, two source fragments (IA-32 code), S1 and S2, 
are translated into two translated code blocks (Itanium code), T1 and 
T2. The EFlag optimization uses the live information of S2 when 
translating S1 into T1. T1 does not update CF because it expects 
that CF is assigned to zero in S2 anyway. If S2 is changed to read 
CF instead of clearing it, S1 must be translated into a new translated 
code block, in which CF should be updated. If T1 is reused as S1’s 
translation, the translated code block of S2 would get an incorrect 
value of CF. So, for the translated code block T1, RSB (T1) = {S1, 
S2}, which means that both S1 and S2 should be checked before 
reusing T1. 

Global optimizations can lead to repetitive verification, because they 
may propagate the information of one source fragment to several 
surrounding blocks for improving their translations. Therefore, a 
source fragment can be in multiple translated code blocks’ RSB sets. 
For example, in Figure 8, both RSB (T1) and RSB (T2) contain S2. 
If two copies of S2 are stored for T1 and T2 respectively, some 
memory will be wasted and some execution time would be wasted 
by comparing the two identical copies with the new executable 
image.  

A simple way to avoid repetitive verification is to disable the global 
optimization functionality when translating the binaries for hot 
modules. Without global optimization, the semantics of the 
translated code block is fully determined by the source fragments 
from which it is translated. So the RSB of each translated code 
block only contains its direct source binaries counterpart, e.g. 
RSB(T1) = {S1}. However, global optimizations are crucial in 
improving the performance of the translated code block. For 
example, the expected stack top analysis in the IA-32 Execution 
Layer plays a crucial role in efficiently simulating the IA-32 FP 
stack [1]. Disabling all of them will seriously degrade the quality of 
the translation and is unacceptable to commercial dynamic binary 
translators. 

Our verification method avoids repetitive verification by adopting 
group verification. Group verification groups the translated code 
blocks together. The semantics of the translated code block group is 
determined by Group Referred Source Binaries (GRSB). 
Definition: Group Referred Source Binaries (GRSB) 

For a translated code block group G, G = {T1, T2, …, Tn}, the 
Group Referred Source Binaries of G is the union of each group 
members’ RSB set. This can be expressed as GRSB(G) = 
Union(RSB(T1), RSB(T2), …, RSB(Tn)). 

When the dynamic binary translator needs to reuse the translations 
in the group, it verifies the GRSB set of the group with the 
corresponding parts in the executable image. If the binaries are 
consistent, then all the translated code blocks in the group are 
declared as reusable. If a source fragment is in two translated code 
blocks’ RSBs and the two translated code blocks are in the same 
group, only one copy of the source fragment is created and the 
corresponding part in the executable image is compared once. In this 
way, the method of group verification removes the repetitive 
verification inside the group. 
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The side effect of group verification is that some translated code 
block’s RSB elements are compared but the translated code block 
is not actually reused. Consider the example in Figure 8, if we put 
T1 and T2 in a group and the dynamic binary translator tries to 
reuse T2, then the translator will compare the source fragments 
associated with the group with their corresponding parts in the 
execution image, in which S1 is included. However, S1 has 
nothing to do with T2, and if S1 is not going to be an RSB element 
of an actually reused translated code block, the execution time 
spent in comparing S1 is wasted. 

To balance the repetitive verification and useless comparison and 
thus achieve the minimum verification overhead, the reuse engine 
can limit the size of a group when the group size exceeds a 
predefined threshold. A simple grouping algorithm works by adding 
translated blocks that share elements in the RSB sets to a same 
group. When the group size reaches the threshold, no translated 
code blocks will be added to the group, so that useless comparison 
leading to inefficient verification can be avoided. The threshold is 
set to 2 mega bytes in our implementation. 

4.3 Implementation consideration 
This section introduces the techniques we used to minimize the 
overhead of the IA-32 EL’s reuse engine. 

4.3.1 Using Source Interval to Simplify Memory 
Accesses 
Saving and checking RSB elements involve a number of memory 
accesses. The memory accesses can be ineffective, because they 
might be unaligned or even cause access violation exceptions. To 
avoid misalignment and frequently access permission checking, we 
partition source binaries into source intervals, and verify the source 
intervals that contain the RSB elements. 

A source interval is a memory block that consists of N continuous 
bytes and starts from an address that is a multiple of N, where N is a 
factor of the page size. Because all the bytes in a source interval are 
in the same page, we need only one request to get all of their 
permissions.  In addition, since the starting addresses of the source 
intervals are multiple of N, misalignment can be avoided by setting 
N as a multiple of the memory access size. 

