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ABSTRACT 
Virtual execution environments have become increasingly useful in 
system implementation, with dynamic translation techniques being 
an important component for performance-critical systems. Many 
devices have exceptionally tight performance and memory 
constraints (e.g., smart cards and sensors in distributed systems), 
which require effective resource management. One approach to 
manage code memory is to download code partitions on-demand 
from a server and to cache the partitions in the 
resource-constrained device (client). However, due to the high cost 
of downloading code and re-translation, it is critical to 
intelligently manage the code buffer to minimize the overhead of 
code buffer misses. Yet, intelligent buffer management on the 
tightly constrained client can be too expensive. In this paper, we 
propose to move code buffer management to the server, where 
sophisticated schemes can be employed. We describe two schemes 
that use profiling information to direct the client in caching code 
partitions. One scheme is designed for workloads with stable 
run-time behavior, while the other scheme adapts its decisions for 
workloads with unstable behaviors. We evaluate and compare our 
schemes and show they perform well, compared to other 
approaches, with the adaptive scheme having the best 
performance overall. 
 
Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Memory Management, 
Run-Time Environments 
 
General Terms 
Design, Experimentation, Performance 
 
Keywords 
Distributed Environments, Code Buffer, Dynamic Translation, 
Generational Cache, Adaptive Code Cache, Program Partitioning 
 
 
 

1. INTRODUCTION 
 
Over the last several years virtual execution environments 

(VEE) have been increasingly useful in system implementation. A 
VEE can reduce and manage complexity by providing a common 
runtime and a self-contained operating environment that facilitates 
the programmatic modification of an executing program. In 
addition to the well-known Java virtual machine (JVM), a wide 
variety of systems can also be classified as virtual execution 
environments, such as dynamic optimizers [2,5,6,17], dynamic 
software updaters [18], dynamic binary translators [8,9,11,27], 
dynamic instrumentation systems [3,19,23], and certain emulators 
and simulators [26,29]. 

Although a virtual machine (VM) can execute programs using 
interpretation, performance-critical VMs often employ software 
dynamic translation because a translator has the potential to 
produce significantly higher quality code and thus is able to utilize 
resources efficiently. Just-in-time (JIT) compilation, for instance, 
is used in many JVMs. After translating a code segment, a 
translation-based VEE typically stores the translated code in a 
code buffer (CB), and reuses the code for future invocations. The 
overhead of dynamic translation can be amortized if the translated 
code is reused frequently. 

As VEE techniques have been applied to a range of computing 
environments, there is a set of environments in which devices have 
exceptionally tight memory and performance constraints, such as 
smart cards and sensors in distributed systems [4,10,15,22,25,28]. 
The software executing in such environments, however, has 
become quite complex. For example, a smart card might use the 
RSA protocol to authenticate a user's identity [25]. Furthermore, 
such constrained devices may need to support multitasking 
workloads. For instance, a sensor in an intrusion detection network 
concurrently monitors environmental events, tracks objects, and 
communicates with other sensors [1]. A consequence of this trend 
is that memory demands have become very high. 

Due to severe memory limitations (e.g., an Atmel ATmega128 
processor has 128 KB flash memory and 4 KB SRAM [4]), the 
original code of a single large program, or multiple small 
programs, may not fit in the memory of a resource-constrained 
device. To address such constraints, and inspired by program 
partitioning schemes for traditional systems [16,24,31,32], we 
propose to store the original software on a code server and to 
execute the VM using its code buffer on the device (as a client). A 
piece of original program code (e.g., trace, basic block sequence, 
method, program slices, etc.), called a partition, is downloaded 
from the code server to the client on-demand via a wireless link. 
The code executes on the client and a CB miss happens when a 
needed partition is not in the CB. Not only does this partition need 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
VEE’05, June 11–12, 2005, Chicago, Illinois, USA. 
Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

100



 

 

to be downloaded on-demand, it also needs to be re-translated by 
the VM before execution continues. As wireless bandwidth is 
limited in resource-constrained devices and dynamic translation is 
expensive, the CB has a high miss penalty, and it must be 
intelligently managed to keep miss rates low. 

In dynamic optimization systems, a generational buffer is 
proposed [14], which tries to identify and use the lifetime of code 
to manage the code buffer. Two other similar techniques that have 
been proposed to manage the CB are adaptive code unloading [30] 
and code collection [24], both of which use online profiling to 
trigger a garbage collector. Another technique for embedded 
systems is compiler-controlled function caching [32]. Code 
replacement policies employed in hardware caches and operating 
systems, such as LRU, are related as well. However, these 
methods are unsuitable for distributed VEEs due to two reasons. 
First, although a technique might effectively reduce CB misses, its 
overhead can be too high to be practical (e.g., a VM must maintain 
usage information to employ online profiling). Second, most of 
these approaches cannot achieve a satisfactory CB miss rate when 
memory space is tightly limited, as these approaches lack the 
awareness of both program and memory size. To achieve an 
effective CB miss rate, a scheme needs to utilize knowledge of a 
program and its memory size, while having a low run-time cost. 

