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ABSTRACT
Desktop distributed computing allows companies to exploit
the idle cycles on pervasive desktop PC systems to increase
the available computing power by orders of magnitude (10x
- 1000x). Applications are submitted, distributed, and run
on a grid of desktop PCs. Since the applications may be
malformed, or malicious, the key challenges for a desktop
grid are how to 1) prevent the distributed computing appli-
cation from unwarranted access or modification of data and
files on the desktop PC, 2) control the distributed computing
application’s resource usage and behavior as it runs on the
desktop PC, and 3) provide protection for the distributed ap-
plication’s program and its data. In this paper we describe
the Entropia Virtual Machine, and the solutions it embodies
for each of these challenges.

Categories and Subject Descriptors: D.4.7 [Organiza-
tion and Design]: Distributed Systems, D.4.6 [Security and
Protection]: Access Controls

General Terms: Management and Security

Keywords: Grid Computing, Virtual Machine, and Desk-
top Grids

1. INTRODUCTION
For over five years, the largest computing systems in the

world have been based on “distributed computing” through
the assembly of a large number of PC’s over the Internet.
These “grid” systems sustain multiple teraflops continuously
by aggregating tens of thousands to millions of machines and
demonstrate the utility of such resources for solving a sur-
prisingly wide range of large-scale computational problems
in data mining, molecular interaction, financial modeling,
etc. These systems have come to be called “desktop dis-
tributed computing” systems and leverage the unused ca-
pacity of high performance desktop PC’s (2.2 Gigahertz ma-
chines with multi-gigaop capabilities[20]), high-speed local-
area networks (100 Mbps to 1Gbps switched), large main
memories (256MB to 1GB configurations), and large disks
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(60 to 150 GB disks). Deployed in an enterprise, these sys-
tems harvest idle cycles from PCs sitting on hundreds to ten
thousands of employees’ desks.

In order for a desktop grid to be accepted for enterprise
deployment, the system must adequately protect the desk-
top machine from malformed or malicious applications. The
system must make sure that the application does not inter-
fere with the performance experienced by the desktop user
and that no harm comes to the machine or its data. Some
deployments also require that the application code and data
are also protected from users of the desktop PCs.

In this paper we describe the design of the Entropia Vir-
tual Machine (EVM), which meets these requirements. The
Entropia Virtual Machine supports the safe and controlled
execution of applications expressed as native x86 binaries for
Windows NT, 2000 and XP. The EVM uses binary modifica-
tion technology and device drivers to achieve this mediation.

The paper is organized as follows. Section 2 gives an
overview of the Entropia DCGrid Architecture. The require-
ments for a Desktop Grid Virtual Machine are described in
Section 3. The design and capabilities of the Entropia Vir-
tual Machine are explained in Section 4. Section 5 presents
data from a performance evaluation of the EVM, using real
application programs deployed at commercial sites. Finally,
we discuss related work in Section 6, and conclude with a
summary of the paper in Section 7.

2. ENTROPIA DCGRID ARCHITECTURE
We first provide a brief overview of the Entropia Desktop

Distributed Computing Grid (DCGrid) in order to under-
stand how the Entropia Virtual Machine fits into the overall
system. Complete details of the Entropia DCGrid Architec-
ture can be found in [6].

The Entropia DCGrid aggregates the raw desktop resources
into a single logical resource. This logical resource is reli-
able and predictable despite the fact that the underlying raw
resources are unreliable (machines may be turned off or re-
booted) and unpredictable (machines may be heavily used
by the desktop user at any time). This logical resource pro-
vides high performance for applications through parallelism,
and the Entropia Virtual Machine provides protection for
the desktop PC, unobtrusive behavior for the user of that
machine, and protection for the application’s data.

2.1 Layered Architecture
The Entropia server-side system architecture is composed

of three separate layers as shown in Figure 1. At the bottom
is the Physical Node Management layer that provides basic
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Figure 1: Architecture of the Entropia Desktop Dis-
tributed Computing Grid.
communication to and from the client, the naming (unique
identification) of client machines, security, and node resource
management. On top of this layer is the Resource Schedul-
ing layer that provides resource matching, scheduling of work
to client machines, and fault tolerance. Users can inter-
act directly with the Resource Scheduling layer through the
available APIs, or alternatively, users can access the system
through the Job Management layer that provides manage-
ment facilities for handling large numbers of computations
and files. We next give a brief overview of each of these
layers and how the Entropia Virtual Machine fits into this
system.

Physical Node (Client) Management (PNM) - The
desktop distributed computing environment presents
unique challenges for providing a reliable computing
resource. Individual client machines are under the con-
trol of the desktop user or IT manager. They can be
shut down, rebooted, or have their IP address changed.
A machine may be a laptop computer that is discon-
nected for long periods of time, and, when connected,
must pass its traffic through network firewalls.

The PNM layer of the Entropia DCGrid manages these
and other low-level reliability issues to allow the run-
ning of applications on top of the Entropia Virtual Ma-
chine on the client machines. The PNM layer specif-
ically provides resource and application management.
The resource management services capture a wealth
of static and dynamic information about each physi-
cal client (e.g. physical memory, CPU speed, disk size,
available space, client version, data cached, etc.), re-
porting it to the centralized node manager and sys-
tem console. This information is used during Resource
Scheduling. The application management provides ba-
sic facilities to allow processes to be run on the clients.
This includes staging files from the server and clients,
and error reporting.

Job Management (JM) - A distributed computing appli-
cation often involves large amounts of computation
(thousands to millions of CPU hours) submitted as a
single large job. This job is then broken down into
a large number of individual subjobs each of which is
submitted into the Resource Scheduling layer for exe-
cution. A Subjob is the unit of schedulable work that
is to be scheduled and run on a desktop machine. The
Job Management layer of the Entropia DCGrid is re-
sponsible for decomposing the single job into the many

subjobs, managing the overall progress of the job, pro-
viding access to the status of each of the generated
subjobs, and aggregating the results of the subjobs.
This layer allows users to submit a single logical job
(e.g., a Monte Carlo simulation, a parameter sweep ap-
plication, or a database search algorithm) and receive
as output a single logical output. The details of the
decomposition, execution and aggregation are handled
automatically.

