
PDS: A Virtual Execution Environment
for Software Deployment

Bowen Alpern, Joshua Auerbach, Vasanth Bala, Thomas Frauenhofer,
Todd Mummert, Michael Pigott

{alpernb, josh, vbala, tvf, mummert}@us.ibm.com
IBM Thomas J. Watson Research Center

Hawthorne, NY

ABSTRACT
The Progressive Deployment System (PDS) is a virtual execution
environment and infrastructure designed specifically for
deploying software, or “assets”, on demand while enabling
management from a central location. PDS intercepts a select
subset of system calls on the target machine to provide a partial
virtualization at the operating system level. This enables an
asset’s install-time environment to be reproduced virtually while
otherwise not isolating the asset from peer applications on the
target machine. Asset components, or “shards”, are fetched as they
are needed (or they may be pre-fetched), enabling the asset to be
progressively deployed by overlapping deployment with
execution. Cryptographic digests are used to eliminate redundant
shards within and among assets, which enables more efficient
deployment. A framework is provided for intercepting interfaces
above the operating system (e.g., Java class loading), enabling
optimizations requiring semantic awareness not present at the OS
level. The paper presents the design of PDS, motivates its “porous
isolation model” with respect to the challenges of software
deployment, and presents measurements of PDS’s execution
characteristics.

Categories and Subject Descriptors
K.6.2 [Management of Computing and Information Systems]:
Installation Management; K.6.3 [Management of Computing and
Information Systems]: Software Management.

General Terms
Management.

Keywords
Virtualization, deployment, management, installation, streaming.

1. INTRODUCTION
Virtual machines, particularly those that attempt to capture an
entire machine’s state, are increasingly being used as vehicles for
deploying software, providing predictability and centralized
control [14][21][22][30]. The virtual environment provides
isolation from the uncontrolled variability of target machines,

particularly from potentially conflicting versions of prerequisite
software. Skilled personnel assemble a self-contained software
universe (potentially including the operating system) with all of
the dependencies of an application, or suite of applications,
correctly resolved. They then have confidence that this software
will exhibit the same behavior on every machine, since a virtual
machine monitor (VMM) will be interposed between it and the
real machine.

Because software deployment is a relatively new motivation for
using virtual machine technology, today’s VM-based software
deployment efforts employ VMs that were originally designed for
other purposes, such as crash protection, low-level debugging,
process migration, system archival, or OS development, and are
being re-purposed for software deployment. This paper explores
the characteristics of a virtual execution environment that was
designed from the start as a software deployment vehicle.

1.1 Why Deployment is Complicated
Consider a scenario in which several different applications
produced by separate organizations need to be integrated on the
same machine. An example of such a scenario could be a suite
such as MySQL[10]/JBOSS[12]/Tomcat[5]/Apache[1], a Java
development tool such as Eclipse, and a J2EE application that
needs to be developed using Eclipse and tested on the
MySQL/JBOSS/Tomcat/Apache suite.

1.1.1 Conflicting Pre-requisites Stimulate Code-
Bloat
A complex collection of applications will inevitably have
conflicting pre-requisites. For instance, each application may
require its own version of the Java Virtual Machine, or depend on
specific patch-levels of certain dependent components.

Virtual machine monitors can help tame such conflicts by
allowing each application’s dependencies to be embedded in its
private VM image. To understand why a more specialized kind of
virtualization is needed, first consider that vendors are already
attempting to deal with dependency conflicts in more or less the
same way.

Increasingly, vendors are trying to reduce dependency conflicts by
embedding the application’s dependencies into the application
installed image, usually without the benefit of VM technology.
For example, Eclipse versions 2.x and above come bundled with
Tomcat, which is used for rendering the Eclipse help pages;
similarly JBoss distributions also include an embedded Tomcat
version. Many commercial Java middleware products sold today
embed one or more Java Virtual Machines in their images. This
trend is even reflected within a single software product. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
VEE’05, June 11–12, 2005, Chicago, Illinois, USA.
Copyright ACM 1-59593-047-7/05/0006...$5.00.

175

example, the module org.apache.xerces is often duplicated in
several different components in an effort to isolate these
components more fully from one another. What a VMM adds is a
hard guarantee that the isolation between conflicting software
stacks is “provably complete,” lacking in subtle holes.

But, whether assisted by a VMM or not, incorporation of
dependencies without any compensating measures results in
increasing software bloat. From a disk space perspective, one
could argue that tolerating such bloat is no big deal. But an
isolation strategy accomplished through physical code duplication
creates other problems. It slows down the deployment process,
and increases the number of components that need to be
configured at deployment time, or touched during subsequent
updates. It also increases the customer’s perception of an
application’s complexity, which in turn increases customers’
reluctance to update frequently. This results in a proliferation of
software versions in the field and increasing support and services
costs over time.

Also, data center environments are increasingly moving toward a
“scale-out” model where large farms consisting of several
thousand commodity servers are becoming commonplace. In such
scenarios, hardware failures can occur frequently, often several
times a day. The cost of commodity hardware is now so low that
operators deal with hardware failures by simply replacing the
defective machine on a rack, and re-provisioning the new machine
with the application suite. Large commercial software stacks can
take hours to provision, thus increasing the cost of such failures.

Using any VMM to help with provisioning will undoubtedly
speed this up by replacing the normal installation process with an
easily-moved image. But, unless specific engineering steps are
taken to deal with the underlying code bloat, just the process of
moving the bits will cause significant slowdown. Again,
reversing the trend toward increasing bloat due to duplication-
based isolation techniques would be valuable in such situations.
And, a properly engineered solution will also take into account
that a software application can usually begin executing when only
a fraction of its bits are present.

1.1.2 Multi-sourced Software Still Needs to
Cooperate
A software deployment system must assume that the software it
deploys in one offering is not the only software offering deployed
on the target machine. Each machine owner assembles a palette
of offerings that suits his or her needs. These offerings must be
able to interoperate both via system-mediated communication
channels (e.g., semaphores, pipes, shared memory) and via files in
a common file system.

Consider the implications for a VMM-assisted deployment. If all
offerings were run in the same VM instance, the isolation
advantages of using a VM will be lost since the offerings might
then conflict. But, if each offering is run in a different VM
instance using the usual hardware virtualization paradigm, the
interoperation between offerings takes on characteristics of inter-
machine communication rather than intra-machine
communication. What seems like one machine to the user is now
laced with “remote” file mounts and “distributed” protocols.
Somehow, the degree of isolation must be relaxed to permit a
more local style of interoperation. The relaxation must be done

while still managing conflicts and reducing variability in the areas
that matter to correct execution.

