

Planning for Code Buffer Management in Distributed
Virtual Execution Environments

Shukang Zhou
Dept. of Computer Science

Univ. of Virginia
zhou@cs.virginia.edu

Bruce R. Childers
Dept. of Computer Science

Univ. of Pittsburgh
childers@cs.pitt.edu

Mary Lou Soffa
Dept. of Computer Science

Univ. of Virginia
soffa@cs.virginia.edu

ABSTRACT
Virtual execution environments have become increasingly useful in
system implementation, with dynamic translation techniques being
an important component for performance-critical systems. Many
devices have exceptionally tight performance and memory
constraints (e.g., smart cards and sensors in distributed systems),
which require effective resource management. One approach to
manage code memory is to download code partitions on-demand
from a server and to cache the partitions in the
resource-constrained device (client). However, due to the high cost
of downloading code and re-translation, it is critical to
intelligently manage the code buffer to minimize the overhead of
code buffer misses. Yet, intelligent buffer management on the
tightly constrained client can be too expensive. In this paper, we
propose to move code buffer management to the server, where
sophisticated schemes can be employed. We describe two schemes
that use profiling information to direct the client in caching code
partitions. One scheme is designed for workloads with stable
run-time behavior, while the other scheme adapts its decisions for
workloads with unstable behaviors. We evaluate and compare our
schemes and show they perform well, compared to other
approaches, with the adaptive scheme having the best
performance overall.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Memory Management,
Run-Time Environments

General Terms
Design, Experimentation, Performance

Keywords
Distributed Environments, Code Buffer, Dynamic Translation,
Generational Cache, Adaptive Code Cache, Program Partitioning

1. INTRODUCTION

Over the last several years virtual execution environments

(VEE) have been increasingly useful in system implementation. A
VEE can reduce and manage complexity by providing a common
runtime and a self-contained operating environment that facilitates
the programmatic modification of an executing program. In
addition to the well-known Java virtual machine (JVM), a wide
variety of systems can also be classified as virtual execution
environments, such as dynamic optimizers [2,5,6,17], dynamic
software updaters [18], dynamic binary translators [8,9,11,27],
dynamic instrumentation systems [3,19,23], and certain emulators
and simulators [26,29].

Although a virtual machine (VM) can execute programs using
interpretation, performance-critical VMs often employ software
dynamic translation because a translator has the potential to
produce significantly higher quality code and thus is able to utilize
resources efficiently. Just-in-time (JIT) compilation, for instance,
is used in many JVMs. After translating a code segment, a
translation-based VEE typically stores the translated code in a
code buffer (CB), and reuses the code for future invocations. The
overhead of dynamic translation can be amortized if the translated
code is reused frequently.

As VEE techniques have been applied to a range of computing
environments, there is a set of environments in which devices have
exceptionally tight memory and performance constraints, such as
smart cards and sensors in distributed systems [4,10,15,22,25,28].
The software executing in such environments, however, has
become quite complex. For example, a smart card might use the
RSA protocol to authenticate a user's identity [25]. Furthermore,
such constrained devices may need to support multitasking
workloads. For instance, a sensor in an intrusion detection network
concurrently monitors environmental events, tracks objects, and
communicates with other sensors [1]. A consequence of this trend
is that memory demands have become very high.

Due to severe memory limitations (e.g., an Atmel ATmega128
processor has 128 KB flash memory and 4 KB SRAM [4]), the
original code of a single large program, or multiple small
programs, may not fit in the memory of a resource-constrained
device. To address such constraints, and inspired by program
partitioning schemes for traditional systems [16,24,31,32], we
propose to store the original software on a code server and to
execute the VM using its code buffer on the device (as a client). A
piece of original program code (e.g., trace, basic block sequence,
method, program slices, etc.), called a partition, is downloaded
from the code server to the client on-demand via a wireless link.
The code executes on the client and a CB miss happens when a
needed partition is not in the CB. Not only does this partition need

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
VEE’05, June 11–12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

100

to be downloaded on-demand, it also needs to be re-translated by
the VM before execution continues. As wireless bandwidth is
limited in resource-constrained devices and dynamic translation is
expensive, the CB has a high miss penalty, and it must be
intelligently managed to keep miss rates low.