In this paper we present a technique whereby the server “plans” 
for memory management using both the program and the memory 
size. Using program profiles helps the schemes maintain hot code 
partitions in the CB and thus avoid caching cold partitions. We 
move management decision-making to a server to keep the 
demands placed on the clients minimal. One scheme is used for 
programs that are insensitive to data inputs, having stable behavior 
across different data sets, while the other scheme adapts decisions 
for programs that are highly sensitive to inputs.  

The contributions of this paper include: 
 
• Planning for CB management before execution and moving 

decision-making from the client to a server;  
• A simple yet effective planning management scheme for 

programs with stable behavior across different data inputs;  
• An adaptive scheme for programs in which inputs can 

produce varying behaviors; and  
• Experimental results that demonstrate the benefits of our 

schemes over previous approaches.  
 
The remainder of the paper is organized as follows. Section 2 

provides a background on resource-constrained systems, and 
Section 3 describes our planning schemes. Section 4 evaluates the 
schemes in terms of miss reduction and the impact on execution 
time. Section 5 surveys related work and Section 6 summarizes the 
paper. 

 
2. BACKGROUND 

 
Tight memory constraints and high CB miss penalties make 

good CB management decisions critical to performance. In general, 
with more knowledge about program behavior, better decisions 
can be made about buffer management. Program profiling can be 
used to identify likely execution paths. Indeed, it is known that 
most execution time is spent in a small portion (hot code) of a 
program, with recent studies showing similar results for code 
traces [5]. A trace is a sequence of basic blocks that are executed 
along a path. Hazelwood and Smith [13] showed that regardless of 
data inputs for SPEC2000 programs, code traces that account for 

roughly 85% of the dynamic instruction count are repeated during 
successive executions. Hence, basic block profiling works well in 
these programs and can identify sequences of hot code. 

Although there are many programs in which profiling can 
capture execution stability, there are some programs with much 
variability across inputs. For instance, the program blowfish [21] 
behaves differently when encoding a plain-text file and an image 
file. Considering the importance of good CB decisions, a 
management scheme needs adaptivity for these unstable programs. 
The adaptivity can be achieved by gathering run-time information 
about hot basic blocks and paths.  

When management decisions are made by the client, profiles 
can introduce considerable overhead. Offline profiles need to be 
accessible to the client and run-time information needs to be 
updated. Both are very expensive to use or maintain on the client. 
Indeed, it is typically infeasible for a severely restricted client to 
use profile information directly. Therefore, we propose to make a 
code server responsible for CB management, moving 
decision-making from a client to a more powerful server that can 
more easily maintain, update, and use profiles. Thus, the client 
only executes simple actions guided by the server, while the server 
manages the client’s CB. 

 
3. A PLANNING APPROACH 

 
The key idea in our work is for a powerful platform (called a 

cache planner) to develop CB cache plans based on a program’s  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Workflow of our schemes. 
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code partitions and profiles, with the knowledge of a client’s 
anticipated memory size. The plans are developed before 
execution of a program begins, with the goal of caching frequently 
executed (hot) partitions in the CB. The code server in charge of 
sending code partitions during the program’s execution forwards 
these plans to the client as code is downloaded. Both of our 
schemes partition the CB into separate buffers, called sub-buffers, 
to hold code partitions based on code hotness. 

Figure 1 shows the workflow of our management schemes. A 
program is firstly partitioned into code partitions using a 
partitioning scheme, and then stored in a code server connected to 
the client. Profiling is used to capture the hotness (execution 
frequency) of code partitions and to estimate the performance of 
potential CB management decisions. A cache planner uses 
program profiles and code partitions to develop management 
decisions (i.e., cache plans) before program execution. The plans 
are then stored on the code server with the corresponding code 
partitions. When a client needs a code partition, the server sends 
the appropriate plan with the partition. The sub-buffers are ordered 
by the hotness of partitions assigned to them. That is, one 
sub-buffer holds very hot code, while another may hold cold code 
that is executed infrequently. This approach is based on the fact 
that most programs spend a large part of their execution in a small 
portion of code. 

To handle the sub-buffers, we use two policies. A local policy 
manages an individual sub-buffer and a global policy manages the 
relationship among sub-buffers. The local policy is essentially the 
replacement policy for the partitions in a sub-buffer. The 
replacement policy has to possess all of the following attributes: 
high temporal locality, low overhead, and minimum fragmentation. 
The first factor is the foremost motivation for CB. The second 
factor is important for application performance because it is a part 
of user perceivable system overhead. The third factor must be 
considered because our caching element, a code partition, has 
variable size, which easily causes fragmentation. We use 
First-In-First-Out (FIFO) as our local policy as it has good 
performance with little fragmentation [12]. Our global policy is to 
cache code partitions in sub-buffers based on their hotness. 