Resource Scheduling (RS) - The Entropia DCGrid con-
sists of client resources with a wide variety of configura-
tions and capabilities. The Resource Scheduling layer
takes the subjobs and matches them to appropriate
client resources and schedules them for execution. Since
the clients provided by the PNM layer may be unreli-
able, the RS layer must adapt to changes in the resource
status and client availability, and to failure rates that
are considerably higher than in traditional cluster en-
vironments. Failures can also come from unreliable ap-
plications, and the RS layer has logic to identify these
subjobs.

Entropia Virtual Machine (EVM) - A separate Entropia
Virtual Machine runs on each Desktop Client shown
in Figure 1. The EVM is responsible for starting the
execution of the subjob, monitoring and enforcing the
unobtrusive execution of the subjob, and mediating the
subjob’s interaction with the operating system to pro-
vide security for the desktop client and the subjob be-
ing run. The EVM communicates with the Resource
Scheduler to get new work (subjobs), and communi-
cates subjob files and their results via the Physical
Node Management layer.

The steps below show the typical life of a job as it flows
through the Entropia DCGrid, specifying which layer is in-
volved at each step.

1. (JM) Authenticate DCGrid user to system.

2. (JM) User submits a job to the Entropia system.

3. (JM) The job is broken into multiple subjobs.

4. (JM) The binaries to run the job are automatically
wrapped using binary modification technology in the
Entropia Virtual Machine through a single command
that takes the application’s executables and associated
dll’s and creates new “sandboxed” versions.

5. (JM-RS) The subjobs are submitted from the Job Man-
agement layer to the Resource Scheduling layer specify-
ing input files (including executables, libraries and out-
put files), resource requirements (including minimum
memory, disk, processor speed, run time, priority, etc.),
and a script to start executing the subjob on the client.

6. (RS-PNM) The Resource Scheduler schedules the sub-
job assigning it to a client that meets the resource con-
straints as specified by the Physical Node Management
layer.

7. (PNM-EVM) The subjob and its files are transfered to
the client machine to run.
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8. (EVM) The subjob is then run under the EVM on the
desktop machine.

9. (JM) User optionally checks subjob status.

10. (EVM-PNM-JM) The result files are sent back when
the subjob is completed.

This paper focuses on how the Entropia Virtual Machine
runs a subjob on a client machine, which corresponds to step
8 above. In addition, we will describe how binaries are mod-
ified during job submission (shown in step 4 above) so that
they are allowed to run under the EVM.

3. DESKTOP GRID VIRTUAL MACHINE RE-
QUIREMENTS

In order for a desktop grid to be adopted in an enterprise
deployment, we found that our customers required a virtual
machine to provide the following features:

Desktop Security — The distributed computing system
must protect the integrity of the computing resources
that it is aggregating. The subjob must be prevented
from accessing or modifying the desktop machine’s data.

Clean Execution Environment — The state of the client
machine (e.g., file system, registry, etc) must be in the
exact same identical state after executing a subjob as
it was before executing it.

Unobtrusiveness — The subjob running on the desktop
machine needs to stay out of the way of the user. The
desktop client shares resources (computing, storage, and
network resources) with other applications and the user
of the machine. Therefore, the use of these resources
by the grid application must be unobtrusive, and non-
aggressive where there is competition.

Application Security — Some enterprise environments
have a requirement that the system must protect the
integrity of the distributed computation. Tampering
with or disclosure of the application data and program
must be prevented.

4. ENTROPIA VIRTUAL MACHINE
The Entropia Virtual Machine (EVM) achieves the above

desktop grid requirements through the use of a Sandbox Ex-
ecution Layer and a monitor called the Desktop Controller,
as seen in Figure 2.

• Desktop Controller - monitors and controls the sub-
job running on the client machine in terms of disk,
memory, CPU, and I/O usage as well as other machine
resources like the number of processes and threads in-
voked. It therefore provides many of the unobtrusive
requirements. The Desktop Controller gets assigned
a subjob from the Resource Scheduling layer, and is
responsible for launching the application processes to
run the subjob. It is also responsible for monitoring
the subjob’s processes, which is described in detail in
Section 4.2.

• Sandbox Execution Layer - provides the virtual-
ization and control of all of the binary’s interactions
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Desktop Machine

Desktop 
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Application

Node Manager

& 
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Application

Figure 2: Entropia Desktop Components

with the operating system, as well as an interface to
the desktop controller. It provides desktop security,
clean execution environment, application security, and
is part of the solution for providing unobtrusive fea-
tures. To contain the subjob inside the sandbox, we
use both device driver and application wrapping tech-
nology to insert a mediation layer between the subjob
and the desktop system on which it will execute.

The EVM comprises of both the Desktop Controller and
the Sandboxed Execution Layer, and is installed and run
on each client machine. Only one EVM is run on a client
machine, which would be used to control the running of one
subjob (for a uniprocessor machine) to multiple subjobs (for
a multi-processor). Note that a single subjob can consist of
multiple processes and threads, and the Desktop Controller
is responsible for all of the Entropia processes running on the
client machine as well as all of the subjob processes.

In Section 4.1, we first explain how an application is inte-
grated and validated to run on the EVM. We then describe
in Section 4.2 how the Desktop Controller makes sure that
the subjob runs unobtrusively on the client. In Section 4.3,
we describe the security and virtualization provided by the
EVM sandbox. Finally, Section 4.4 describes how the EVM
provides protection for the subjob running on the client.

4.1 Creating and Identifying a Valid Sandboxed
Application

To support the execution of a large number of applica-
tions, and to support the execution in a secure manner, En-
tropia provides binary sandboxing with no modification to
the source code. Our approach allows end-users of the En-
tropia DCGrid to use their existing Win32 applications and
deploy them on the Entropia DCGrid in a matter of minutes.

4.1.1 Wrapping an Application in the EVM
Ease of application integration is key for the applicabil-

ity and usability of a desktop PC grid computing solution.
Entropia’s approach to application integration is a process
known as “sandboxing”. This mediation layer intercepts the
system calls made by the application and provides control
over the application’s interaction with the operating system
and the desktop resources.
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When an application (subjob) is submitted to the En-
tropia DCGrid it is automatically wrapped inside the En-
tropia Virtual Machine using binary modification technology
(Step 4 in Section 2.1). The patched binary is then sent into
the Resource Scheduler to be run on the Entropia DCGrid.
Since we wrap native binaries, we can support any language
that compiles to x86 and 3rd party libraries (e.g. C, C++,
C#, Java, FORTRAN, etc. and most important third-party
shrink-wrapped software and common scripting languages).
No source code is required, supporting the broadest possi-
ble range of applications. We also wrapped interpreters like
cmd.exe, perl, and the Java Virtual Machine inside the
Entropia Virtual Machine, and provide these wrapped ver-
sions with the Entropia installation, all contained within the
EVM sandbox. This allows us to run scripts and java byte-
code while still maintaining the desktop VM requirements
listed above.