In dynamic optimization systems, a generational buffer is
proposed [14], which tries to identify and use the lifetime of code
to manage the code buffer. Two other similar techniques that have
been proposed to manage the CB are adaptive code unloading [30]
and code collection [24], both of which use online profiling to
trigger a garbage collector. Another technique for embedded
systems is compiler-controlled function caching [32]. Code
replacement policies employed in hardware caches and operating
systems, such as LRU, are related as well. However, these
methods are unsuitable for distributed VEEs due to two reasons.
First, although a technique might effectively reduce CB misses, its
overhead can be too high to be practical (e.g., a VM must maintain
usage information to employ online profiling). Second, most of
these approaches cannot achieve a satisfactory CB miss rate when
memory space is tightly limited, as these approaches lack the
awareness of both program and memory size. To achieve an
effective CB miss rate, a scheme needs to utilize knowledge of a
program and its memory size, while having a low run-time cost.

In this paper we present a technique whereby the server “plans”
for memory management using both the program and the memory
size. Using program profiles helps the schemes maintain hot code
partitions in the CB and thus avoid caching cold partitions. We
move management decision-making to a server to keep the
demands placed on the clients minimal. One scheme is used for
programs that are insensitive to data inputs, having stable behavior
across different data sets, while the other scheme adapts decisions
for programs that are highly sensitive to inputs.

The contributions of this paper include:

• Planning for CB management before execution and moving

decision-making from the client to a server;
• A simple yet effective planning management scheme for

programs with stable behavior across different data inputs;
• An adaptive scheme for programs in which inputs can

produce varying behaviors; and
• Experimental results that demonstrate the benefits of our

schemes over previous approaches.

The remainder of the paper is organized as follows. Section 2

provides a background on resource-constrained systems, and
Section 3 describes our planning schemes. Section 4 evaluates the
schemes in terms of miss reduction and the impact on execution
time. Section 5 surveys related work and Section 6 summarizes the
paper.

2. BACKGROUND

Tight memory constraints and high CB miss penalties make

good CB management decisions critical to performance. In general,
with more knowledge about program behavior, better decisions
can be made about buffer management. Program profiling can be
used to identify likely execution paths. Indeed, it is known that
most execution time is spent in a small portion (hot code) of a
program, with recent studies showing similar results for code
traces [5]. A trace is a sequence of basic blocks that are executed
along a path. Hazelwood and Smith [13] showed that regardless of
data inputs for SPEC2000 programs, code traces that account for

roughly 85% of the dynamic instruction count are repeated during
successive executions. Hence, basic block profiling works well in
these programs and can identify sequences of hot code.

Although there are many programs in which profiling can
capture execution stability, there are some programs with much
variability across inputs. For instance, the program blowfish [21]
behaves differently when encoding a plain-text file and an image
file. Considering the importance of good CB decisions, a
management scheme needs adaptivity for these unstable programs.
The adaptivity can be achieved by gathering run-time information
about hot basic blocks and paths.

When management decisions are made by the client, profiles
can introduce considerable overhead. Offline profiles need to be
accessible to the client and run-time information needs to be
updated. Both are very expensive to use or maintain on the client.
Indeed, it is typically infeasible for a severely restricted client to
use profile information directly. Therefore, we propose to make a
code server responsible for CB management, moving
decision-making from a client to a more powerful server that can
more easily maintain, update, and use profiles. Thus, the client
only executes simple actions guided by the server, while the server
manages the client’s CB.

3. A PLANNING APPROACH

The key idea in our work is for a powerful platform (called a

cache planner) to develop CB cache plans based on a program’s

Figure 1. Workflow of our schemes.

Download Code Partitions
On-Demand Wireless Networks

Client
Code Buffer Processor

 gsm 4 KB 8KB . . .
jpeg 2 KB 4 KB . . .