 

 
The side effect of source interval is that some, though a few, bytes 
that does not belong to RSB elements might be saved and compared 
as a part of  the source intervals, because not all RSB elements are 
N-byte-aligned and N-byte long. So the length of the source interval 

has been tuned in IA-32 Execution Layer to avoid too many 
needless bytes. 

The translated code blocks are grouped by module in IA-32 
Execution Layer. When a module is loaded and the OS has finished 
patching it, all the saved source intervals associated with the module 
are compared with their corresponding parts in the executable 
image. If all the source intervals are unchanged, translations 
associated with the module are considered reusable and the dynamic 
binary translator will try to reuse them. If any one is different, the 
translation is not reusable and the translations, as well as their 
source intervals, will be discarded. 

4.3.2 Reserving Translations by Moving Translated 
Code Block Descriptors 
We don’t reserve translations by copying translated code blocks, 
because copying so many bytes is expensive. As an alternative, we 
take full advantage of the fact that the execution engine of IA-32 EL 
accesses translated code blocks via translated code block descriptors, 
which are in a hash table. So we reserve translations simply by 
moving their translated code block descriptors out of the hash table. 
Details are as follows: 

• There is an alternative hash table for every hot module, which 
contains the translated code block descriptors of the invalidated 
blocks that are associated with the module. The descriptors in the 
alternative hash table are logically invisible to the execution engine. 

• When the translations of the hot modules are invalidated, the 
translator does not remove the translated code blocks from the  
memory, instead, it moves the descriptors from the hash table used 
by the execution engine into the alternative hash table of the module.  

In addition to avoiding copying too many memory units, another 
benefit of this approach is that a translated code block can be easily 
located at the reuse stage. 
 

4.3.3 Deep Revivification 
Reusing a translated code block is actually implemented by 
exposing the translation to the execution engine, which can be  
achieved by moving the reserved translated code block descriptors 
back to the hash table accessible to the execution engine. This is 
called translation revivification in our study. To avoid invoking the 
revivification procedure frequently, we revive the saved translated 
code blocks in a method called deep revival. Deep revival means 
that if the successive block in a control flow of the translated code 
block is unique, then the successive block will be revived as well, 
and this process is repeated continuously.  

Figure 10 shows the number of invocations of the revivification 
procedure with and without deep revival. It indicates that for 
Microsoft* Publisher and Adobe* Illustrator, deep revival reduces 
the number of invocations by 14.47% on average. 

Figure 9. Source Interval  
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5. MODULE-AWARE MEMORY 
MANAGEMENT MECHANISM 
In translators that saves the translated code blocks in the order of the 
translation [1], the translated code blocks of the hot modules and 
other modules are mixed together. Unloading a hot module without 
reusing its translation may lead to many internal fragments that 
contain invalidated translations of the module. Translation reuse can 
effectively avoid the internal fragments because the invalidated 
translations can be revived later upon module reloading. However, if 
the memory management mechanism is not aware of the translation 
revival, the translated code blocks of the hot module may be 
inevitably removed when other translated code blocks in the same 
code page meet the garbage collection criteria and the garbage 
collection mechanism reclaims the whole page.  

The module-aware memory management mechanism organizes the 
translation code blocks of different modules into different pools. It 
divides the code page pools into two categories: module-private 
page pool and general page pool. Each hot module has its own 
corresponding private code page pool, and the other modules share 
the general code page pool. When a translated code block is saved, 
the memory management mechanism identifies the module to which 
the translation belongs, and then determines the page pool for the 
translated code block. When the hot module is unloaded, its private 
page pool codes are reserved for future reuse. If the translation is 
identified as not reusable by the verification method upon next 
reloading of the module, its private pool is immediately collected 
and recycled.   

To keep the frequently revived code pages and free the pages that 
are not reused in the private page pool timely, the module-aware 
memory management mechanism uses a Least-Recently Created & 
Revived (LRCR) policy based on the LRC policy. Similar to the 
LRC policy, the LRCR policy marks each code page with its age, 
which is a global number that is increased each time a new code 
page is allocated. The LRCR policy re-marks the age of the page as 
if it is newly allocated when a page of a hot module is revived or, 
precisely speaking, when one translated block in the page is revived 
and becomes active. For example, in Figure 11, the first code page 
in the private page pool of hot module C, which is recently revived, 
updates its age from 4 to n, the value of the reuse counter at the time 
of the revival. 