We describe the overall strategy of CB memory planning and 
then describe two particular schemes. One scheme is a fixed 
scheme where code partitions are always housed in the same 
sub-buffer during execution. We then extend this scheme to an 
adaptive one, in which partitions are cached in sub-buffers based 
on a program’s run-time behavior. We also describe a method, 
using “code density”, which improves the code partition 
assignments made by either technique.   

 
3.1 Overall CB Management Strategy 

 
Our strategy generates plans for managing the CB, by using 

profiles to first determine the hotness of code partitions and then 
to assign partitions to sub-buffers. As management decisions are 
sensitive to program and memory size (in a small CB), our scheme 
generates a cache plan for each program and anticipated CB size. 
These plans are stored on a server and can be retrieved when a 
client connects with the server and provides a program name and 
the size of its CB. 

A cache plan records management decisions: For a given 
program and CB size, a plan indicates the number of sub-buffers, 
the size of the sub-buffers, and a cache blueprint for each code 
partition in the program. The size of a sub-buffer is recorded as the 
percentage (proportion) of the total CB size to allocate to this 

sub-buffer. A cache blueprint indicates the assignment of a code 
partition to a sub-buffer and has two fields. One field indicates 
whether to cache the partition and the other indicates which 
sub-buffer to use if the partition is to be cached. An example of a 
cache plan is shown in Figure 2. There are N code partitions in the 
program, each of which has been assigned a cache blueprint. For 
example, partition 2 is cached in sub-buffer 0. In this figure, the 
CB is partitioned into three buffers, and the sub-buffer size 
proportions are 20%, 40%, and 40%, respectively. 

 
Number of Sub-Buffers 3 
Sub-Buffer Allocation 20%-40%-40% 

Cache Bluepr int Par tition ID 
Cache? Sub-Buffer ID 

0 Yes 1 
1 No --- 
2 Yes 0 

. . . 

. . . 

. . . 

N-1 Yes 2 
 

Figure 2. Example cache plan. 
 
The cache plan, computed beforehand by the server, is used at 

the client side. Before a client executes a program, it informs the 
server which program is going to be run and the size of the CB. 
The server finds a corresponding plan and responds to the client 
with the number and size of the sub-buffers. The code partition 
containing the first instruction, and this partition's blueprint, are 
transferred to the client, and then the client starts program 
execution.  

After translating a code segment (called a translation unit), a 
VEE directly executes the translated code for efficiency. Some 
VEEs add an instruction at the exit of each translation unit to 
return control to the VEE, while other VEEs directly link 
translated units to avoid unnecessary invocations of the VEE. No 
matter what mechanism is used, the VEE is notified when a 
desired unit is not found in the translated code buffer. Every time 
this occurs, our approach performs several more operations, 
compared to what a traditional VEE does, to use the cache plan to 
manage the CB. 

At run-time, if a needed code partition is not cached in the CB, 
the client sends a request to the server for the partition. The server 
sends back the partition, with its cache blueprint attached. Note 
that a partition is both a translation unit and a caching unit. After 
the client receives the partition and cache blueprint, it translates 
the partition and follows the blueprint to cache the partition in the 
specified sub-buffer (or not to cache the partition). If the specified 
sub-buffer does not have enough free space to store it, other 
partition(s) in the specified sub-buffer are evicted using the local 
policy (FIFO). 

To generate a cache plan, two steps are performed. The first 
step uses a given configuration as parameters and assigns code 
partitions to sub-buffers based on profile information about the 
execution frequency of partitions. In other words, this assignment 
determines the cache blueprint for each code partition. The 
configuration includes the number of sub-buffers, each 
sub-buffer's size proportion and the assignment ratio. Assignment 
ratio is the ratio of the total size of all partitions assigned to a 
sub-buffer over the sub-buffer size, which limits the total size of 
partitions that can be assigned to a sub-buffer. 
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How well a cache plan works is influenced by the number of 
sub-buffers, the size proportion of each sub-buffer, and the 
assignment ratio of each sub-buffer. Because the quality of a cache 
plan depends on these three factors, we produce a number of 
candidate plans. The best plan is selected among these candidates 
to be loaded onto the code server. 

The second step selects the plan that is most likely to minimize 
the number of CB misses at run-time. This step iterates over all 
cache plans to determine a score for each one that indicates how 
well they may perform. The score is determined by running the 
application program with a training data set and collecting the 
number of CB misses. The cache plan with the smallest number of 
misses is the one that is selected. 

Figure 3 shows pseudo-code to generate a cache plan. Line 2 
determines a basic block execution frequency profile. Lines 4-8 
generate and try a range of configurations to produce candidate 
plans. Line 10 does the second step that determines the best plan 
among the candidates. The routine Assign_Blueprints() 
(line 6) generates the blueprints for each cache configuration. A 
naïve algorithm to implement this function is shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Cache plan generation algor ithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Cache bluepr int assignment algor ithm using 
frequency as cr iter ion. 