Cache plans

Code Server

Code Partitions

Before Execution

At Run-Time

Profiling

gsm 4 KB 8KB . . .
jpeg 2 KB 4 KB . . .

Cache
plans

Program Profiles

Cache Planner

Program

Partitioning

 Code
Partitions

101

code partitions and profiles, with the knowledge of a client’s
anticipated memory size. The plans are developed before
execution of a program begins, with the goal of caching frequently
executed (hot) partitions in the CB. The code server in charge of
sending code partitions during the program’s execution forwards
these plans to the client as code is downloaded. Both of our
schemes partition the CB into separate buffers, called sub-buffers,
to hold code partitions based on code hotness.

Figure 1 shows the workflow of our management schemes. A
program is firstly partitioned into code partitions using a
partitioning scheme, and then stored in a code server connected to
the client. Profiling is used to capture the hotness (execution
frequency) of code partitions and to estimate the performance of
potential CB management decisions. A cache planner uses
program profiles and code partitions to develop management
decisions (i.e., cache plans) before program execution. The plans
are then stored on the code server with the corresponding code
partitions. When a client needs a code partition, the server sends
the appropriate plan with the partition. The sub-buffers are ordered
by the hotness of partitions assigned to them. That is, one
sub-buffer holds very hot code, while another may hold cold code
that is executed infrequently. This approach is based on the fact
that most programs spend a large part of their execution in a small
portion of code.

To handle the sub-buffers, we use two policies. A local policy
manages an individual sub-buffer and a global policy manages the
relationship among sub-buffers. The local policy is essentially the
replacement policy for the partitions in a sub-buffer. The
replacement policy has to possess all of the following attributes:
high temporal locality, low overhead, and minimum fragmentation.
The first factor is the foremost motivation for CB. The second
factor is important for application performance because it is a part
of user perceivable system overhead. The third factor must be
considered because our caching element, a code partition, has
variable size, which easily causes fragmentation. We use
First-In-First-Out (FIFO) as our local policy as it has good
performance with little fragmentation [12]. Our global policy is to
cache code partitions in sub-buffers based on their hotness.

We describe the overall strategy of CB memory planning and
then describe two particular schemes. One scheme is a fixed
scheme where code partitions are always housed in the same
sub-buffer during execution. We then extend this scheme to an
adaptive one, in which partitions are cached in sub-buffers based
on a program’s run-time behavior. We also describe a method,
using “code density”, which improves the code partition
assignments made by either technique.

3.1 Overall CB Management Strategy

Our strategy generates plans for managing the CB, by using

profiles to first determine the hotness of code partitions and then
to assign partitions to sub-buffers. As management decisions are
sensitive to program and memory size (in a small CB), our scheme
generates a cache plan for each program and anticipated CB size.
These plans are stored on a server and can be retrieved when a
client connects with the server and provides a program name and
the size of its CB.

A cache plan records management decisions: For a given
program and CB size, a plan indicates the number of sub-buffers,
the size of the sub-buffers, and a cache blueprint for each code
partition in the program. The size of a sub-buffer is recorded as the
percentage (proportion) of the total CB size to allocate to this

sub-buffer. A cache blueprint indicates the assignment of a code
partition to a sub-buffer and has two fields. One field indicates
whether to cache the partition and the other indicates which
sub-buffer to use if the partition is to be cached. An example of a
cache plan is shown in Figure 2. There are N code partitions in the
program, each of which has been assigned a cache blueprint. For
example, partition 2 is cached in sub-buffer 0. In this figure, the
CB is partitioned into three buffers, and the sub-buffer size
proportions are 20%, 40%, and 40%, respectively.

Number of Sub-Buffers 3
Sub-Buffer Allocation 20%-40%-40%

Cache Bluepr int Par tition ID
Cache? Sub-Buffer ID

0 Yes 1
1 No ---
2 Yes 0

. . .

. . .

. . .

N-1 Yes 2

Figure 2. Example cache plan.