Making this change involves a tradeoff. A more “porous”
isolation between VMs enhances the user experience when
integrating software on a single machine. However, other
characteristics that one might expect from a general-purpose
VMM (such as crash protection or the ability to freeze and
migrate processes) might be sacrificed.

1.2 The PDS Approach
The Progressive Deployment System (PDS) provides a virtual
environment for executing assets --- self-contained software
universes in which all dependencies, except dependencies on the
underlying operating system and hardware, are resolved.

Assets are designed to be deployed progressively, meaning that
the transfer of the asset’s bits to the target machine is overlapped
with its execution. This enables, for instance, replacement racks
on a server farm to be rapidly provisioned, without waiting for an
entire system image to be moved to the machine prior to starting
its execution.

Assets are isolated from each other in the sense that each one sees
its own unique resources --- virtual files, directories, and system
metadata --- and not resources that are unique to some other asset.
While assets cannot see any of the host machine’s resources that
were overlaid by their own virtual ones, they can see other local
resources and can communicate with other programs running on
the host machine (including other assets running under PDS)
through the local file system and local IPC. The PDS virtualizer
puts its assets on the same plane as ordinary programs by running
above the OS rather than below it, (see Figure 1). As
consequence, however, PDS assets cannot include device drivers
and other kernel extensions.

Assets are logically immutable entities, thus ensuring that every
asset, once tested, will not later fail due to an incompatible
update. Any change to an asset, no matter how small, results in a
new asset (as shown in the “virtual view” in Figure 2).

Without an effective mechanism for reducing redundancy between
(as well as within) assets, the proliferation of virtual views would
entail a prohibitive amount of space to store, and bandwidth to
transport, many closely related assets (the “code bloat” problem
mentioned previously). To address this difficulty, assets are
partitioned into shards, variable-sized semantically determined
“pages” that are the unit of transfer between a software repository
and the host machine. Shards may correspond to files,

Hardware

VMM

Native
Process

Virtual
Process

Guest
OS

Host
OS

Hardware

PDS

Native
Process

Virtual
Process

Host
OS

Figure 1 VMM execution stack compared to PDS

176

semantically cogent portions of files, system metadata such as
registry entries, or metadata used by PDS itself. As shown in the
“physical view” in Figure 2, shards are freely shared across assets.
Bitwise identical shards are given the same physical name (in
shard storage) and are only stored once. A reference to C from
asset X.1 is mapped to a different shard (shown as shard C.1 in
Figure 2) than a reference to C from asset X.2 (shown as shard
C.2) while references to A in either asset are mapped to the same
shard.

Shards help maintain an appropriately scaled working set as the
repertoire of assets in use on a machine evolves over time. Most
significantly, since they are semantically determined, they allow
redundant parts of highly similar assets to be detected and shared
transparently (while maintaining the illusion that each asset has
its own copy). Thus, the duplication implied by the virtual view
of an asset’s evolution is not reflected in its physical storage
manifestation.

The separation between virtual and physical views of asset
composition also enables a software vendor to hide the internal
structure of the asset (e.g. the fact that asset X contains
components A, B and C) from the end-user. The end-user need
only see whole assets (asset X.1, asset X.2, etc.), and never need
deal with lower level component patches, upgrades, versions, and
configurations. Thus, end-users simply execute the whole asset
version they are interested in, and the additional shards required
for its execution will be transported automatically.

PDS currently exists as a prototype supporting the Windows OS,
but was designed to extend to other operating systems. The
prototype has been successfully used to deploy commercial
developer tools such as Eclipse [6] and WebSphere Studio [31],
productivity environments such as Open Office [18] and Lotus
Workplace Client [16], and server stacks like the Apache web
server [1] and the Tomcat servlet engine [29].

The balance of the paper is organized as follows. Section 2
details the design of PDS with emphasis on its virtual execution
environment. Section 3 presents some measurements of PDS’s
execution characteristics using assets derived from different
versions of Eclipse, Tomcat, and Java runtimes. Section 4

reviews related work. Section 5 discusses future work and
Section 6 concludes the paper.

2. PDS SYSTEM DESIGN
PDS is organized into three major components (see Figure 3).

1. The preparer produces assets from software that has
been installed in the conventional fashion on a “clean”
machine (real or virtual) dedicated to the purpose.

2. The deliverer makes assets present on a host machine by
ensuring the appropriate shards are on hand when
needed.

3. The executor, PDS’s virtual execution environment,
manages the execution of assets on the host machine.

 We discuss the preparer and deliverer first to provide necessary
context.

2.1 The Preparer
The preparer accepts as input an asset image and some
instructions and it produces a shard repository and a launch
document as output.

2.1.1 Asset Images
To obtain an asset image, one starts with a machine in a known
state (ideally, immediately after the OS was installed). Next, one
runs conventional installation scripts to install all the software
components that make up the asset. Finally, one identifies
everything that was added to the system by that series of
installations. Typical additions consist mainly of directories and
files. However, they may include updates to various system
databases, such as the registry in Windows, in which metadata is
stored. The additions form the asset image.

2.1.2 Preparation Instructions
The instructions given to the preparer consist of an inventory of
what is in the asset image plus a startup directive. Typical asset

Preparer

PDS
virtualizers

Shard
Repository

Deliverer

Shard
Cache

Executor

Apps
execute!

Figure 3 PDS system overview

Installed
apps

A B

C

A B

C

Asset X.1 Asset X.2

A, B, C.1, C.2

Shard storage

“Update C”

shard C.1 shard C.2
Virtual view

Physical view

Figure 2 Virtual vs physical view of software deployment.
The fact that the two versions of Asset X differ in component
C is only reflected in the underlying physical shard storage.

177

image inventories consist of just a few directory/file trees
(hereafter, “file trees”), but other kinds of system metadata may be
listed. The startup directive is a command that executes on the
target machine, but inside the virtual environment, in order to start
the asset. Most PDS assets have trivial startup directives, but
others use the startup directive to set environment variables or
perform environment preparation not covered by the asset image
inventory.