In Figure 4, Assign_Blueprints() sorts code partitions 
based on their execution frequency (from a profile) in descending 
order (line 5). Lines 7-24 divide the CB into sub-buffers, give each 
sub-buffer a unique identifier (ID), and assign partitions to each 
sub-buffer. Line 8 calculates a sub-buffer's size and line 9 
calculates the total size of partitions that can be assigned to this 
sub-buffer. Line 10 initializes a flag variable. Lines 12-23 
determine blueprints, assigning hotter partitions to the sub-buffer 
with a smaller ID. Line 13 sets the size limit which is an upper 
bound on the partitions to be assigned to this sub-buffer. Line 14 
seeks a candidate partition with maximal frequency (which has not 
been yet assigned to any sub-buffer) and not larger than the size 
limit. If no such partition exists, the assignment for this sub-buffer 
is done (line 17). Otherwise we assign the candidate partition to 
the sub-buffer (line 19-21). If there are partitions left unassigned 
after every sub-buffer has been processed, these partitions are 
marked No_Caching on lines 26-27. This mark indicates that 
these partitions will never be cached (they are too cold). The 
algorithm does not consider code partitions that remain 
unexecuted by the training input. These partitions are assigned to 
the sub-buffer with the largest ID (it holds the coldest code). 

The planning approach is quite efficient. Clients only execute 
simple actions as directed by the server; hence, their run-time 
overhead is low. However, transferring the blueprint with a code 
partition does introduce a small additional amount of 
communication. If one byte is used to encode the cache blueprint 
and a code partition itself is 20 bytes, the transfer overhead of the 
blueprint is just 5%. Larger code partitions reduce the overhead 
further. 
 
3.2 Fixed Scheme 

 
In the fixed strategy, a code partition is always stored in the 

sub-buffer that it was assigned in the original plan.  That is, the 
hotness of the code during execution is assumed to mirror the 
profile information. 

 
3.3 Adaptive Scheme 

 
The fixed scheme relies on the accuracy of profiles to guide the 

selection of cache plans. However, some programs (as described 
earlier) may have behavior that is not captured by a profile. Our 
adaptive scheme aims to overcome this problem by changing the 
assignment of code partitions to sub-buffers as a program executes. 
As before, the server is responsible for managing the partitions, 
but the adaptive scheme can change the assignment of a code 
partition to a sub-buffer based on its hotness at run-time.  The 
scheme moves a code partition from one sub-buffer to the next in 
sequence. This process is called promotion. At run-time, the server 
maintains a time window (called a miss window) to monitor 
missing partitions. The server uses the miss window to decide 
which partitions should be promoted. Whenever a partition is 
promoted, its new sub-buffer position is recorded in a registration 
list. Before the server sends a partition to the client, it checks the 
registration list. If a partition is found in the list, a temporary 
blueprint is created on-the-fly that designates a different 
sub-buffer to hold the partition (i.e., the sub-buffer holding the 
next hottest code). Otherwise, the original blueprint is used. 

Figure 5 shows pseudo-code for the server algorithm that 
decides which partitions to promote. Every time the server 
receives a request from the client, monitor_miss() is invoked. 

1  Assign_Blueprints (program x, profile prof, 
2                         configuration config) { 
3    (buffer_number,buffer_portion[],assign_ratio[]) 
4        = Extract_Config_Values (config); 
5    sort_parition[] = Sort_By_Freq(x, prof); 
6 
7    for (i=0; i < buffer_number; i++) { 

8      buffer_size=CB_size×buffer_portion[i]; 

9      remain_size=buffer_size×assign_ratio[i]; 
10     flag = 1; 
11 
12     while (flag) { 
13       sizeLimit = min(buffer_size, remain_size); 
14       cand = Max_Freq_P(sizeLimit); 
15 
16       if cand not existing { 
17         flag = 0; /* all partitions already tried */ 
18       } else { 
19         assign cand to sub-buffer[i]; 
20         remain_size -= size(cand); 
21         if (remain_size = 0) { frag = 0; } 
22       } /* of else */ 
23     } /* of while */ 
24   } /* of for */ 
25 

26   for each remaining partition p in sort_partition[] 
27     { sort_partition[p].blueprint = No_Caching; } 
28 } 
 

1  Generate_Plan (program x) { 
2    prof = First_Profile (x); 
3 
4    repeat 
5      config = Generate_New_Config(); 
6      blueprints = Assign_Blueprints(x, prof, config); 
7      candidate_plans.Add(config, blueprints); 

8    until no more configurations; 
9 
10   plan = Second_Profile(x, candidate_plans); 
11   return plan; 
12 } 
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Figure 5. Par tition promotion algor ithm. 
 
Line 3 records the missing partition's ID (p_id) in the miss 
window (miss_win[]). The window size is a pre-defined 
threshold (win_size). When the window is full, lines 6-15 
check for promotion. (We skip line 7 for a moment –– it will be 
discussed shortly.) Lines 8-9 scan every partition in the window to 
determine how often they occurred. Line 10 checks a promotion 
condition: any partition that occurs more frequently than a 
threshold (promote_threshold) is promoted by adding the 
partition to the registration list. Lines 13 and 14 flush the miss 
window for the next interval of execution. 