The cache plan, computed beforehand by the server, is used at

the client side. Before a client executes a program, it informs the
server which program is going to be run and the size of the CB.
The server finds a corresponding plan and responds to the client
with the number and size of the sub-buffers. The code partition
containing the first instruction, and this partition's blueprint, are
transferred to the client, and then the client starts program
execution.

After translating a code segment (called a translation unit), a
VEE directly executes the translated code for efficiency. Some
VEEs add an instruction at the exit of each translation unit to
return control to the VEE, while other VEEs directly link
translated units to avoid unnecessary invocations of the VEE. No
matter what mechanism is used, the VEE is notified when a
desired unit is not found in the translated code buffer. Every time
this occurs, our approach performs several more operations,
compared to what a traditional VEE does, to use the cache plan to
manage the CB.

At run-time, if a needed code partition is not cached in the CB,
the client sends a request to the server for the partition. The server
sends back the partition, with its cache blueprint attached. Note
that a partition is both a translation unit and a caching unit. After
the client receives the partition and cache blueprint, it translates
the partition and follows the blueprint to cache the partition in the
specified sub-buffer (or not to cache the partition). If the specified
sub-buffer does not have enough free space to store it, other
partition(s) in the specified sub-buffer are evicted using the local
policy (FIFO).

To generate a cache plan, two steps are performed. The first
step uses a given configuration as parameters and assigns code
partitions to sub-buffers based on profile information about the
execution frequency of partitions. In other words, this assignment
determines the cache blueprint for each code partition. The
configuration includes the number of sub-buffers, each
sub-buffer's size proportion and the assignment ratio. Assignment
ratio is the ratio of the total size of all partitions assigned to a
sub-buffer over the sub-buffer size, which limits the total size of
partitions that can be assigned to a sub-buffer.

102

How well a cache plan works is influenced by the number of
sub-buffers, the size proportion of each sub-buffer, and the
assignment ratio of each sub-buffer. Because the quality of a cache
plan depends on these three factors, we produce a number of
candidate plans. The best plan is selected among these candidates
to be loaded onto the code server.

The second step selects the plan that is most likely to minimize
the number of CB misses at run-time. This step iterates over all
cache plans to determine a score for each one that indicates how
well they may perform. The score is determined by running the
application program with a training data set and collecting the
number of CB misses. The cache plan with the smallest number of
misses is the one that is selected.

Figure 3 shows pseudo-code to generate a cache plan. Line 2
determines a basic block execution frequency profile. Lines 4-8
generate and try a range of configurations to produce candidate
plans. Line 10 does the second step that determines the best plan
among the candidates. The routine Assign_Blueprints()
(line 6) generates the blueprints for each cache configuration. A
naïve algorithm to implement this function is shown in Figure 4.

Figure 3. Cache plan generation algor ithm.

Figure 4. Cache bluepr int assignment algor ithm using
frequency as cr iter ion.

In Figure 4, Assign_Blueprints() sorts code partitions
based on their execution frequency (from a profile) in descending
order (line 5). Lines 7-24 divide the CB into sub-buffers, give each
sub-buffer a unique identifier (ID), and assign partitions to each
sub-buffer. Line 8 calculates a sub-buffer's size and line 9
calculates the total size of partitions that can be assigned to this
sub-buffer. Line 10 initializes a flag variable. Lines 12-23
determine blueprints, assigning hotter partitions to the sub-buffer
with a smaller ID. Line 13 sets the size limit which is an upper
bound on the partitions to be assigned to this sub-buffer. Line 14
seeks a candidate partition with maximal frequency (which has not
been yet assigned to any sub-buffer) and not larger than the size
limit. If no such partition exists, the assignment for this sub-buffer
is done (line 17). Otherwise we assign the candidate partition to
the sub-buffer (line 19-21). If there are partitions left unassigned
after every sub-buffer has been processed, these partitions are
marked No_Caching on lines 26-27. This mark indicates that
these partitions will never be cached (they are too cold). The
algorithm does not consider code partitions that remain
unexecuted by the training input. These partitions are assigned to
the sub-buffer with the largest ID (it holds the coldest code).