The wrapping of the binary is achieved by rewriting the im-
port table of the binary, so that the Entropia vm.dll is the
first dll in the list. When a binary is loaded under Windows,
all of the dlls are loaded in the order in which they appear
in the import table. By ensuring that the Entropia dll is
the first dll in the list, we are guaranteed that the Entropia
dll will be loaded first. This means that the dll main in-
side our vm.dll will be executed before any non-system code
for the program’s execution. When our dll main executes
it dynamically modifies the loaded binary and any dynamic
libraries used to intercept system calls. This is described in
Section 4.3.

4.1.2 Validating Binaries for Execution
To provide Desktop Security and Application Security it is

important that we do not run executables with the Entropia
Virtual Machine that have not been sandboxed. When an
application is submitted to run on the Entropia DCGrid, all
of the application’s non-OS binaries and dll files must be
provided. The import table of these files are then patched
as described above. Then a cryptographic checksum of each
file is created. The checksum is used to verify that the file
being invoked (a) has been patched to be contained within
the EVM sandbox, and (b) that when we want to execute
the file it has not changed since we patched it. This is used
to provide Application Security, which we describe in more
detail in Section 4.4.

When the application is sent to the client, a configuration
file containing the list of sandboxed files and their checksums
is also sent to the client to provide file validation. The con-
figuration file is encrypted during subjob submission. After
being transfered to the client machine, it is stored on disk
in encrypted form, and the key is securely communicated to
the EVM on the client to invoke and run the subjob.

Before any application binary file can be invoked by the
Desktop Controller, the checksum is first validated. In addi-
tion, when a dynamic library is loaded the checksum of the
library is validated before execution is allowed to proceed. A
sandboxed application is allowed to launch another applica-
tion using CreateProcess only if (a) it is registered with the
EVM in the configuration file and (b) its checksum matches.
Since we intercept CreateProcess to perform this validation,
we prevent the EVM sandboxed applications from launching
any unsandboxed processes.

In addition, for Desktop Security, we prevent subjob pro-
cesses from opening with write permissions any binary listed

in the configuration file via the EVM Sandbox Execution
Layer.

4.2 Desktop Control
To meet the Unobtrusiveness requirement it is important

to make sure that the amount of resources a subjob consumes
does not interfere with the usage of the desktop machine. For
example, if a subjob uses more memory than is available on a
machine, spawns a significant number of threads, or uses up
too much disk space, the machine can become unresponsive
to user interaction and possibly even crash. To prevent this
behavior, the EVM automatically monitors and limits subjob
usage of a variety of key resources including CPU, memory,
disk, I/O, threads, processes, etc. If a subjob attempts to
use too many resources, the EVM will pause or terminate all
of the subjob’s processes. In addition, the EVM guarantees
that we have strict control over all processes created when
running a subjob.

The responsibility for fulfilling the Unobtrusive require-
ment is partitioned between the Desktop Controller and the
Sandbox Execution Layer. The Sandbox Execution Layer
provides local control by limiting resources on a per process
and per thread basis. It monitors the rate in which resources
are used (e.g., file and network I/O, thread and process cre-
ation, etc) per second for each process and thread. If the
rates exceed a configurable limit then the resources are throt-
tled to keep the rate within the limit. This is achieved by
pausing the system routine using the resource, and is de-
scribed in more detail in Section 4.3.3. In comparison, the
Desktop Controller provides a global view of everything run-
ning on the client machine and it is the last line of defense for
making sure the subjob runs unobtrusively. When a given re-
source limit is exceeded its main course of action is to either
pause or terminate the subjob.

A single Desktop Controller is run on the client machine,
and is used to monitor and control all of the resources on
the desktop machine used by the EVM and the subjob’s pro-
cesses being run on the client machine. This is because a
subjob may be running over several separate processes on a
machine, so resource control decisions cannot be made on a
per process view. Instead, a global view of all of the En-
tropia components and the subjob processes provided by the
Desktop Controller are needed to make decisions to enforce
unobtrusive behavior. The Desktop Controller knows which
processes belong to the EVM and which belong to the subjob
being run, so it can perform resource control separately for
these two groups of processes. This is enabled by the use of
the VM Portal, which we describe next.

4.2.1 EVM Portal Thread and Process Control
A key component for the Entropia Virtual Machine is the

ability to maintain control over the Entropia application pro-
cesses running on the desktop machine. This functionality is
provided through what we call the VM Portal.

When a sandboxed application starts running it starts a
hidden thread (VM Portal) in the application. This is im-
plemented such that the application is completely un-aware
of the VM Portal. The application does not see the thread
when traversing over the existing threads, and cannot ter-
minate the thread, since we have virtualized those operating
system routines. The thread is used to communicate with the
Desktop Controller to find out if it should pause or continue
running the application, as well as to maintain a lifeline to
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the Desktop Controller.
As soon as the VM Portal starts up and before execution is

allowed to leave dll main, the VM Portal registers the newly
running process with the Desktop Controller. After initial
contact, a heart beat is kept between the VM Portal and
the Desktop Controller. If at anytime the heartbeat is lost,
then the VM Portal thread will terminate the process from
within (commit hari cari). This is used to provide a safety
measure for Client cleanliness in case somehow the Entropia
client crashes or is terminated. If that happens, then all of
the running sandboxed processes would also automatically
be shut down.

Since all the running processes register using the VM Por-
tal with the Desktop Controller, this communication path is
used to control the termination, pausing and resuming of all
of the processes and threads. Having the ability to pause
and resume is important since some of the life science appli-
cations we deal with can run for days. When pausing the
subjob, the Desktop Controller sends a pause command to
all of the subjob processes. The VM Portal in each process
then suspends all of the threads running in its process, ex-
cept itself (the VM Portal thread), which sits idle waiting for
the next command from the Desktop Controller.