 We implemented this by maintaining a double linked list—the 
LRCR list, which links all the pages from oldest to youngest. If a 
page is revived, we remove the page from the list, and insert it at the 
end of list. The garbage collector always collects pages from the 
beginning of the LRCR list. In this way, the code pages of the hot 
modules are reserved in the pool as newly created pages if they are 
frequently revived, and they will be moved to the beginning of the 
list and get recycled if the module stops to be a hot module or some 
pages of the hot module are not revived for a long time. 

6. PERFORMANCE EVALUATION 
The translation reuse and module-aware management 

mechanism has been implemented in IA-32 Execution Layer. All the 
performance measurements were done on the same system equipped 
with two 1.5GHz Itanium 2 processors with 6MB L3 cache. The 
operating system is Microsoft Windows 2003 Enterprise. Operations 
in the workload are typical users’ operations. 

6.1 Workload Description 
The workload of Microsoft* Publisher is: 

1. Create an Astor quick publication, accent box catalog 
and blank publication respectively by the wizard. 

2. Drag a picture to 4 different locations. 

3. Create a web site by the wizard. 

4. Convert the web to print. 

5. Repeat Step 3 and Step 4 for 3 times. 

Without module-aware translation, the duration of the 
Microsoft* Publisher’s workload is 90.64 seconds on top of IA-32 
Execution Layer. And with module-aware translation, the duration is 
81.82 seconds. 

The workload of Adobe* Illustrator is: 

1. Stylize a TIF image by adding arrowheads and cancel the 
stylization immediately. 

2. Apply the effects of “Dry Brush”, “Gaussian Blur”, 
“Radial Blur”, “Diffuse Glow”, “Crystallize”, “Mosaic 

Figure 11. Module-aware Memory Management Mechanism 

Figure 10. The Number of Invocations for Revivification 
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Tiles”, “Gaussian Blur” and “Colored Pencil” to the 
image. 

3. Move a JPG image up and down. Rotate it by 90%. Send 
it back and bring it to front. 

4. Apply “Flatten Transparency” to the object and preview 
it. 

5. Drop shadow to the image and apply the effect called 
“Glass” to it. 

Without module-aware translation, the duration of the Adobe* 
Illustrator’s workload is 99.63 seconds on top of IA-32 Execution 
Layer. And with module-aware translation, the duration is 85.59 
seconds. 

The workload of Acrobat* Reader is: 

1. Go to chapters by bookmark 

2. Search a word in a PDF document for 30 times 

3. View the PDF document in different size, including full 
screen, actual size, fit width and etc. 

4. Go to pages by thumbnails 

5. Repeat Step 1 to Step 4 for 3 times 

Without module-aware translation, the duration of the 
Acrobat* Reader’s workload is 41.88 seconds on top of IA-32 
Execution Layer. And with module-aware translation, the duration is 
41.82 seconds. 

The workload of Macromedia* Dreamweaver is: 

1. Open an existing site 

2. Change HTMLs in the site 

3. Tutor the site  

Without module-aware translation, the duration of the 
Macromedia* Dreamweaver’s workload is 164.84 seconds on top of 
IA-32 Execution Layer. And with module-aware translation, the 
duration is 164.61 seconds. 

6.2 Data and Analysis 
Figure 12 shows the numbers of translated code blocks in all 

combination of translation reuse and module-aware memory 
management. It indicates that while translation reuse has a strong 
contribution to reducing the block numbers, the two optimizations 
are complementary: For Microsoft* Publisher, translation reuse, 
alone, reduces the block number by 58.76%; But when the module-
aware memory management accompanies it, the number is reduced 
by 59.44%. Regarding Adobe* Illustrator, the block number 
declines from 542K to 411K with translation reuse and module-
aware memory management, say, reduced by 24.12%. The benefit 
seen in Publisher and Illustrator primarily comes the fact that DLL 
loading and unloading no longer cause repetitive translation. 
Besides that, we get some bonus from avoiding re-translating the 
code blocks in the code pages undesirably collected by the garbage 
collection. When the repetitive translation caused by DLL loading 
and unloading as well as the garbage collection is eliminated, the 
memory pressure is relieved. That reacts on the garbage collection: 
the garbage collection is triggered less frequently and is less likely to 
collect translated code blocks which will actually be needed in the 

near future and cause redundant translation. The memory 
consumption, shown in Figure 13, backs up the measurement of the 
block numbers: The memory consumption is reduced by 59.46% in 
Microsoft* Publisher and by 24.02% in Adobe* Illustrator. As what 
we expected, neither Acrobat* Reader nor Macromedia* 
Dreamweaver benefits from translation reuse or module-aware 
memory management, because DLL loading and unloading is not 
done heavily in the two applications. 