The planning approach is quite efficient. Clients only execute
simple actions as directed by the server; hence, their run-time
overhead is low. However, transferring the blueprint with a code
partition does introduce a small additional amount of
communication. If one byte is used to encode the cache blueprint
and a code partition itself is 20 bytes, the transfer overhead of the
blueprint is just 5%. Larger code partitions reduce the overhead
further.

3.2 Fixed Scheme

In the fixed strategy, a code partition is always stored in the

sub-buffer that it was assigned in the original plan. That is, the
hotness of the code during execution is assumed to mirror the
profile information.

3.3 Adaptive Scheme

The fixed scheme relies on the accuracy of profiles to guide the

selection of cache plans. However, some programs (as described
earlier) may have behavior that is not captured by a profile. Our
adaptive scheme aims to overcome this problem by changing the
assignment of code partitions to sub-buffers as a program executes.
As before, the server is responsible for managing the partitions,
but the adaptive scheme can change the assignment of a code
partition to a sub-buffer based on its hotness at run-time. The
scheme moves a code partition from one sub-buffer to the next in
sequence. This process is called promotion. At run-time, the server
maintains a time window (called a miss window) to monitor
missing partitions. The server uses the miss window to decide
which partitions should be promoted. Whenever a partition is
promoted, its new sub-buffer position is recorded in a registration
list. Before the server sends a partition to the client, it checks the
registration list. If a partition is found in the list, a temporary
blueprint is created on-the-fly that designates a different
sub-buffer to hold the partition (i.e., the sub-buffer holding the
next hottest code). Otherwise, the original blueprint is used.

Figure 5 shows pseudo-code for the server algorithm that
decides which partitions to promote. Every time the server
receives a request from the client, monitor_miss() is invoked.

1 Assign_Blueprints (program x, profile prof,
2 configuration config) {
3 (buffer_number,buffer_portion[],assign_ratio[])
4 = Extract_Config_Values (config);
5 sort_parition[] = Sort_By_Freq(x, prof);
6
7 for (i=0; i < buffer_number; i++) {

8 buffer_size=CB_size×buffer_portion[i];

9 remain_size=buffer_size×assign_ratio[i];
10 flag = 1;
11
12 while (flag) {
13 sizeLimit = min(buffer_size, remain_size);
14 cand = Max_Freq_P(sizeLimit);
15
16 if cand not existing {
17 flag = 0; /* all partitions already tried */
18 } else {
19 assign cand to sub-buffer[i];
20 remain_size -= size(cand);
21 if (remain_size = 0) { frag = 0; }
22 } /* of else */
23 } /* of while */
24 } /* of for */
25

26 for each remaining partition p in sort_partition[]
27 { sort_partition[p].blueprint = No_Caching; }
28 }

1 Generate_Plan (program x) {
2 prof = First_Profile (x);
3
4 repeat
5 config = Generate_New_Config();
6 blueprints = Assign_Blueprints(x, prof, config);
7 candidate_plans.Add(config, blueprints);

8 until no more configurations;
9
10 plan = Second_Profile(x, candidate_plans);
11 return plan;
12 }

103

Figure 5. Par tition promotion algor ithm.

Line 3 records the missing partition's ID (p_id) in the miss
window (miss_win[]). The window size is a pre-defined
threshold (win_size). When the window is full, lines 6-15
check for promotion. (We skip line 7 for a moment –– it will be
discussed shortly.) Lines 8-9 scan every partition in the window to
determine how often they occurred. Line 10 checks a promotion
condition: any partition that occurs more frequently than a
threshold (promote_threshold) is promoted by adding the
partition to the registration list. Lines 13 and 14 flush the miss
window for the next interval of execution.

In our experiments, we observed that input variability is limited
in applications for distributed environments. If a cold partition in a
profile is hot in actual runs, the partition seldom becomes hot
throughout the whole program execution. Thus, the adaptive
scheme has to also let promoted partitions cool and move back to
their original sub-buffer. On line 7, the registration list is cleared
immediately before the miss window is checked. In this way, any
promotion is conservative as it is only visible until the miss
window becomes full again. Furthermore, we have observed that it
is necessary to promote a partition by only one level to avoid
disturbing the original cache plan too much.