The Desktop Controller may pause and resume a subjob’s
processes to keep the client unobtrusive when a user starts
using a machine. In addition, the pause and resume func-
tionality was a critical feature for some companies to control
when the client executed. For example, the Entropia DCGrid
allows IT departments to configure the system so that appli-
cations are only run during certain times of the day (e.g., at
night). In this case, the Desktop Controller will pause the
running processes in the morning, and its memory will be
paged to disk. Then execution would be resumed at night,
and the processes would be re-paged in to allow execution to
continue.

4.2.2 Enforcing Resource Limits
The goal of the Desktop Controller is to harvest unused

computing resources by running subjobs unobtrusively on
the machine. To accomplish this, it monitors desktop usage
of the machine and resources used by the EVM and subjob.
If desktop usage is high, the client will pause the subjob’s
execution using the VM Portal, avoiding possible resource
contention. In this manner the Desktop Controller acts like
a guardian keeping watch over the subjob processes keeping
their resource usage in line.

The resources monitored by the Desktop Controller include
memory, disk, paging, I/O, process resource usage, and other
resources. If pausing the subjob processes does not remedy
the situation, termination of the subjob may be necessary.
The Desktop Controller provides different levels of unobtru-
siveness that can be set at install time or set dynamically by
an administrator of the Entropia DCGrid. The highest level
of unobtrusiveness monitors mouse movement, keyboard us-
age, memory usage, disk I/O usage, and CPU usage of non
Entropia processes. If there is any usage at all, it suspends
the subjob’s processes using the VM Portal, and monitors
the system to determine when to resume the subjob’s ex-
ecution. In addition, all threads and processes created are
guaranteed to run at the lowest priority levels using Windows
priorities to stay out of the way of the user. This is enforced
by the EVM. The lowest level of unobtrusiveness supported
by the Entropia DCGrid ignores keyboard and mouse usage

by the user, and instead uses the process and thread priori-
ties to keep the subjob processes out of the way of the user,
while still monitoring the rest of the system. This allows the
subjob to use the processor between keystrokes.

In our deployments, the Desktop Controller usually has to
take control of a subjob when a system starts to do exter-
nal paging. When a subjob is submitted to the system, ei-
ther the user specifies the amount of expected memory usage
or an administrator associates a typical memory usage foot-
print with the application. The Resource Scheduler knows
the amount of memory on every machine, and schedules the
subjob appropriately to a machine with potentially enough
memory. Memory and paging issues arise when either the
user is doing a lot of memory intensive tasks or the memory
requirements specified for that subjob were not right for the
input being used. When memory usage or paging exceeds
a given threshold, the application processes are paused or
terminated by the Desktop Controller.

Some resource issues seen for a DCGrid deployment are
actually issues with the subjob, and not because of user con-
tention for the Desktop machine. One example is that ap-
plication developers often put tracing code in their program,
and they may forget to completely disable the tracing code
when submitting it to DCGrid. The Desktop Controller has
a resource limit for a subjob’s disk usage, and if a subjob ex-
ceeds this limit the application is terminated, and the reason
is sent back to the user who submitted the subjob. An-
other example we have encountered is having the limit we
have set for the maximum number of processes or threads
allowed for a subjob being exceeded. This was due to an
error in a subjob, which inadvertently started to recursively
spawn threads. Disaster was prevented, since the Desktop
Controller and our Sandbox layer limited the number of pro-
cesses and the threads created, and the subjob was termi-
nated when it hit this limit.

4.2.3 Dealing with Resource Problems
Whenever a subjob is terminated due to a resource issue,

this information needs to be tracked by the Resource Sched-
uler to make better scheduling decisions in the future. In
addition, the information is sent back to the administrator
of the Entropia DCGrid so they can find problematic clients.
Aggregate information about the failure of subjobs are also
sent back to the Job Manager so the user knows that there is
an issue with a job. A vital issue in creating a Desktop Grid
is how to correctly classify failures into one of the following
three categories.

• Desktop Resource Contention - If the subjob is termi-
nated due to resource usage issues, what the resource
problem was is communicated back to the Resource
Scheduler and the user. In addition, if a subjob is re-
peatedly paused due to desktop user activity, the sub-
job will eventually be terminated. The cause of ter-
mination is signaled back to the Resource Scheduler so
the subjob can be rescheduled on a different client with
more appropriate resources. If the subjob is terminated
three different clients due to resource limits it is marked
as failed and this fact is communicated back to the Job
Manager.

• Client Black Hole - There can be a problem with the
client, which does not allow the correct execution of
subjobs. For example, if for any reason the Entropia
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client is misconfigured for application launch, or some-
thing exists (e.g., a malformed system driver installed
by the user) on the desktop machine that prevents
appropriate functionality of the client, subjobs which
should run for minutes or hours can stop running in
seconds. In this case, a client can consume and run
through all of the work (subjobs) in the system in a
matter of minutes, since as soon as a subjob finishes on
the problem client the EVM will request the next sub-
job to run. This needs to be detected and prevented.
If a client machine has 3 different subjobs quickly fin-
ish/terminate in a row, the client is marked as prob-
lematic at the Physical Node Manager. The client is
allowed to retry running subjobs after a back-off period
or after an administrator has examined the problematic
client and the subjobs it had a problem with.

• Malformed Subjob - Subjobs that never finish and sub-
jobs that are misconfigured need to also be identified.
For example, incorrect parameters to a subjob can cause
it to terminate immediately or run forever. One way we
addressed this is that a subjob is allowed to specify the
minimum and max time time to run, and if the subjob
violates those bounds, then there is something wrong
with either the client or the subjob. At the Job Man-
ager, if all of the subjobs for a Job are coming back as
failed from different clients, then there is a high prob-
ability the subjobs are misconfigured. In addition, as
will be described later, any exceptions a subjob encoun-
ters are tracked using the EVM and transmitted back
to the user.

4.3 Sandbox Execution Layer
The goal of the sandbox is to control the subjob’s inter-

action with the operating system, and to virtualize some of
the operating system components. The sandbox mediates
subjob access to all system APIs that could affect the be-
havior of the system. The list is too large to enumerate, but
includes the file system, registry, graphical user interface,
networking, keyboard, mouse and I/O devices, etc... Some
of the APIs (file system, registry, and network) are mediated
others (mouse, graphical user interface) are disabled. This
prevents the subjob’s processes from disturbing the user of
the machine, and ensures that after subjob execution, the
machine’s state can be restored to the same state as it was
before running the subjob.