2.1.3 Shard Repositories
A shard repository is a file tree within which each shard is a file.
To PDS, a shard has no structure: it is just bits. The
cryptographic hash [24] of a shard, called its shard digest, is
assumed to uniquely identify the shard1. In a shard repository, the
path names of shards can be algorithmically derived from their
shard digests for efficient retrieval. Bitwise-identical shards are
only stored once.
The shard repository produced by the preparer contains all the
shards of one or more assets under preparation. Primary shards
are pieces of the original asset image. Metashards contain control
information generated by the preparer and interpreted by the
executor.
The property that bitwise-identical shards are only stored once,
has the advantage of automatically avoiding the redundancies
implied by every asset containing all of its dependencies. The
contents of two virtual files that share the same bit pattern will be
represented by the same shard. These files can however have
different names, creation dates, permission attributes, etc. PDS
reconciles this by storing file metadata in the metashards, and
have the primary shards contain only the file contents.
The redundancy avoidance enabled by the shard design also
allows separately prepared repositories to be merged to form
larger ones containing the shards of many assets but still storing
each shard at most once. The deliverer (and sometimes the
executor) reads shards from shard repositories but does not mutate
them in place (as will be seen, the executor implements copy-on-
write semantics for objects in the asset image).
Every primary shard of an asset is referred to in at least one of the
asset’s metashards via its shard digest, and the metashards
themselves form a tree linked by shard digests. The digest of the
metashard at the root of this tree uniquely identifies the asset and
is called the asset id (Figure 4 shows a simplified view of this tree
structure as an illustrative example). Any change to an existing
asset will produce a new asset with a different id. Thus, all assets
are immutable once prepared, but some assets may represent
evolutions of others.

2.1.4 Launch Documents
A launch document is a small document (not a shard) containing
the asset id of an asset together with additional information that
allows the executor to interact with the deliverer to obtain the

1 While a cryptographic hash is not a unique identifier in the
mathematical sense, one can be chosen to make the probability of
collision less than the non-zero probability that a disk read will
deliver data from the wrong sector. The mathematical justification
for cryptographic hashing is beyond the scope of this paper.
However, it is a widely used mechanism commercially, and a
recommended U.S. government standard.

shards of the asset. For example, this information may specify
the location of a shard repository containing the asset’s shards.

2.2 The Deliverer
PDS is designed so that the deliverer is readily replaceable and
may have a role in the overall system ranging from very large to
almost trivial. The interaction between the deliverer and the
executor is typically file-based (although small shards can also be
read directly into memory). When the executor identifies the
need for a particular shard, it passes the shard’s identity to the
deliverer, which blocks the calling thread until it is able to
manifest the shard as a file, at which point the path name of that
file is returned to the executor. The executor then uses standard
OS interfaces, including memory-mapping, to utilize the shard.
The executor does not modify the shard.

Because the shard repositories are just file trees, a deliverer can
use file system capabilities already present in the OS to map shard
repositories into the local file space. It can employ physical
media such as DVDs, it can copy shard repositories to local disk,
or it can mount them as remote file systems. The problem of
actually moving the bits is left to the file system technology
employed. The deliverer simply returns paths in the appropriate
file system for each shard requested.

Alternatively, the deliverer can employ a specialized client-server
algorithm to transfer shards from a remote shard-repository to a
local shard cache that contains only those shards needed on the
local machine. In this case, the deliverer can implement
sophisticated working set maintenance algorithms and pre-
fetching of shards based on learned execution patterns. It may also
reorganize its shard repositories into alternate representations that
do not use a file per shard, for efficiency.
A separable delivery subsystem enables alternative
implementations to be plugged in that may be suitable for specific
situations. A remote file system that provides good caching and
predictive fetching might obviate the need for a specialized
deliverer. The current PDS system uses two deliverers, one file
based, the other using the HTTP protocol and a standard servlet
engine. The latter allows us to experiment with the pre-fetching
strategies and operate in wide area networks without requiring the
installation of specialized file system software. Pre-fetching
results are not presented in this paper but are discussed under
future work.

2.3 The Executor
The executor consists of a small bootstrap mechanism to launch
the asset on the client system, and the code to provide the virtual
execution environment. As will be seen, this code is divided into
several virtualizers, each with its own task.

PDS provides a virtualization that is both selective, to permit
assets to interoperate with other local applications via system
APIs, and hierarchical (in a sense to be explained), to obtain a
close mapping between meaningful semantic units and shards.

As previously described, PDS works by interposing a virtualizer
between the application and the OS. Exactly how the
interposition is accomplished will vary from OS to OS, and there
may be alternative strategies for some OS’s. The current PDS

178

prototype runs on Windows XP by intercepting a subset of the
APIs provided via the kernel32 and advapi32 libraries.

2.3.1 Selective Virtualization
The APIs that are intercepted in PDS’s selective virtualization are
just those needed to map the original asset image onto the target
machine as a virtual asset image (VAI). That is, they include the
APIs that deal with files, directories, system metadata, and
anything else that is found to be stored persistently at installation
time.
Although the bulk of these APIs are file-related, some asset
images include information stored in specialized system databases
not accessed via the file APIs (e.g., the Windows registry). Asset
images may also include scattered files in system-managed
directories, a pattern that cannot be duplicated via the hierarchical
mounting capabilities of most operating systems. Finally, dynamic
loading and dynamic binding between modules, although rooted
in file I/O, has semantic details (search paths, versioning, etc.)
that require additional intervention to ensure that the asset
operates within its VAI and isn’t contaminated by artifacts in the
real system. These subtleties make it difficult to accomplish the
kind of deployment PDS enables through alternative approaches
such as remotely mounting the asset image file trees directly on
the host machine.
PDS only intercepts a small subset of the full Windows API,
limiting its interception to certain file-related APIs, registry APIs
and those related to dynamic loading and process creation. All of
the graphics, interprocess communication, network I/O, thread
synchronization, and message formatting APIs are left alone,
causing a PDS asset to be, in most respects, a peer of other
programs running on the OS.
Even within the file APIs, we distinguish between path directed
requests, in which files are designated by hierarchical names, and
handle directed requests, in which files are designated by
previously opened handles. As is the case with many distributed
file systems, we intercept the former but (usually) not the latter,
performing the necessary actions (including copying if necessary)
at open time to avoid having to interfere with reads, writes, seeks,
locking and synchronization. This is done not only for efficiency

but also to permit the memory-mapping APIs of the OS to operate
without the need for a fine-grained intervention by the virtualizer.
Section 2.3.3 provides more details on how the VAI is controlled
by the virtualizer.
For those APIs that are intercepted at all, the virtualizer makes a
rapid decision based on the path name, registry key, etc. as to
whether the request falls within the VAI or not. If it does, the
request is handled as discussed in section 2.3.3. But, if not, the
request is passed through unchanged to the operating system.
Thus, PDS assets can communicate via the local file system with
each other, with non-PDS programs, and with OS utilities.