The server maintains a private miss window and a private
registration list for each execution. Consequently, executions of
the same program at different clients can be adapted individually
and concurrently. Repeated adaptations for a program may
indicate that the training input used in profiling is not
representative, and a single update of the cache plan can save the
multiple adaptations. However, we leave this as a question for
future studies.

In the adaptive scheme, no special operation is needed at the
client side; it is the code server that adapts. Hence, this scheme is
as efficient as the fixed scheme for a client. The adaptive scheme
does introduce some overhead in the server, but it is minimal.

3.4 Density: A Heur istic Algor ithm

In Figure 4, we presented a naïve algorithm to assign blueprints

by using the frequency of code partitions. It looks quite
straightforward; however, the problem is complex. The naïve
algorithm may favor some extremely large partitions with high
frequency, overlooking a set of small partitions which together
have a higher total frequency. CB management is a trade-off
between code usage and code size. Rather than solely focusing on
an individual partition’s hotness, our goal is to find a set of

partitions that has an upper bound on combined size and possesses
the maximal total frequency simultaneously. Unfortunately, this is
the knapsack problem and is NP-complete.

To tackle the problem, we introduce a new concept, called
density, which is a criterion to measure the priority of code
partitions to reside in CB. A partition’s density is defined as a
partition’s execution frequency divided by its size.

Density = Execution Frequency / Size

We employ density to avoid caching extremely large partitions

with slightly high frequency. However, relying exclusively on
density may lead to another problem. Assigning a small, dense
partition first may make it impossible to assign a large, hot
partition with less density later. To avoid both pitfalls, we designed
a heuristic algorithm to assign cache blueprints, as shown in
Figure 6. We use density to find a candidate partition first, and
then check its frequency to make sure that it will not prevent us
from caching a hotter fragment with a lower density later on.

Figure 6. Cache bluepr int assignment algor ithm using
density as cr iter ion.

The algorithm’s overall structure is similar to the naïve

algorithm described in Figure 4; hence we emphasize only the
differences. Line 5 sorts the code partitions based on their density.
Lines 10-30 assign the blueprints. Line 10 initializes the search
start position from and a flag variable. Line 13 sets the size limit
which is an upper bound on the partitions to be assigned to this
sub-buffer. Line 14 seeks a candidate partition (not assigned yet)
with maximal density and not larger than the size limit, starting
from position from in the sorted partition list. If no such partition

1 index = 0;
2 monitor_miss (p_id) {
3 miss_win[index]=p_id;
4 if (index < win_size-1) {
5 index++;

6 } else { /* check miss window and promote if necessary */
7 clear registration_list[];
8 for each unique partition p in miss_win[] {
9 freq = frequency of p in miss_win[];
10 if (freq > promote_threshold)

11 add p to registration_list[];
12 }

13 clear miss_win[];
14 index = 0;
15 }
16 }

1 Assign_Blueprints (program x, profile prof,
2 configuration config) {
3 (buffer_number,buffer_portion[],assign_ratio[])
4 = Extract_Config_Values (config);
5 sort_parition[] = Sort_By_Density(x, prof);
6
7 for (i=0; i < buffer_number; i++) {

8 buffer_size=CB_size×buffer_portion[i];

9 remain_size=buffer_size×assign_ratio[i];
10 from = 0; flag = 1;
11
12 while (flag) {
13 sizeLimit = min(buffer_size, remain_size);
14 cand = Max_Density_P(from, sizeLimit);
15
16 if cand not existing {
17 flag = 0; /* all partitions already tried */
18 } else {
19 threat = Max_Freq_New_P(sizeLimit);
20
21 if (cand == threat ||
22 (remain_size>size(cand)+size(threat)){
23 assign cand to sub-buffer[i];
24 remain_size -= size(cand);
25 if (remain_size = 0) { frag = 0; }
26 }
27 from ++;
28 } /* of else */
29 } /* of while */
30 } /* of for */
31