An application’s interaction with the desktop machine must
be controlled to prevent it from adversely affecting the desk-
top user, machine configuration, or network. This control
will prevent application misbehavior due to software bugs,
inappropriate subjob input parameters, and subjob miscon-
figuration, and provide protection against malicious subjobs.
Therefore, the Entropia sandbox isolates the grid application
to prevent it from invoking inappropriate system calls, or in-
appropriately modifying the desktop disk, registry, and other
system resources.

An important point is that unlike general desktop appli-
cations, an application running on a desktop PC grid only
needs access to a subset of the Windows operating system
calls. For desktop grid applications, many of the system
calls can be disabled or their functionality restricted. The
Windows operating system provides a rich set of API func-
tionality, much of which is focused around an application’s
interaction with a user or with external devices. For example,

VM 
Thread

Application 
Binary

System Interface

System DLL’s

File 
System

Network 
Interface

Resource 
Control

Graphic 
Interface

Registry      
.

etc          
...

Desktop 
Controller

Virtualized System Interface

Intercepted System Calls

Virtual 
File 

System

Virtual 
Network 
Interface

Etc       
…

Virtual 
Graphic 
Interface

Figure 3: Shows the virtual layer placed between the
application binary and dlls and the operating system.
In addition, a VM Portal (VM thread) is started in
the application to maintain a lifeline to the Desktop
Controller.

there are Windows API calls for displaying graphics, playing
music, mouse movement, and even for logging off a user or
shutting down the machine. If these functions are invoked
by an application, they would definitely disturb the desktop
user. The Entropia sandbox prevents the grid application
from accessing the parts of the Windows API that can cause
these inappropriate interactions with the desktop machine
and user.

4.3.1 Creating an OS Interception Layer
The Entropia Virtual Machine uses two levels, with dis-

tinct purposes, to provide a virtualized system interface. The
first level is implemented via a device driver installed on the
client. The device driver intercepts specific Windows API
calls that allow access to hardware resources (e.g., file system
and registry) that if used can permanently change the state
of the machine. The second level is implemented using binary
modification to intercept and virtualize parts of the Windows
interfaces. In Figure 3, the device driver and binary modi-
fication interception combined provide the virtualize system
interface where the system calls are intercepted and then vir-
tualized. This Sandbox layer is basically a virtual-machine
monitor [18] to provide the requirements listed in Section 3.

Using binary modification by itself to provide system call
interception has security holes in that an attacker can try to
search the virtual address space to find the moved routine
and the entry point to an intercepted function. Additional
issues are discussed in [13, 15]. This is why we use a de-
vice driver approach to provide access security to important
system resources, and then a more light weight binary in-
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terception approach to virtualize the manipulation of those
resources.

4.3.1.1 Desktop Security through Device Driver Me-
diation.

Desktop security against malicious applications is provided
by creating a mediating Windows device driver. The device
driver is installed by an administrator when installing the
EVM. Our Windows device driver runs as part of the oper-
ating system and every single call to a mediated routine by
all processes/threads is examined by the driver code. This
insures that a subjob process cannot bypass the sandbox.

When a system call occurs in Windows, control is trans-
fered to a software interrupt handler inside the operating
system. This handler takes as input a system call number
and performs a table lookup with it to find the operating
system address for the function to be called. Our mediating
device driver replaces entries in this jump table with pointers
to our own functions in the driver to intercept specific sys-
tem calls. The driver only effects the routines that we have
replaced in the system jump table.

The Desktop Controller knows the handle of all processes
running sandboxed under the EVM as described in
Section 4.2.1. This allows the EVM to determine what pro-
cesses should be intercepted and which ones should not. The
device driver is also given this list via communication with
the Desktop Controller. For each access to a mediated rou-
tine, the device driver checks to see if the process handle
is in this sandboxed list of processes. If it is, then the call
is intercepted and virtualized. If it is not in the list, then
the process may just passes on through with no restrictions,
depending upon the routine being virtualized.

The driver check creates a minor amount of overhead on
all processes for the routines intercepted. This overhead, at
minimum, consists of an extra jump and a check to see how
to deal with the process handle. Even though this overhead is
small, we do not want to apply this type of driver mediation
to every single intercepted function in order to minimize the
overhead, especially for routines that are called repeatedly.
We therefore only apply it to routines that grant access to
Windows resources. For example, for File I/O, we mediate
and virtualize with the driver the NT routines to open and
close files, but we do not intercept the file read and write
routines using the driver. The read and write routines are
mediated using binary interception described below. This
is to reduce the overhead for non-sanboxed applications run-
ning on the desktop machine. This insures that all sandboxed
subjobs cannot open or create a file outside of the sandbox.
In addition, we use this to insure that non-sanboxed applica-
tions cannot look inside the Entropia directory. To provide
appropriate security and to leave the machine in a clean state,
the driver interception approach is applied to grant access to
file I/O, registry, creating processes and threads, and a few
additional OS routines that have to be mediated for Desktop
Security.

4.3.1.2 System Call Interception through Dynamic Bi-
nary Modification.

Once access is granted to a machine resource using the de-
vice driver interception approach, the OS routines used to
manipulate those resources are intercepted through dynamic
binary modification. This interception is implemented using
a trampoline approach analogous to Detours [16]. The binary

modification occurs dynamically when the binary starts exe-
cuting when the EVM dll main is invoked. For a system call
to be intercepted, we move the original routine to a new point
in the virtual address space. Then any jump to the original
routine will instead perform a direct jump (trampoline) to
our own virtualized routine. The virtualized routine will me-
diate the functions execution, which may or may not involve
calling the real routine that was moved. Then execution is
returned as if the original call is returning.

4.3.2 Self Modifying Code
For Desktop Security and Unobtrusiveness, the EVM does

not allow applications with self modifying code to execute.
When a sandboxed process starts execution in dll main, we
lock down the binary’s virtual address space specifying that
the code portions of the address space are “executable” and
“non-writable”. Then the rest of the virtual address space
has their permissions set as “non-executable”. Windows pro-
vides the ability to specify these permissions for the virtual
address space. By marking all code as executable and non-
writable, and the rest of the virtual address space as non-
executable, we prevents data from being executed as code.
Note, not all x86 processors support this mode, but we ex-
pect them to do in the future. Therefore, pure x86 binary
applications that rely upon self-modifying code will not run
on the Entropia DCGrid on clients with this feature enabled.