2.3.2 Hierarchical Virtualization
Intercepting only at the OS level limits a virtualizer’s ability to
optimize the storage and transfer of shards representing files.
Files can be arbitrarily large, with a substructure opaque to the OS
(e.g., archives and databases). Intercepting only file opens would
force shards to be whole files, even though those files may be
accessed quite sparsely. By intercepting more file APIs, or
dropping down to the driver level, one might do somewhat better,
but would still have to break files at arbitrary boundaries.
Consider the case of two archives, differing from each other by a
few constituent parts out of thousands. If the archives are broken
into arbitrary pages, the redundancy would go undetected,
whereas if they are broken at constituent boundaries, the
management of the resulting shards would be far more optimal.
The only way to accomplish this is to exploit semantic knowledge
about file structures that exists above the level of the OS. For
example, although the OS does not understand the archive formats
used by Java, the Java Runtime Environment (JRE) does
understand them.
Consequently, PDS views the OS-level virtualizer as the base
virtualizer (BV) within a hierarchy of virtualizers that can
potentially operate at higher levels (see Figure 5). An asset can
include a set of non-base virtualizers (NBVs) that intercept the
APIs of subsystems such as the JRE. Deciding to implement an
NBV for a particular subsystem is a pragmatic decision. PDS
provides a general mechanism for adding NBVs and provides a
JRE virtualizer, both to serve as an example, and because it is
useful in its own right. This virtualizer ensures that shards
correspond to the constituent parts of the various zip-format
archives employed by Java and not to the archives as a whole.
The BV gives each NBV control when its subsystem is activated,
assisting the NBV in intercepting additional APIs not intercepted
by the BV itself. NBVs may interact directly with the deliverer to
fetch shards. Otherwise, NBVs operate entirely within the
sandbox provided by the BV, and hence they can use information
in the VAI (virtual asset image).
In fact, the code of each NBV is itself added to the VAI of each
asset during preparation, so that its version level is always correct
for the asset it is servicing (Section 3.3.5 will elaborate on this
issue). Digest-based shard storage ensures that the logical
duplication implied by embedding the NBV code in every asset’s
VAI doesn’t result in physical duplication.
Because each non-base virtualizer may have its own preparation
requirements, the preparer is designed in a modular fashion with
plug-ins corresponding to virtualizers that need prepare-time
support.

 symbol shard
A d1
B d2
C d3

 symbol shard
D d1
E d4

digest=d0

digest=d1

digest=d2

digest=d3 digest=d4

Figure 4 Metashards and primary shards. The asset id in the
example is d0, the digest of the metashard at the root of the tree.

metashard primary
shard

metashard

primary
shard

primary
shard

179

2.3.3 Base Virtualizer Details
The chief goal of the BV is to make an asset’s post-install image
visible to the asset without being visible to any other software
running on the target machine. NBVs rely on this also, because
code and data needed by NBVs are simply added to the VAI
(virtual asset image) at prepare time. We have previously
discussed how the BV filters API calls so as to handle only those
that affect the VAI. We now provide more detail on what
happens after a VAI-relevant API call is intercepted.
OS APIs are complex, so it is potentially error prone to interpose
logic between applications and the OS. To minimize errors, we
make it a goal to minimize the amount of logic interposed,
observing the principle of “redirect, don’t emulate.” As much as
possible, PDS observes a one-to-one correspondence between
virtual API calls and real ones, with only the name of the resource
(the file name, the registry key, etc.) being altered. For example,
when a file open request is intercepted, PDS’s response will be to
open a shard in the cache, if the mode of opening prohibits
modifications. If the mode of opening permits modifications,
PDS makes a one-time copy of the file to another location and
opens the copy.
Allowing shards to be opened directly in the cache improves
efficiency, when it is possible to do so, and is a key to achieving
low overhead. However, some assets modify their VAI during
execution, and count on being able to do so persistently. Recall
that the VAI is stored as a set of shards and that these shards may
be in a shard repository that has been directly exposed to the
executor. This repository may be read-only and/or shared across
machines. Even if the shards are in a local writeable cache, they
are potentially shared by multiple assets. Even within an asset, a
single shard may represent multiple virtual entities that happen to
have the same bit pattern (as shown in Figure 4). Thus, the BV
cannot allow shards to be modified in place. Instead, it uses
shadow areas, which are persistent stores in the local machine
containing virtual entities that started out as shards but have since
been modified by the asset. The file shadow area is a file tree on
local disk, the registry shadow area is kept within the registry
itself, and other forms of system metadata may require still other
forms of shadow area.

The most challenging part of the PDS executor design concerns
those cases where we are forced to deviate from the “redirect,
don’t emulate” principle. We consider three such cases next.

2.3.3.1 Separating Metadata from File Contents
As pointed out earlier, a modest problem arises from the fact that
a single shard can represent many virtual resources. The contents
of two virtual files that share the same bit pattern will be
represented by the same shard. These files can have different
names, creation dates, permission attributes, etc. Thus, APIs that
involve the retrieval of metadata about files cannot just be
redirected to a shard but must be emulated. PDS stores file
metadata in separate metashards generated from the file trees of
the VAI (virtual asset image) at prepare time. In fact, the shard
containing the contents of the file does not have to be present in
order to answer many queries about the file, and this can improve
performance substantially, as will be seen in section 3.
The need to provide accurate metadata forces us to deviate from
our desire to intercept only path directed requests, because some
APIs permit the retrieval of metadata from open handles. Thus,
PDS retains all handles that are open to shards in an efficient
lookaside table. While it allows most handle directed requests to
pass immediately to the OS, those that retrieve metadata must be
intercepted and emulated. Handle-close operations are
intercepted in order to remove handles from the table.