The Number of Translated Code Blocks
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Figure 12. The Number of Translated Code Blocks 

Figure 13. Memory Consumption  
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Figure 14 shows the execution time spent in translation. With 
translation reuse and module-aware memory management, the 
translation time drops by 28.85% in Microsoft* Publisher and 
28.71% in Adobe* Illustrator. The improvement is not in direct 
proportion to that of block number and memory consumption, 
because when translation is reused, profiling gets more accurate and 
hot traces are possible to be different. The changes in hot traces 
further affect the translation time: changes can make the dynamic 
binary translator to select different types of optimizations to  apply 
and the optimization overhead changes. Just as what we expected, 
the translation time of Acrobat* Reader and Macromedia* 
Dreamweaver almost keeps the same.  
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Figure 15 shows the overhead of translation reuse mechanism. For 
Microsoft* Publisher and Adobe* Illustrator, the overhead is no 
more than 0.2% of the execution time and ignorable. For Acrobat* 
Reader and Macromedia* Dreamweaver, which don’t benefit from 
reusing translation, the overhead is 0%. 

Figure 16 shows the speedup brought by all combination of 
translation reuse and module-aware memory management in the 4 
applications. Applying the two brings an impressive speedup of 
9.73% to Microsoft* Publisher and a speedup of 14.09% to Adobe* 
Illustrator. Actually, the speedup is more than what we gain from 
saving translation time, and that’s due to when translations, as well 
as their profiling data, are reused, the profiling data is more accurate. 
That improves the quality of the translated code. For Acrobat* 
Reader and Macromedia* Dreamweaver, the speedup is minor and 
can be regarded as ignorable variance. 

The Overhead of Translation Reuse
Mechanism
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7. RELATED WORK 

Most of the related work concerns FX!32 [12][15], a dynamic-
static hybrid translator that ports applications from the IA-32 
architecture to the ALPHA architecture. This translator tries to reuse 
translations across multiple running copies of a program. In FX!32, 
a background static translator creates segments of the native Alpha 
codes that duplicate the functionality of the x86 codes previously 
executed under emulation. The translated Alpha code segments will 
be reused next time when the IA-32 program is invoked. However, 
the translator does not compare the binaries of the IA-32 program to 
verify the reusability of the translated Alpha code segments. In 

Figure 16. Overall Speedup  

Figure 15. The overhead of Translation Reuse Mechanism 

Figure 14. Translation Time  
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addition, FX!32, being static, saves the translations on the disk and 
loads it from there each time when the translations are needed, 
whereas our solution maintains all the translations in memory, yet 
achieves reusability and complete correctness. 

Another interesting similarity exists in JVM [16], in which the 
translations of the methods of the classes that are frequently loaded 
and unloaded can be reserved for future reuse. However, as JVM 
translation is performed on the method basis and the sizes of the 
methods are usually much smaller than sizes of the modules, JVM 
can easily produce an efficient verification solution by comparing 
the source codes and their translations or comparing the checksum 
generated by them.  

Most of research frameworks about binary translators only 
focus on speeding up the translated code of the hot spots, and 
typically use SPEC benchmarks as performance indicators. These 
researches merely address the issues in translating real-life desktop 
applications [5][6][7][17]. 

Dynamic binary translators that run under the operating system, 
like Transmeta CMS [10] and DAISY [18], cannot identify the 
module to which the binaries being translated belong, because the 
modules can only be seen by the operating system and the 
applications running on it. Other products in the field, such as HP 
Aries[11], did not report similar work in module translation reuse 
and module-aware memory management mechanism.  

8. CONCLUSION 
In this paper, we presented the module-aware translation, which 
consists of a module translation reuse engine and a module-aware 
memory management mechanism, for resolving the performance 
impacts brought by frequently loading and unloading run-time 
modules in real-life desktop applications. We implemented the 
module-aware translation component in IA-32 EL, and evaluated 
the performance results. Our research results showed that the 
performance can be improved by up to 14.09% for Adobe* 
Illustrator and 9.73% for Microsoft* Publisher, which frequently 
reload hot modules. The translation time drops by 28.85% for 
Microsoft* Publisher and 28.71% for Adobe* Illustrator, and the 
memory consumption drops by 59.46% and 24.04% respectively. 
The overhead brought by the translation reuse engine is almost 
ignorable, which merely accounts for less than 0.2% of the 
translation time. As dynamic module loading/unloading is accepted 
and practiced by more and more desktop application developers, we 
believe that the module-aware translation is an indispensable feature 
for dynamic binary translators targeting to real-life desktop 
applications. 
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