We found that not allowing self modifying code not to be
a major concern, since we are dealing with scientific applica-
tions. We only had one application that required this, which
was when we ran the Java Virtual Machine. For the JVM,
we turned off this restriction to allow it to create and execute
JIT code.

4.3.3 Virtualized Components
In this section we briefly summarize some of the interesting

features of the major components that were virtualized. The
operating system interfaces that did not fall into these cate-
gories were either left alone if there was no chance they could
do any harm, or the interfaces were completely disabled (e.g.,
mouse and keyboard I/O) by the sandbox.

4.3.3.1 File Virtualization.
All of the File I/O interfaces are intercepted and virtu-

alized to redirect and restrict a subjob’s access to the file
system and to maintain a clean machine when the applica-
tion finishes running. For example, a subjob believes that it
is accessing a file in the directory C:\Program Files\ when
in fact it is accessing a sandbox directory deep within the
Entropia software installation
(e.g., C:\Entropia\root\C:\Program Files\).

In this example, the file name the subjob sees is
C:\Program Files\. The virtualization is performed so the
subjob only sees the non-virtualized file names. This includes
even system routines that return full directory listings. Be-
fore opening a file the EVM translates the file name to the
virtual file name by redirecting it to the sandbox directory,
and the file name is converted to a full path file name.

Certain existing directories on the desktop machine may
need to be accessed by subjobs. These directories (e.g.,
C:\WINNT\System\) are marked as read only, and their file
names are not necessarily translated. All sandboxed subjobs
are allowed to read files from these read only directories, but
not allowed to write. If any of the files need to be written to,
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we use a copy on write mechanism. The file is copied to the
sandbox directory, and the access by the subjob is redirected
to the local copy, which it is allowed to update. We correctly
keep track of the files that exist in the virtual file system, so
that file names are correctly virtualized.

Another feature of our file virtualization is to provide File
I/O throttling. In order to maintain a certain level of unob-
trusiveness, we want to ensure that the subjobs do not per-
form more than a certain amount of file I/O (data reads and
writes) per second. We therefore keep track of the amount
of file I/O performed on a time interval (1 second) basis. If
the amount of file I/O exceeds a configurable limit, then the
next call to read or write is suspended for a specified amount
of time to throttle the I/O.

Another interesting feature of our file virtualization is the
automated file encryption for Application Security, which is
described in Section 4.4.1.

4.3.3.2 Registry Virtualization.
The registry was virtualized in a very similar fashion to the

file system. Certain parts of the registry were read only, and
the rest marked as not accessible by a subjob running under
the EVM. All writes to the registry were redirected to a local
EVM sandbox registry path, while the application thinks it
is updating the original location. Similarly, an update of
a restricted registry entry will result in a copy on write as
described above.

4.3.3.3 GUI Virtualization.
The GUI interface for applications was virtualized to make

all windows invisible, and to not allow certain windows to be
created.

We found that we wanted to run some commercial appli-
cations on the Entropia DCGrid, which had windows. We
therefore allowed applications that create windows to exe-
cute properly on the EVM by hiding the windows that were
created. This allowed us to take off the shelf applications like
Discreet’s 3D Studio Max, and run them under the EVM
sandbox without disturbing the user and without the user
seeing what was being rendered.

An important feature of our GUI virtualization is the abil-
ity to catch errors for Windows programs to (1) prevent a
dialog box from popping up, and (2) report the error back to
the user. We provide this functionality with our GUI virtual-
ization by intercepting the Window’s exception handler. One
important reason for preventing the dialog box from popping
up is that functionality would suspend execution waiting for
someone to press a button on the box. Therefore, our ap-
proach prevents all dialog boxes from popping up, and the
error string that would have been displayed in the dialog box
is stored and sent back to the user. We found this to be an
important feature, since it allows a user submitting jobs with
an error dialog box popping up to understand what is going
wrong with a subjob.

4.3.3.4 Network Virtualization.
We virtualize the network by restricting what IP addresses

an application can connect to. The typical use with the EVM
is that the application is not allowed to perform any con-
nection, but some applications may need to connect to a
database server, and in this case the network virtualization
is configured to allow a subjob to connect to a specific IP ad-
dress. In addition, we provide network bandwidth throttling

for send and receive, similar to File I/O throttling above, in
order to make sure the subjob stays unobtrusive in terms of
the amount of network bandwidth it is consuming.

4.3.3.5 Thread and Process Control.
The thread and process interfaces are virtualized to con-

trol the creation of threads and processes, and to prevent
intended or unintended fork bombs. In addition, through
virtualizing these interfaces we maintain a low thread prior-
ity for these subjobs on Windows.

4.4 Application Security
The last major component of the Entropia Virtual Machine

is the ability to provide application security. Protection of
the subjob and its data is another important aspect of secu-
rity for grid computing. For some deployments, it was impor-
tant to make sure that users cannot examine the contents of
a subjob’s data files, or tamper with the contents of the files
when a subjob is run on a desktop machine. This application
protection is needed to ensure the integrity of the results re-
turned from running a subjob, and to protect the intellectual
property of the data being processed and produced.

It is common in enterprise environments for desktop users
to not have administrative privileges. If application protec-
tion is a must for a deployment, then (1) desktop users must
not have administrative privileges, and (2) the EVM and the
subjob processes are run under a special Entropia user ac-
count. This prevents other users from being able to look
at the data of the EVM and running subjob processes (e.g,
ReadProcess memory will fail). In addition, when Entropia
is installed on the desktop machine the driver described in
Section 4.3.1.1 prevents users from seeing any content of the
Entropia directories. They therefore, cannot look, invoke or
copy any of the Entropia files, subjob files or data when run-
ning under Windows.

Even so, a desktop machine can potentially be compro-
mised to get access to data on the hard drive. For example,
a machine can be rebooted using a Linux boot disk to access
the hard drive. To address this, the Entropia sandbox keeps
all data files encrypted on disk, so that their contents are not
accessible if the disk can be compromised.

In addition, the sandbox automatically monitors and checks
the data integrity of a grid application’s input and result files.
This ensures that accidental or intentional tampering with or
removal of grid application files by desktop users will be de-
tected, resulting in the rescheduling of the subjob on another
client.