2.3.3.2 Providing Accurate Sharing Semantics
PDS’s asset execution model supports multiple processes
executing within the same asset. Such processes cannot be
isolated from each other, but must be able to communicate
through the VAI. For example, all file sharing and file locking
capabilities must execute correctly between the processes of an
asset, even though spurious sharing violations must be avoided
between processes in different assets.
Adhering to the “redirect, don’t emulate” principle, we could try
to ensure that two handles open to the same virtual file are always
open to the same real file, while two handles open to different
virtual files are always open to different real files. Then, the OS
would be responsible for all sharing semantics. Unfortunately,
this solution, if adopted, would mean that no handles could ever
be open to shards. If all shards must be copied to the shadow area
in order to be opened, performance is seriously degraded.
Instead, we compromise as follows. Recall that each asset has its
own file shadow area, where any shards modified by that asset are
copied. PDS ensures that there is a one-to-one correspondence
between virtual and real files within this area. This makes the OS
responsible for all sharing semantics in the shadow area (and even
for file metadata retrieval from this area, since there is no reason
for PDS to be involved). However, as long as a virtual file is
mapped to a shard, PDS will emulate the sharing semantics, just
as for metadata retrieval. What makes this workable is that
shards are copied to the shadow area, correct metadata assigned,
and virtual operations shifted there, as soon as there is any
potential for mutation. Once this shift has occurred, it is
permanent for that virtual file of that asset. Thus, PDS is only
required to provide correct read/read sharing, which is a much
simpler problem than read/write and write/write sharing. It
would even be a trivial problem except that Windows allows a
reading process to exclude other readers. PDS’s emulation

Shard
Cache

OS platform

Native code
(e.g. Java VM)

Non-native code
(e.g. Java bytecode)

Base Virtualizer

Non-Base Virtualizer

Figure 5 Virtualized execution stack

180

ensures that this exclusion operates only at the virtual file level
and only within an asset.
There are some additional complexities. First, the act of shifting
from the shard cache to the shadow area for a particular virtual
file must be done transactionally. Two processes of the same
asset that independently decide to make this shift must not collide,
and a process that is opening a file for reading must be directed to
the shadow area copy if it exists, even though this shift may just
have taken place in a different process. This is readily
accomplished using system-provided inter-process
synchronization facilities.
A more subtle problem involves the status of processes that open
files for reading but with concurrent writing allowed. It is
impossible to determine whether this is being done so that
concurrent writes can be observed, in which case the only safe
course is to shift the virtual file to the shadow area immediately.
Otherwise, another process could open the file for writing,
shifting it to the shadow area and leaving the reading process’s
handle still open to the shard. The writing process would execute
correctly, but the reading process would fail to see the changes.
If we assume, conservatively, that all cases of read/write sharing
require the readers to observe the writes, we will copy many files
unnecessarily, since standard libraries tend to allow writing by
default when opening for reading. Instead, PDS assumes by
default that a reader does not care about concurrent writes even if
they are allowed. The file is thus opened to the shard in this case.
If the virtual file is later shifted to the shadow area while the
original handle is still open, we detect this potential safety
problem and report the fact in a log. The asset can then be
reprepared with information from the log made available. The
preparer marks appropriate areas of the file tree for strict sharing,
causing the more conservative algorithm to be used.

2.3.3.3 Dynamic Linking
Correct virtualization of the dynamic linking capabilities of the
OS also requires work beyond merely redirecting file APIs. This
happens because aspects of this linking are accomplished
implicitly without any visible call to a system API. In Windows,
executable images and libraries have import sections that refer to
the export sections of other libraries (other OS’s have similar
facilities). So, lower level intercepts are needed to correctly
ensure that imports are satisfied from the VAI instead of the real
local file system when appropriate. Fortunately, Windows
provides the ability to load executables and libraries without
resolving their imports and provides enough public information to
allow some of this resolution to be performed manually. So, PDS
is able to analyze the imports and determine, for each one, the
correct module to load, either from the VAI or from outside the
VAI.
Once the correct module to load has been identified, PDS can use
normal system APIs to load the module under the usual “redirect,
don’t emulate” principle. But, subsequent APIs that query the
names of loaded modules must be intercepted to maintain the
virtualization (since the actual module loaded may be a shard in
the shard cache, with an arbitrary name).
Another noteworthy aspect of dynamic linking is its use of search
paths to resolve the actual identity of the module to be loaded. In
a PDS asset, the virtual search path may include directories within

the VAI that don’t actually exist in the local machine. Thus, the
search itself must also be emulated.

2.3.4 Bootstrapping
Recall that a PDS asset contains the correctly resolved closure of
its dependencies, except dependencies on the OS. But, correct
execution of the asset will only have been verified for particular
versions of PDS itself. An important secondary goal, therefore, is
to reuse PDS’s virtualization technology to ensure that the correct
version of each PDS component is used with each asset that is
executed. We’ve already discussed how any NBVs (non-base
virtualizers) used by the asset become part of the asset, which
solves the problem for NBVs. But, the BV (base virtualizer) and
the deliverer are also part of PDS and can affect the execution of
the asset.
Making the BV and the deliverer be part of the asset would be, in
some sense, circular, but we are able to get the equivalent by
making these two low-level components into microload assets. A
microload asset is an asset with the following two characteristics.
(1) Its logic is so simple that it doesn’t need the BV to execute
correctly. (2) When executed, it creates a directory (its
microload directory) named for its own asset id and stores some
number of files there (typically, code libraries). The microload
assets for each version of the deliverer and the BV simply make
microload directories containing those components. Because all
assets have unique ids, every distinct version of these components
will have a different id and hence a different directory.
The PDS bootstrap is a tiny program that knows how to load a
deliverer from its microload directory and pass a launch document
to its startup function. Thus, the bootstrap makes almost no
assumptions about the rest of PDS, making changes to the
bootstrap itself into very rare events. The bare minimum
installation of PDS consists of this bootstrap plus one microload
directory containing a version of the deliverer. In the current
prototype system, the bootstrap and microload pieces are about
0.5 Mbytes is size.
The startup function of every deliverer extracts from the launch
document the asset id of the target asset plus the asset ids of the
microload assets for the required deliverer and BV. Assuming
only that this deliverer knows how to locate the microload asset
for the desired deliverer, it can execute a chain of microload asset
executions followed by the target asset execution that will create
the correct configuration.

2.3.5 Executor Design Summary
Interception at the level of the OS API boundary does introduce
complexities and vulnerabilities that don’t exist at the hardware
level. However, PDS benefits from its own design goal of
selective virtualization, which bounds the portion of the API that
must be intercepted. By steadfastly insisting on making the OS
do as much of the work as possible, we are able to limit PDS’s
actual OS emulation to a few key areas discussed in the previous
subsections. Although we cannot prove that these exhaust the set
of issues that might arise, it is encouraging that PDS has been able
to provide solid virtualizations of a number of useful assets
already, with problems and failures being fewer and farther
between.