In our experiments, we observed that input variability is limited 
in applications for distributed environments. If a cold partition in a 
profile is hot in actual runs, the partition seldom becomes hot 
throughout the whole program execution. Thus, the adaptive 
scheme has to also let promoted partitions cool and move back to 
their original sub-buffer. On line 7, the registration list is cleared 
immediately before the miss window is checked. In this way, any 
promotion is conservative as it is only visible until the miss 
window becomes full again. Furthermore, we have observed that it 
is necessary to promote a partition by only one level to avoid 
disturbing the original cache plan too much. 

The server maintains a private miss window and a private 
registration list for each execution. Consequently, executions of 
the same program at different clients can be adapted individually 
and concurrently. Repeated adaptations for a program may 
indicate that the training input used in profiling is not 
representative, and a single update of the cache plan can save the 
multiple adaptations. However, we leave this as a question for 
future studies. 

In the adaptive scheme, no special operation is needed at the 
client side; it is the code server that adapts. Hence, this scheme is 
as efficient as the fixed scheme for a client. The adaptive scheme 
does introduce some overhead in the server, but it is minimal. 

 
3.4 Density: A Heur istic Algor ithm  

 
In Figure 4, we presented a naïve algorithm to assign blueprints 

by using the frequency of code partitions. It looks quite 
straightforward; however, the problem is complex. The naïve 
algorithm may favor some extremely large partitions with high 
frequency, overlooking a set of small partitions which together 
have a higher total frequency. CB management is a trade-off 
between code usage and code size. Rather than solely focusing on 
an individual partition’s hotness, our goal is to find a set of 

partitions that has an upper bound on combined size and possesses 
the maximal total frequency simultaneously. Unfortunately, this is 
the knapsack problem and is NP-complete. 

To tackle the problem, we introduce a new concept, called 
density, which is a criterion to measure the priority of code 
partitions to reside in CB. A partition’s density is defined as a 
partition’s execution frequency divided by its size. 

 
Density = Execution Frequency / Size 
 
We employ density to avoid caching extremely large partitions 

with slightly high frequency. However, relying exclusively on 
density may lead to another problem. Assigning a small, dense 
partition first may make it impossible to assign a large, hot 
partition with less density later. To avoid both pitfalls, we designed 
a heuristic algorithm to assign cache blueprints, as shown in 
Figure 6. We use density to find a candidate partition first, and 
then check its frequency to make sure that it will not prevent us 
from caching a hotter fragment with a lower density later on. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Cache bluepr int assignment algor ithm using 
density as cr iter ion. 

 
The algorithm’s overall structure is similar to the naïve 

algorithm described in Figure 4; hence we emphasize only the 
differences. Line 5 sorts the code partitions based on their density. 
Lines 10-30 assign the blueprints. Line 10 initializes the search 
start position from and a flag variable. Line 13 sets the size limit 
which is an upper bound on the partitions to be assigned to this 
sub-buffer. Line 14 seeks a candidate partition (not assigned yet) 
with maximal density and not larger than the size limit, starting 
from position from in the sorted partition list. If no such partition 

1  index = 0; 
2  monitor_miss (p_id) { 
3    miss_win[index]=p_id; 
4    if (index < win_size-1) { 
5      index++; 

6    } else { /* check miss window and promote if necessary */ 
7      clear registration_list[]; 
8      for each unique partition p in miss_win[] { 
9        freq = frequency of p in miss_win[]; 
10       if (freq > promote_threshold) 

11         add p to registration_list[]; 
12     } 

13     clear miss_win[]; 
14     index = 0; 
15   } 
16 } 

1  Assign_Blueprints (program x, profile prof, 
2                         configuration config) { 
3    (buffer_number,buffer_portion[],assign_ratio[]) 
4        = Extract_Config_Values (config); 
5    sort_parition[] = Sort_By_Density(x, prof); 
6 
7    for (i=0; i < buffer_number; i++) { 

8      buffer_size=CB_size×buffer_portion[i]; 

9      remain_size=buffer_size×assign_ratio[i]; 
10     from = 0; flag = 1; 
11 
12     while (flag) { 
13       sizeLimit = min(buffer_size, remain_size); 
14       cand = Max_Density_P(from, sizeLimit); 
15 
16       if cand not existing { 
17         flag = 0; /* all partitions already tried */ 
18       } else { 
19         threat = Max_Freq_New_P(sizeLimit); 
20 
21         if (cand == threat || 
22             (remain_size>size(cand)+size(threat)){ 
23            assign cand to sub-buffer[i]; 
24            remain_size -= size(cand); 
25            if (remain_size = 0) { frag = 0; } 
26         } 
27         from ++; 
28       } /* of else */ 
29     } /* of while */ 
30   } /* of for */ 
31 

32   for each remaining partition p in sort_partition[] 
33     { sort_partition[p].blueprint = No_Caching; } 
34 } 
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exists, the assignment for this sub-buffer is done (line 17). 
Otherwise, we check if the candidate will restrict the assignment 
of hotter partitions. Line 19 looks for a partition with maximal 
frequency that is not larger than the size limit. If the candidate is 
also the one with the maximal frequency (line 21), or does not 
restrict the assignment of hotter partitions (line 22), it will be 
assigned to this sub-buffer (line 23-25). Line 27 updates the search 
start position. This is a greedy algorithm, and one can easily 
compose an example to show that it is not optimal. Our 
experiments in Section 4, however, show that it is able to produce 
satisfactory results in practice. 
 