4.4.1 File Encryption
File encryption can be turned on or off during installa-

tion based on the application security needs of the customer.
The capability is provided through the sandboxed file vir-
tualization of the file system. Whenever a read or write is
performed the corresponding information is decrypted (if it
is not already), or encrypted.

To provide file encryption we used 3DES encryption, and
whole block encryption was used. The size of the block can
be set as small as 8 bytes, but we use a 64 byte block size.
When reading from a file, a whole block needs to be read
in order to decrypt the block to get access to the requested
data. When writing to a file, the block may need to be
read in first, decrypted, the part of the block updated, then
encrypted, and finally the full encrypted block written to the
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Avg Average Avg Sum Bytes Run
App Run Bytes Bytes Bytes (I/O) Time

Time Written Read I/O / VM / VM /
(sec) (KB) (KB) Run T No VM No VM

DLPOLY 1917.9 1622.0 1019.0 1.4
(EVM) 1924.9 2396.0 1801.0 2.2 1.6 1.0
FRED 244.1 838.0 552.0 5.7
(EVM) 242.6 907.0 603.0 6.2 1.1 1.0

HmmSrch 5683.5 0.1 269357.0 47.5
(EVM) 5763.4 0.1 269357.0 46.9 1.0 1.0
MOE 839.6 77.0 2335.0 2.9

(EVM) 889.1 853.0 2409.0 3.7 1.4 1.1

Table 1: Execution and I/O results for Virtual
Screening and Sequence Analysis applications run-
ning with and without the Entropia Virtual Machine.

file.
The only complication we ran into for doing encryption

is dealing with memory mapped files. This was handled by
intercepting the memory mapped file exception handler, so
that whenever a memory mapped page that was not in mem-
ory is accessed, we would manually load it in and decrypt it.

4.4.2 Detecting Application Tampering
To make sure the application and data files have not been

tampered with (e.g., if the machine was rebooted under Linux
so that a user had access to the Entropia file system), a con-
figuration file is kept that maintains an encrypted checksum
of the binary and data files as described in Section 4.1.2.
This checksum is checked whenever a binary or dll is loaded,
or a data file is opened or sent back to the Entropia Server.
A new checksum is created for subjob data file on the client
machine when a data file is closed and the file has been mod-
ified. For subjob binaries, the checksums are created when
the application is sent over from the Resource Scheduler.

5. PERFORMANCE EVALUATION
The Entropia DCGrid has been deployed at over 12 in-

dustry sites, and has been used for over 50 applications. We
have even taken shrink-wrapped applications, such Discreet’s
3D Studio Max and the Java Virtual Machine, and were able
to automatically wrap them inside of the Entropia Virtual
Machine and run them on the Entropia DCGrid. These 50+
applications have performance in the range shown for the
four benchmarks we examine in this section.

The majority of DCGrid commercial deployments are in
pharmaceutical companies for Virtual Screening and Sequence
Analysis algorithms. Virtual screening is compute-intensive,
and sequence analysis can be either compute or I/O-intensive,
depending on the parameter settings. We have measured
the performance of the Entropia Virtual Machine on four
of these applications (DLPOLY, FRED, HmmerSearch, and
MOE) to evaluate the EVM’s performance. The results are
summarized in Table 1. First, we briefly describe each of
these application areas to provide further insights into the
applications needs.

Virtual Screening - Virtual screening is the extension of
wet laboratory high-throughput drug molecule screen-
ing techniques to the computational domain. To avoid
the cost of wet-laboratory experiments, virtual screen-
ing uses computational techniques to evaluate hundreds
of thousands to millions of candidate molecules for ef-
ficacy in altering the activity of a target protein.

The computational testing typically involves assessing
the binding affinity of the candidate molecule to a spe-
cific target on a protein using a technique commonly

called docking. Docking codes (e.g.,
FRED [21], DLPOLY [11], and MOE [11]) are well-
matched for distributed computing as each candidate
molecule can be evaluated independently. The amount
of data required for each molecular evaluation is small–
basically the atomic coordinates of the molecules–and
the essential results are even smaller, a binding score.
The computation per molecule ranges from seconds to
hours on an average PC. The coordination overhead
can be further reduced by bundling sets of molecules or
increasing the rigor of the evaluation. Low thresholds
can be set for an initial scan to quickly eliminate clearly
unsuitable candidates and the remaining molecules can
be evaluated more rigorously.

Sequence Analysis — Sequence analysis (BLAST [1] and
HmmerSearch [9]) is an important bio-informatics tech-
nique for understanding possible drug toxicity, potency,
and other biological interactions. Typically, a single se-
quence or set of sequences is compared to another se-
quence or set of sequences and evaluated for similarity.
The size of the sequences being compared vary widely,
but each comparison is independent. Genomes or pro-
teomes of billions of symbols (gigabytes) can be parti-
tioned into thousands of slices, yielding massive paral-
lelism. Each compute client receives a set of sequences
to compare and a slice of the database, enabling it to
calculate expectation values properly for the final com-
posite result. This simple model allows the distributed
computing version to return results equivalent to serial
job execution. Distributing the data in this manner
not only achieves massive input/output concurrency,
but may even reduce the memory requirements for each
run, since many sequence analysis programs hold all the
data in memory.

Table 1 shows the results for these four applications alone
(first line per program) and when running inside the EVM
(second line). We conducted all experiments in this section
on a Pentium 4 1.6GHz PC with 1GB memory running Win-
dows XP Professional. All of the EVM results are with
the sandbox file encryption feature enabled. The first col-
umn shows the average running time, and demonstrates the
low overall overhead imposed on these applications through
the virtualization provided by the Entropia Virtual Machine.
Run times with the EVM increased by a maximum of 6%.
The second and third columns present the average bytes
written and read per subjob run, and the fourth column
shows the ratio of I/O to execution time. The measurements
show that all of the applications measured are all compute-
intensive. The fifth column compares the quantity of I/O
with and without the EVM. These numbers show that in a
few cases, the EVM file interception and encryption increased
the relative amount of I/O by up to 60%. As described in
Section 4.4.1, this increase comes from the block-based en-
cryption, which is only used when Application Security is re-
quired. As a result, a write may require a read to bring the
rest of the block in to write out the full encrypted block. The
final column compares overall execution times of the subjobs
without the EVM with runs using the EVM, showing that
the overall EVM overhead is modest.