181

3. MEASUREMENTS
We first present some measurements of PDS’s execution time
overhead, which gives a sense of what it costs to execute software
under PDS even after all of the shards are present locally. We
then present measurements of the degree to which PDS’s use of
shards is able to reduce working set size and detect and eliminate
the redundant storage and transfer of bits when deploying
software progressively.

3.1 Execution Time Overhead
We measured execution time overhead with two tests. First, we
ran the Apache web server [1] both under PDS (with the shard
repository on a local file system) and natively. We measured
performance using the standard benchmark distributed with
apache. The benchmark starts multiple clients (we used 20 in our
measurements), each of which repeatedly retrieves a web page
from the server. In our test, the clients did not run under PDS,
only the server did, and all socket connections were local. We
found that this test ran very slightly faster under PDS than native
(8.4 ms per request as opposed to 8.7). The reasons for this
counter-intuitive result are discussed below.
In a second test we measured the time to start up Eclipse 3.0 [6],
with an empty workspace, both under PDS (with a local shard
repository) and natively. The startup time averaged 12.6 seconds
in native mode, and 12.9 seconds under PDS, for an overhead of
2.4%.
The fact that PDS exhibits slightly negative overhead in one test
and negligible overhead in another can be explained by the results
of some microbenchmarks which we also ran.
The first microbenchmark paired the CreateFile and
CloseHandle calls, executing the pair repeatedly on a file
(opening the file for reading, then closing it). When this
benchmark is run natively, it takes 375.9 microseconds per
iteration. When the same benchmark is run under PDS, but with
the file residing outside the VAI (virtual asset image), it takes
424.9 microseconds (13% overhead). When the file is inside the
VAI, PDS adds 56% overhead for a timing of 587.4 microseconds
per iteration.
The second microbenchmark paired the FindFirstFile and
FindClose functions, executing the pair repeatedly on a file.
This API is used very heavily by windows applications (due to its
heavy use by the C runtime library) to test file existence and
retrieve metadata. When this benchmark is run natively, it takes
124.4 microseconds. When run under PDS with a file outside the
VAI, it takes 168.4 microseconds (an overhead of 35%, but
smaller in absolute terms than the overhead added to CreateFile
in the same circumstances). But, when the file is inside the VAI,
PDS executes each benchmark iteration in only 66.1
microseconds, for a saving of 47%! Recall that, in section
2.3.3.1, we listed metadata retrieval as a case where we emulated
the function rather than delegating to the OS. Because PDS
packs metadata efficiently into metashards which it then memory-
maps, it is apparently able to deliver the information substantially
faster than the OS can.
In both real benchmarks, the files resided inside the VAI, and so
they incurred a 56% overhead for CreateFile but a 47% saving
for FindFirstFile. Since the latter API is one of the most heavily
used ones in Windows, the average overhead of PDS was near-

zero. We cannot claim that this will always be the case. But, by
accepting some overhead on less frequently used APIs and
making up the difference on others it is possible, with this
approach, to have a very low-cost virtualization.

3.2 Working Set versus Asset Image Size
A primary reason for PDS adopting the shard strategy was to help
in managing working sets. To measure the effectiveness of our
solution, we defined a test asset consisting of Eclipse 3.0 and
IBM’s version of Java 1.4.2 (this is the asset designated as E3 J2
in Table 1 of the next section). The asset’s original image was
149 megabytes in size, and its effective size in the repository (see
next section) was 106 megabytes. But, after starting the asset on a
machine with an empty shard cache, the asset was able to start up
after transferring only 22 megabytes to the shard cache.
Achieving this working set required the use of the JRE virtualizer.
An alternative preparation of the asset which did not break up
archives for use by the JRE Virtualizer required the transfer of 72
megabytes to the shard cache.

3.3 Redundancy Elimination
Measurements of redundancy employed a PDS shard repository
containing 12 assets. These were constructed using three different
versions of Eclipse (2.1.2, 2.1.3, and 3.0.1, designated as E1, E2,
and E3, respectively) and three different versions of Apache
Tomcat (4.1.29, 4.1.30, and 4.1.31, designated as T1, T2, and T3,
respectively). Eclipse is dependent on a Java Runtime, and
Tomcat actually requires a full Java Development Kit including
the compiler. These dependencies were satisfied by pairing the
original six products with two different versions of IBM’s Java
product (1.4.1 and 1.4.2, designated as J1 and J2, respectively) to
form complete assets. All assets were prepared for the JRE
Virtualizer as well as the BV.
Table 1 gives the measurements for these assets. All sizes are in
megabytes rounded to the nearest megabyte.
The image size column contains the size of each asset image after
installation and before preparation (the sum of the sizes of the file
trees containing both the Java version and Eclipse or Tomcat
version employed). The raw prepared size is the size that the
asset would have in the shard repository if no attempt was made to
recognize redundant shards.
The act of preparation initially increases the size of the asset.
This happens almost entirely due to the special preparation done
to support the JRE Virtualizer. Specifically, archives are broken
up into individual members, which are uncompressed in the
process. Then, the same member may be counted multiple times
due to its appearance on multiple classpaths. Finally, the original
archive is also left as a shard in its own right, since it may be
manipulated by non-Java code. We consider this initial growth
acceptable, since it is in service of a smaller working set size, as
discussed in the previous section.
The raw prepared size is an artificial number, since PDS always
detects redundant shards and stores them only once. The actual
prepared size shows the effects of this feature. This is the size
that each asset would have if stored in a shard repository by itself.
The effective prepared size column gives the effective size of each
asset when stored in a shard repository along with the others. The
number was computed by counting, as part of each asset, those
shards that were unique to the asset, then amortizing across all

182

affected assets the sizes of those shards that are shared. Notice
that this represents a considerable savings over the actual prepared
size, and more than compensates for the increase due to JRE
preparation, resulting in an effective asset size smaller than the
original asset image. This effect only increases as the number of
highly similar assets is aggregated. We consider the example
shown here to be realistic, since it includes some very similar
assets (the three Tomcats), some only moderately similar assets
(the two Javas and the three Eclipses), and coarse-grained
component sharing (use of the same Java version by different
assets).
The significance of this measurement is not only, or even
primarily, in the reduction of footprint in shard repositories or
shard caches. Rather, the times taken to transmit assets over a
network are substantially reduced when some of the shards are
already found in the local cache. This can be particularly useful
when updating from one version of an asset to a newer one.