4. EVALUATION 

 
We simulated our schemes to determine their effectiveness and 

to compare their performance with other approaches as well as 
with each other. 
 
4.1 Exper imental Methodology 

 
We experimented with twelve MiBench [21] and MediaBench 

[20] programs on a SPARC/Solaris 9 workstation, using gcc with 
the compiler flags “–O3 –static” . We believe our selection of 
benchmarks represents the applications which will be extensively 
used in the next generation of VEEs for smart cards and sensor 
networks (including ones performing biometric recognition and 
those used in ad-hoc networks). 

The results are collected by using a profiler and a simulator. 
The profiler executes benchmarks and collects a log of partition 
accesses. Our simulator uses the CB size, the cache plan, the 
access log, and the size of each partition as inputs. It faithfully 
mimics the operations of buffer management and produces CB 
miss numbers as an output. Although simulation sometimes 
provides inaccurate or incomplete results when compared to actual 
execution, our simulators are trustworthy. Since all factors that 
affect a buffer’s hit and miss action are considered in the simulator, 
the simulation result (miss numbers) will be consistent with those 
arising in actual execution. 

We used a fragment (an instruction sequence that ends with a 
conditional branch, indirect branch, or return) as a partition in our 
experiments. A fragment is similar to a basic block, except that a 
basic block terminates at a branch target while a fragment does not. 
Our profiler was built on a software dynamic translator, Strata [27], 
which implements a virtual execution environment and uses a 
code fragment as its translation unit. Typically, a translation unit in 
a VEE is also a caching unit in the CB. Therefore, we use 
fragments as partitions in our experiments. Although the definition 
of the translation unit (i.e., code partition in this work) changes 
across VEE implementations and the variance may influence 
caching performance, these different partitions possess certain 
common properties. In particular, among the factors affecting CB 
management, variable size and hotness are universal. Therefore, 
our experimental results can demonstrate the benefits of our 
approaches in general VEEs. Although we did not experiment with 
other partitioning schemes, we believe that the qualitative trend 
will be similar. 

For each benchmark, we use a training data input for profiling 
and a different reference input for evaluation. Table 1 shows the 
miss numbers of the reference inputs when running with our 
baseline, which is a unified circular buffer using a FIFO policy. 
Column 1 lists the benchmarks. Column 2 lists the number of  

Table 1. M iss numbers of the baseline. " * "  designates 
that all misses are compulsory. 

Benchmark 
Partition 

Number 
2 KB 4KB 8KB 16KB 

blowfish_dec 241 1881118 344 241 * 241 * 
blowfish_enc 239 1881116 342 239 * 239 * 

crc32 283 317 283 * 283 * 283 * 
dijkstra 397 21466 16013 397 * 397 * 
gsm_dec 690 351957 350246 350152 691 
gsm_enc 908 1211052 1184794 646302 638472 
jpeg_dec 1149 38049 5298 1619 1259 
jpeg_enc 1403 62031 7168 2326 1594 
patricia 792 3054768 2859748 2755161 3921 

susan_corner 541 51001 727 664 541 * 
susan_edge 564 157639 778 722 717 

susan_smooth 445 770 667 598 445 * 
 

unique partitions that have been downloaded in the execution, and 
the remaining columns list the number of misses when the CB size 
is 2 KB, 4 KB, 8 KB, and 16 KB. If the miss number is the same 
as the partition number (designated by "*" in the table), it means 
all misses are compulsory and the baseline is optimal. 

The technique most similar to our work is the generational 
buffer [14], which we compare our schemes against. The 
generational buffer scheme was proposed to manage the trace 
cache in dynamic optimization systems. It partitions the trace 
cache into three distinct and separately managed regions, trying to 
identify code lifetime at run-time. It uses a unified partitioning 
proportion for all programs and CB sizes, and thus no profiling is 
needed. Hazelwood and Smith showed that the generational buffer 
can effectively reduce the miss rate for SPEC2000 and Windows 
applications. However, we found that the partition proportion 
suggested in [14] (a 45%-10%-45% ratio for three separate buffer 
sizes and a promotion threshold of 1) works poorly for 
resource-constrained devices in distributed VEEs.  