To examine the range of overhead from using the file en-
cryption, we also conducted a controlled experiment using
a benchmark application that measures the throughput of
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Figure 4: The File I/O achievable when using the
Entropia Virtual Machine with and without file en-
cryption in comparison to no virtual machine.

read and write operations. We measured file I/O throughput
by repeatedly writing 2GB random data (we also measured
512MB and 4GB, and results are similar) in 8KB blocks into
files. We then repeated the same experiment, but this time
reading instead of writing. Figure 4 shows the throughput
of file I/O achievable for our benchmark application, when
using the EVM without file encryption, and with using the
EVM with encryption. The results show that when using en-
cryption the file I/O throughput is reduced to 1/4th of that
without encryption.

Encryption is only needed if the customer wants the Ap-
plication Security feature enabled. Even so, we found that
the Entropia VM with encryption has very little performance
overhead for the benchmarks examined in Table 1. For these
applications, we see from 0% to 6% execution time overhead
when using file encryption.

6. RELATED WORK
This paper described the Entropia Virtual Machine, which

addresses the Desktop Grid Virtual Machine requirements of
desktop security, unobtrusiveness, and application security.
At the time we provided the Entropia DCGrid (2000-2002),
the other desktop distributed systems competing with us re-
quired developers to modify their source code to use custom
APIs or simply rely on the application to be “well behaved”
and provide weaker security and protection [26, 23, 4]. These
solutions are not desirable, since it is not always possible to
get access to the application source code (especially for com-
mercially available applications), and maintaining multiple
versions of the source code can require a significant ongoing
development effort. As to relying on the good intentions of
the application programmers, we have found that even com-
monly used applications in use for quite some time can at
times exhibit anomalous behavior. Entropia’s approach en-
sures both a large base of potential applications and a high
level of control over the application’s execution.

Another class of virtual machine systems is exemplified by
VMware [27, 28] and Connectix [7]. They allow multiple
operating systems to run concurrently on the same hard-
ware resource, providing each OS an isolated virtual ma-
chine. A goal for VMware and Connectix is to enable ap-
plications written for different platforms to seamlessly share
the same physical resources. Even so, these environments do

not typically provide complete resource control and monitor-
ing of the system at the level required to completely keep
the virtual machine out of the way of the user. In addition,
these approaches provide a complex virtual environment with
hardware emulation. When we investigated using VMware’s
virtual machine, some of the enterprise IT departments had
issues with installing such an intrusive system and second
operating system image on each desktop machine.

Another potential solution is to restrict your grid to only
running virtual machine specific languages, such as Java [24,
19] and .NET/MSIL [22]. These solutions require you to
compile your code to the corresponding intermediate format
to provide all of the VM’s security features, but this is not
always possible, since often times applications use 3rd party
dlls and libraries. In addition, these virtual machines do not
provide complete unobtrusive requirements necessary for a
Desktop Grid deployment. To provide ease of application in-
tegration and the largest language support we chose to focus
on binary level integration. In addition, our solution is suffi-
ciently robust, in that we were able to easily wrap the Java
Virtual Machine for Windows inside of our Entropia Virtual
Machine.

Since we provided our solution for Entropia, a lot of re-
search has been performed investigating virtual machines
for desktop grids. This includes Virtuoso [8], In-VIGO [12],
Terra [14], Denali [29] and NGSCB (formerly Palladium) [10].

Dinda et. al. [8, 12] discussed why virtual machines are the
right solution to address many key problems in grid comput-
ing, such as security, isolation, and resource control. They
studied performance overhead of a prototype system based
on VMware and demonstrated the feasibility of the VM ap-
proaches for grid computing from a performance perspective.
In this work they did not address some of the key require-
ments for desktop grids, such as unobtrusiveness. Terra [14]
and NGSCB [10] also focus on providing a trusted computing
platform that can provide desktop security and application
security. Denali [29] and Xen [3] explores a different aspect
of the problem. They studied how to build lightweight vir-
tual machine monitors to coordinate the execution of many
virtual machines.

Another related project, is the Purdue University Network
Computing Hubs (PUNCH) [17, 5], which addresses the re-
source control problem in grid computing systems. They cre-
ate a logical user for each grid application and a virtual file
system (based on NFS and a set of trusted proxies) to sep-
arate the resource (storage in this case) between grid appli-
cations and local user applications [17]. Moreover, they ad-
dressed the client security problem by providing a restricted
shell, within which only a restricted set of system calls are
allowed. This solution is a Unix/Linux solution for provid-
ing application and data security, whereas we had to solve
different challenges to provide a desktop virtual machine for
Windows.

The above systems focus on providing tamper-resistant iso-
lation of an application or multiple VMs running on the same
physical resource, which is typically a dedicated server with-
out interactive users. In comparison, our solution focuses on
isolating desktop grid applications from the hosting desktop
computers which have interactive users to create an unobtru-
sive execution environment that will be left in a clean state
after execution. In addition, our approach was designed for
ease of deployment, since it is very light weight requiring only
a single OS driver being installed and a thin binary modifi-
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cation interception layer. Some of the above systems require
heavier weight installations, which will prohibit their use by
some commercial IT departments we talked to.

KaffeOS [2] and Aroma VM [25] study the resource control
inside virtual machines, i.e. resource isolation and schedul-
ing among different active entities inside the same VM. They
both focused on the Java VM and they both have the flavor
of OS resource containers with rate or quota limiting. The
EVM studies a different problem, where the resource con-
tentions are not solely from within one virtual machine, i.e.
it is not a closed system where the VM has all the control.
In our problem, desktop user and client applications are also
involved.

7. SUMMARY
We have described the requirements for Desktop Grid Vir-

tual Machines including ease of application integration, desk-
top security, application security, unobtrusiveness, and keep-
ing the machine in a clean state after running the application.
To meet these requirements, we designed and implemented
the Entropia Virtual Machine. The resulting Entropia DC-
Grid solution has been deployed widely in large enterprise
IT environments and has been used for over 50 applications
from a variety of application domains. The EVM implemen-
tation consists of a Desktop Controller to manage the running
of applications, resource control, and unobtrusiveness of the
client. The other major component is a light weight Sandbox
Execution Layer to mediate and virtual system calls. This
was implemented using a combination of a device driver and
dynamic binary interception to provide desktop security, un-
obtrusiveness, and application security.
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