4. RELATED WORK
The use of virtualization as a software abstraction of the
underlying hardware machine was developed by IBM in the 1960s
[28]. A spectrum of Virtual Machines of different sorts are in use
today, ranging from runtime environments for high-level
languages like Java [15] and Smalltalk [9] to hardware-level
virtual machine monitors (VMMs) such as VMware [30] and Xen
[4].

The level of indirection provided by the virtual machine layer
enables the software running above it to be decoupled from the
system beneath it. This decoupling enables the virtual machine
layer to control or enhance the software running above it.

High-level languages use their runtime environments both to
enhance the functionality of underlying hardware and OS and to

achieve portability across hardware and OS implementations.
While PDS does not have these aims, it does use virtualization to
mask the idiosyncrasies that arise within an operating system
instance as individual machines are configured differently.

Virtual machine monitors like VMware exploit the decoupling to
fully isolate the software stack running above it from the host
environment, thus enabling sandboxed environments for testing,
archival and security. The CMU/Intel work on Internet
Suspend/Resume [13][14] and the Stanford Collective project
[22][23] use the ability of a VMM to easily capture both the
persistent and volatile state of a sandboxed environment to enable
mobility of end-user environments over a network. Virtual
Appliances (also part of the Stanford Collective project) exploit
the VMware VMM for simplifying the deployment and
maintenance of software environments [22]. A key difference
between these approaches and ours is that PDS implements a
weaker form of decoupling than a traditional VMM, by isolating
only the non-OS dependencies of the asset from the host
environment. While this does not provide the full isolation
sandbox that a VMM does, it enables separately deployed
applications to co-exist and interact as peers in the same host
environment without the risk of conflicts (Figure 1). This allows
PDS to be used in scenarios where separate vendors deploy
different parts of a complex environment.

Utilities like Debian apt [8] simplify the maintenance of software
packages, but do not provide isolation in the sense of enabling
conflicting versions of a component to co-exist in the same
(virtual) namespace.

Managed container frameworks like J2EE and .NET provide
network deployment and management features, but they are
language specific, and require the use of framework APIs. Other
language-specific solutions for software deployment and
maintenance are Java Web Start [11] and OSGi [19].

Zap [20] is an implementation of a virtualization layer between
the operating system and the software. The goal of Zap is
migration of process groups across machines, not software
deployment and serviceability.

A number of recent startups like AppStream [2], Endeavors [7],
Softricity[25] use file-system based approaches to provide
centrally managed software deployment and maintenance
solutions for Windows desktops. Desktop applications are
generally self-contained applications, whose non-OS
dependencies are easily be bundled within a single file system
mount point, or self-contained directory.

5. FUTURE WORK
Although PDS’s observed aggregate runtime overhead is usually
low in practice, it was seen in section 3.1 that this is a
consequence of running faster-than-native for some APIs, and
hence it may not always be the case. Microbenchmarks reported
in that section indicate that other APIs still have significant
overheads. Performance tuning has not been a priority until now,
but we expect to put significant effort into reducing overheads
further, especially when the asset is operating on files outside the
VAI.
The deliverer in the PDS prototype uses either servlets or off-the-
shelf file system software when demand-fetching shards from a

Asset Image
Size

Raw
Prepared
Size (no

redundancy
removal)

Actual
Prepared
Size (after
redundancy

removal)

Effective
Prepared Size
(when stored in

a common
repository)

E1 J1 110 356 211 66

E1 J2 115 372 225 68

E2 J1 110 356 212 66

E2 J2 115 373 225 68

E3 J1 144 280 268 103

E3 J2 149 296 281 106

T1 J1 88 224 156 38

T1 J2 93 248 162 38

T2 J1 89 227 156 38

T2 J2 93 249 163 38

T3 J1 89 228 157 41

T3 J2 94 250 164 41

Total 1279 3439 2380 711

Table 1 Asset Sizes. E1, E2, E3 represent different versions of
Eclipse. T1, T2, T3 represent different versions of Tomcat.

183

remote location. Thus, we see high per-shard latencies when the
shard repository is remote. We intend to experiment both with
better-performing servers and with the exploitation of network file
serving technologies as we alluded to in section 2.2. The highly
preliminary nature of our deliverer prevented us from reporting
network startup times in this paper, but we expect to present such
results in a future paper. Interestingly, despite suboptimal
network performance in the prototype, experimental users of PDS
still consider startup to be “fast”, because it is such a relief not to
have to go through an installation step.
The JRE Virtualizer significantly reduces the amount of data
required to startup an asset (in some versions of Eclipse by as
much as 60%). However, this savings is achieved at the cost of
introducing many more (smaller) shards. Currently, the latency
overhead of retrieving these shards overbalances the bandwidth
savings. After the deliverer is redesigned for lower per-shard
latency, we expect to measure a positive gain from the use of
hierarchical virtualization. Until then, our claims of the benefits
of this approach should be taken as preliminary.
Even if demand-fetching of individual shards remains a high
latency operation, we expect to exploit the fact that assets
typically require shards (classes and files) in bursts. Efficient
prefetching based on previously observed sequences has been
claimed by others in the network deployment business (e.g., [2]).
We already have an experimental predictive prefetching system
working, although it has so far been used only to optimize the
transfer of the initial working set at asset startup, and we were
unable to collect data from it for this paper. Future research will
focus on how prefetching can be optimized in a context that also
includes virtualization (where information from the virtualizer can
be used to tune and control the prefetch).
To support hierarchical virtualization, the BV provides a general
“interception assistance” mechanism for use by NBVs. We are
now considering whether this mechanism can be exploited for
other purposes. For example, could we utilize this technology to
improve the serviceability of an asset by introducing probes and
fixes dynamically? Could it be used to provide a transparent
licensing mechanism for applications (one that could be
introduced without recoding those applications)? We are pursing
each of these thoughts in collaboration with other research groups
in our organization.
Currently, setting up to prepare an asset is a manual process. A
failure to properly inventory the asset image leads to errors that
can only be found by executing the asset. We are exploring tools
to solve these problems. For example, traditional VMMs can be
used to simplify the collection of information about how
installations change the system, thus automating the asset image
inventory. VMMs can also be used to at least speed up the cycle
of prepare, then test, then re-prepare which is likely to be needed
in practice no matter how well we automate things.
Our current preparer assumes it knows nothing about how the
asset image is used during execution: every part of it is assumed
to be equally important. Static analysis and dynamic trace
feedback techniques can be used to further optimize preparation.
We already use a primitive form of dynamic trace feedback to
automate preparation for the JRE virtualizer, but much more can
be done in this area.
Finally, efficient exploitation of the shard concept depends on our
ability to identify semantically meaningful units within larger

entities. We have developed solutions for one of the most
obvious cases (zip-format archives used by the JRE). But we
don’t know what other examples of this phenomenon may prove
to have equal or greater pay-off in the future.