Since the programs and environments studied in [14] are 
significantly different from ours, we extend the generational 
scheme for a fair comparison, using the training inputs (also used 
in our schemes) to find the best configuration as well. We 
investigate two ways to find the best configuration. First, for each 
prospective CB size, we select the configuration with which the 
generational buffer produces the minimal geometric mean of 
normalized miss numbers (to the baseline) for training inputs 
across all benchmarks. We call this configuration unified and use it 
for all programs when that particular CB size is experimented. 
Second, for each combination of prospective CB size and program, 
we select the configuration with which the generational buffer 
produces the minimal miss number for the training input. We call 
this approach individualized and use it for the particular 
combination of program and CB size.  

We compare the miss reduction of the unified generational, 
individualized generational, fixed, and adaptive schemes to the 
baseline. When we calculate miss reduction, the size of the unified 
buffer in the baseline equals the total size of all sub-buffers in the 
generational and planning schemes. 

In the fixed and adaptive approaches, we limit the maximal 
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number of sub-buffers to three (3) because our experience shows 
that three sub-buffers are enough to classify the code partitions in 
most cases. In addition, finer partitioning of the CB introduces 
more fragmentation, which is expensive for resource-constrained 
devices. 

 
4.2 Miss Number Reduction 

 
Figure 7 compares the miss reduction of the generational and 

fixed schemes over the baseline for various CB sizes. For the 
generational schemes, our experiments include both the unified 
and individualized approaches. For the fixed scheme, both the 
naïve algorithm (Figure 4) and the improved density algorithm 
(Figure 6) are presented. Each chart shows the percentage of miss 
reduction when the CB size is 2 KB, 4 KB, 8 KB, and 16 KB. If a 
scheme produces the same number of misses as the baseline, the 
miss reduction is zero (0). 

The most consistent result is that the individualized 
generational scheme performs better than (or as well as) the 
unified generational one for every benchmark with each CB size. 
Considering the performance of the generational buffer in 
DynamoRio, this indicates that a tightly constrained CB is quite 
different from the buffers in dynamic optimizers: CB performance 
becomes very sensitive to the program when the CB is small. 
Hence, a single configuration for all programs does not produce 
good results. 

Although the individualized generational scheme gains through 
customized configuration by using profiling, the fixed scheme 

exploits more benefits from profiling information. As shown, in 
most cases, the fixed schemes perform better than the generational 
buffer. It may be that a small generational buffer is unable to 
capture the hottest code partitions accurately, since many 
partitions seem to be missing frequently. Another possible reason 
is the fragmentation caused by unnecessary partitioning of the CB. 
Indeed, the best cache plans selected by the fixed scheme (using 
density) divide the 2 KB CB into three sub-buffers for only 3 
programs out of the 12 benchmarks, while the generational scheme 
inherently does such partitioning for all programs. 

As shown, the density algorithm can generate higher quality 
cache plans than the naïve algorithm, especially when the CB size 
is small. The argument to use density as a planning criterion in 
constrained environment is thus well justified, as a tighter 
environment demands a more careful trade-off decision between 
the code hotness and size. 

Not surprisingly, some programs are not friendly to the fixed 
scheme, because program behavior can not always be predicted in 
advance. An obvious example is patricia with a 16 KB CB in 
Figure 7. Here, the fixed scheme produces 15 times more misses 
than the baseline. A careful examination found that a code region 
is executed once for the training data set, but its execution 
frequency is over 33,000 for the reference input. The adaptive 
scheme is able to correct this problem, as shown in Figure 8. We 
only present the result for density because we know that density is 
better able to determine cache plans than frequency. The results for 
the adaptive scheme are collected when win_size = 50 and 
promote_threshold = 20, which is the best configuration 
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Generational vs. Fixed Schemes (4 KB)
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Generational vs. Fixed Schemes (8 KB)
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Generational vs. Fixed Schemes (16 KB)
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Figure 7. Compar ison of miss reduction over the baseline. “ Gen (Unif.)”  stands for unified generational scheme; “ Gen (Ind.)”  

stands for individualized generational scheme; “ Freq (Fix.)”  stands for fixed scheme using frequency in planning; and 
“ Den (Fix.)”  stands for fixed scheme using density in planning.
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that we found in our experiments. Figure 8 shows that the adaptive 
approach can dramatically reduce the misses more than the fixed 
scheme for certain benchmarks at some CB sizes. In other cases, it 
does as well or is very close to the fixed scheme. 
 
4.3 Impact on Execution Time 

 
A common pitfall in cache performance evaluation is the 

overemphasis on miss (rate) reduction while omitting the fact that 
a significant miss reduction sometimes affects little in the overall 
optimization objective. In our work, nevertheless, CB miss 
reduction can translate into a meaningful performance 
improvement. In VEEs for resource constrained devices, the time 
for downloading a partition often dominates total execution time, 
as wireless bandwidth can be severely limited. 

Figure 9 shows the impact of the miss reduction on the 
execution time. The speedup is calculated by a method which has 
been used in [31]. The calculation of total execution time is 
divided into four parts: the download time for partition 
transmissions, the connection setup time due to network delays, 
the runtime environment time, and the real CPU time for the 
program. Similar to the experimental settings used in [31], we 
assume a bandwidth of 106 kb/sec, a connection time of 20 ms per 
setup, a context switch (between the application and the VEE) 
consuming 100 dynamic instructions, and an internal clock 
frequency of 66 MHz. When we calculate the time for the fixed 
and adaptive schemes, we add a byte, which records a cache 

blueprint, to the size of each transferred partition. The additional 
overhead of cache blueprint is amortized by greater miss reduction. 
As demonstrated in the figure, the planning schemes have a 
greater speedup than the generational schemes in most cases. As 
these results show, it is important to reduce the CB miss rate and 
small reductions can lead to large run-time improvements.  

From the results, our schemes have a significant improvement 
over a unified circular buffer and a generational buffer in terms of 
miss reduction, which translates into considerable performance 
speedup. In particular, the adaptive scheme does as well as the 
fixed scheme in most cases, and in a few cases does substantially 
better. Yet, it has low overhead. We conclude that the adaptive 
scheme is a good choice for resource-constrained devices in 
distributed VEEs. 

 
5. RELATED WORK 

 
DELI [9], an infrastructure for manipulating or monitoring 

running programs, provides a mode (called code streaming) for 
remote execution, where a remote application is loaded 
on-demand piece by piece. The authors discussed the method 
when the emulated ISA and the target ISA are the same, while we 
extended the idea to general VEEs, even if the original and target 
ISAs are different. 

There are several buffer management approaches proposed for 
dynamic translation/optimization systems, including: flushing the 

 
 

Generational vs. Planning Schemes (2 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s 
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)
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Generational vs. Planning Schemes (8 KB)
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Generational vs. Planning Schemes (16 KB)
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Figure 8. Compar ison of miss reduction over the baseline. “ Gen (Unif.)”  stands for unified generational scheme; “ Gen (Ind.)”  

stands for individualized generational scheme; “ Den (Fix.)”  stands for fixed scheme using density in planning; and 
“ Den (Adp.)”  stands for adaptive scheme using density in planning. 
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Generational vs. Planning Schemes (8 KB)
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Figure 9. Execution time speedup over the baseline. “ Gen (Unif.)”  stands for unified generational scheme; “ Gen (Ind.)”  stands 

for individualized generational scheme; “ Den (Fix.)”  stands for  fixed scheme using density in planning; and 
“ Den (Adp.)”  stands for adaptive scheme using density in planning. 

 
 
buffer when it gets full (Dynamo [5] and DELI [9]), an unbounded 
buffer (Strata [27] and DynamoRio [6] by default), and a circular 
buffer. The generational buffer was proposed to overcome the 
limitations of these techniques [14]. The results presented in 
Section 4 show that these techniques are unsuitable for distributed 
systems with tight resource constraints. Zhang and Krintz 
proposed an adaptive code unloading method for JVMs with JIT 
compilation [30]. Their cached element is method based, which 
may include cold code. And the fragmentation is handled by the 
system's garbage collector, which is too expensive to execute on a 
constrained device. They mentioned a very simple offline profiling 
method in their paper but its result was disappointing. Popa et al. 
proposed a mechanism called code collection to support large 
applications on mobile devices [24], which is similar to our 
approaches. But their heuristic algorithm necessitates a client to 
collect run-time information for selecting code units to discard, 
while ours does not. And their scheme is also method-based and 
requires a garbage collector running on the client. Zhang et al. 
proposed a buffer management technique, function caching, for 
smart cards [32]. Their approach is not adaptive as the compiler 
fully controls the management, and their caching elements are 
functions which may contain unneeded code. Another undesirable 
side is that they only applied the technique in user defined calls 
where source code is available. 

Another related research is profile guided code compression [7], 
which compresses cold code to achieve size reduction, and leaves 
hot code uncompressed to minimize run-time penalty. The number 
of their code categories is fixed to 2 (hot and cold), and the 

classification can be adaptive to neither a particular input nor 
available memory size. 

Regarding the security concerns, our approaches can easily 
incorporate the tamper-resistant partitioning method [32], and 
transferred code could be encrypted. 

Hazelwood and Smith have found that pure FIFO policy is not 
enough for real world applications due to some complications, 
such as undeletable cache code and program-forced evictions. 
Pseudo-circular policy, a variant of FIFO, can be used in this 
situation [14]. Our scheme is compatible to use the pseudo-circular 
policy as the local policy. 
 
6. CONCLUSION 

 
As the memory requirements of distributed VEEs is growing, 

we proposed to store the original programs on a code server, and 
to execute a VEE with its code buffer on the client. The original 
program is divided into code partitions and partitions are 
downloaded on-demand. This paper described two schemes to 
manage the CB with profile guidance. From experimental results, 
we showed that these schemes have fewer CB misses than a 
generational buffer and a unified circular buffer, which translates 
into significant speedup. In particular, the adaptive scheme 
performed better than the fixed scheme. Yet, it has low overhead 
and it is a good choice for resource-constrained devices in 
distributed VEEs. 
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