6. CONCLUSION
PDS is a novel solution to the problem of deploying and
managing complex software stacks. By treating assets as
immutable and with their own view of their virtual file spaces,
along with the ability to share components between assets, PDS
allows multiple assets to simultaneously execute on the same
machine. The automated redundancy removal introduced through
cryptographic hashes allows the efficient delivery of many assets
which share common sub-components.
Furthermore, with the exception of a small bootstrap code (about
0.5 Mbytes in the current prototype), PDS’s own virtualizers are
embedded in every asset. The shard design ensures that the
duplication implied by this is avoided in the physical shard
storage. This embedding allows assets to be unaffected by
subsequent PDS virtualizer evolution, further enhancing the
ability to service and support deployed assets in the field.
There are at least two benefits that result from such a model. First,
the end-user’s perceived complexity of the deployed environment
is lowered, because its internal structure is hidden from the user.
Second, it enhances the serviceability of deployed environments,
because every asset represents an immutable state of some
installed image, and no user can have an image that is in-between
two supported asset versions.
PDS uses a selective and hierarchical approach to process-level
virtualization, which enables multiple assets to co-exist and
interact as peers in the host machine environment, without
incurring a significant performance penalty. This enables multiple
vendors to deploy different parts of a complex commercial
environment, which would be difficult to accomplish with a full
isolation sandbox approach based on a virtual machine monitor.
On the other hand, PDS cannot isolate environments at an OS
level the way that virtual machine monitors can. Thus, the two
approaches are fundamentally complementary to one another. In
fact, the two approaches could be used together to get the benefits
of both.

7. ACKNOWLEDGMENTS
We thank Frank Cavallito and Jobi George for making significant
contributions to the implementation of the PDS prototype system,
and to Nick Mitchell, Harold Ossher, Gary Sevitsky and the
referees for their comments and suggestions on this paper. We are
also grateful to Alfred Spector and the management at IBM
Research for their enthusiastic support of this project.

8. REFERENCES
[1] Apache open-source web server. http://www.apache.org.
[2] AppStream Inc. http://www.appstream.com.
[3] Arthorne, J., Laffra, C. Eclipse 3.0 FAQs. Addison-Wesley

2004.
[4] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,

Ho, A., Neugebauer, R., Pratt, I., Warfield, A. XEN and the
Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating System Principles, Oct 2003.

184

[5] Brittain, J. Darwin, I. Tomcat: The Definitive Guide.
O’Reilly. June 2003.

[6] Eclipse Open, Extensible IDE. http://www.eclipse.org.
[7] Endeavors Inc. http://www.endeavors.com.
[8] Debian open-source OS. http://www.debian.org.
[9] Goldberg, A., Robson, D. Smalltalk-80: the language and its

implementation, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, 1983.

[10] DuBois, P. MySQL (2nd edition). Sams press. March 2005.
[11] Java Web Start. http://java.sun.com/products/javawebstart/.
[12] The JBoss Group. JBoss 4.0 – The Official Guide. Sams

press. April 2005.
[13] Kozuch, M.A., Helfrich, C. J., Hallaron, D.O.,

Satyanarayanan, M. Enterprise Client Management with
Internet Suspend/Resume. Intel Technology Journal, Vol 8,
Issue 4, Nov 2004.

[14] Kozuch, M. A., Satyanarayanan, M. Internet
Suspend/Resume. In Proceedings of the 4th IEEE Workshop
on Mobile Computing Systems and Applications, NY, June
2002.

[15] Lindholm, T., Yellin, F. The Java virtual machine
specification, 2nd Ed. Addison-Wesley, Reading, MA, 2000.

[16] Lotus Workplace Client. IBM Software Group.
http://www.lotus.com/products/product5.nsf/wdocs/workplac
eclienttech.

[17] Lowell, D.E., Saito, Y.Samberg, E.J. Devirtualizable Virtual
Machines Enabling General, Single-Node, Online
Maintenance. In Poceedings of the 11th ASPLOS, Oct 2004.

[18] Open Office suite. http://www.openoffice.org.
[19] OSGi specification. http://www.osgi.org
[20] Osman, S., Subhraveti, D., Su, G., Nieh, J. The Design and

Implementation of Zap: A System for Migrating Computing
Environments. ACM SIGOPS Operating System Review, Vol
36, Issue SI, Dec 2002.

[21] Rosenblum, M. The Reincarnation of Virtual Machines.
QUEUE Vol 2, Issue 5, July 2004.

[22] Sapuntzakis, C., Brumley, D., Chandra, R., Zeldovich, N.,
Chow, J., Lam, M.S., Rosenblum, M. Virtual Appliances for
Deploying and Maintaining Software. In Proceedings of the
17th Large Installation System Administration Conference,
Oct 2003.

[23] Sapuntzakis, C., Chandra, R., Pfaff, B., Chow, J., Lam, M.S.,
Rosenblum, M. Optimizing the Migration of Virtual
Computers. ACM SIGOPS Operating Systems Review. Dec
2002.

[24] Secure Hash Standard. FIPS publication 180-2, National
Institute of Standards and Technology.

[25] Softricity Inc. http://www.softricity.com.
[26] Sugerman, J., Venkitachalam, G., Lim, B-H. Virtualizing I/O

Devices on VMWare Workstations’s Hosted Virtual
Machine Monitor. In Proceedings of the USENIX Annual
Technical Conference, Boston. June 2001.

[27] Thain, D., Livny, M. Parrot: Transparent User-Level
Middleware for Data Intensive Computing. In Proceedings
of the Workshop on Adaptive Grid Middleware, 2003.

[28] The IBM Mainframe, history and timeline. http://www-
1.ibm.com/servers/eserver/zseries/timeline/.

[29] Tomcat open-source servlet engine.
http://jakarta.apache.org/tomcat/.

[30] VMWare Inc. VMWare ACE. http://www.vmware.com.
[31] WebSphere Studio Application Developer. IBM Software

Group. http://www-
306.ibm.com/software/awdtools/studioappdev/.

[32] Whitaker, A., Shaw, M., Gribble, S.D. Scale and
Performance in the Denali Isolation Kernel. In Proceedings
of the 5th Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston. Dec 2002.

185