32 for each remaining partition p in sort_partition[]
33 { sort_partition[p].blueprint = No_Caching; }
34 }

104

exists, the assignment for this sub-buffer is done (line 17).
Otherwise, we check if the candidate will restrict the assignment
of hotter partitions. Line 19 looks for a partition with maximal
frequency that is not larger than the size limit. If the candidate is
also the one with the maximal frequency (line 21), or does not
restrict the assignment of hotter partitions (line 22), it will be
assigned to this sub-buffer (line 23-25). Line 27 updates the search
start position. This is a greedy algorithm, and one can easily
compose an example to show that it is not optimal. Our
experiments in Section 4, however, show that it is able to produce
satisfactory results in practice.

4. EVALUATION

We simulated our schemes to determine their effectiveness and

to compare their performance with other approaches as well as
with each other.

4.1 Exper imental Methodology

We experimented with twelve MiBench [21] and MediaBench

[20] programs on a SPARC/Solaris 9 workstation, using gcc with
the compiler flags “–O3 –static” . We believe our selection of
benchmarks represents the applications which will be extensively
used in the next generation of VEEs for smart cards and sensor
networks (including ones performing biometric recognition and
those used in ad-hoc networks).

The results are collected by using a profiler and a simulator.
The profiler executes benchmarks and collects a log of partition
accesses. Our simulator uses the CB size, the cache plan, the
access log, and the size of each partition as inputs. It faithfully
mimics the operations of buffer management and produces CB
miss numbers as an output. Although simulation sometimes
provides inaccurate or incomplete results when compared to actual
execution, our simulators are trustworthy. Since all factors that
affect a buffer’s hit and miss action are considered in the simulator,
the simulation result (miss numbers) will be consistent with those
arising in actual execution.

We used a fragment (an instruction sequence that ends with a
conditional branch, indirect branch, or return) as a partition in our
experiments. A fragment is similar to a basic block, except that a
basic block terminates at a branch target while a fragment does not.
Our profiler was built on a software dynamic translator, Strata [27],
which implements a virtual execution environment and uses a
code fragment as its translation unit. Typically, a translation unit in
a VEE is also a caching unit in the CB. Therefore, we use
fragments as partitions in our experiments. Although the definition
of the translation unit (i.e., code partition in this work) changes
across VEE implementations and the variance may influence
caching performance, these different partitions possess certain
common properties. In particular, among the factors affecting CB
management, variable size and hotness are universal. Therefore,
our experimental results can demonstrate the benefits of our
approaches in general VEEs. Although we did not experiment with
other partitioning schemes, we believe that the qualitative trend
will be similar.

For each benchmark, we use a training data input for profiling
and a different reference input for evaluation. Table 1 shows the
miss numbers of the reference inputs when running with our
baseline, which is a unified circular buffer using a FIFO policy.
Column 1 lists the benchmarks. Column 2 lists the number of

Table 1. M iss numbers of the baseline. " * " designates
that all misses are compulsory.

Benchmark
Partition

Number
2 KB 4KB 8KB 16KB

blowfish_dec 241 1881118 344 241 * 241 *
blowfish_enc 239 1881116 342 239 * 239 *

crc32 283 317 283 * 283 * 283 *
dijkstra 397 21466 16013 397 * 397 *
gsm_dec 690 351957 350246 350152 691
gsm_enc 908 1211052 1184794 646302 638472
jpeg_dec 1149 38049 5298 1619 1259
jpeg_enc 1403 62031 7168 2326 1594
patricia 792 3054768 2859748 2755161 3921

susan_corner 541 51001 727 664 541 *
susan_edge 564 157639 778 722 717

susan_smooth 445 770 667 598 445 *

unique partitions that have been downloaded in the execution, and
the remaining columns list the number of misses when the CB size
is 2 KB, 4 KB, 8 KB, and 16 KB. If the miss number is the same
as the partition number (designated by "*" in the table), it means
all misses are compulsory and the baseline is optimal.

The technique most similar to our work is the generational
buffer [14], which we compare our schemes against. The
generational buffer scheme was proposed to manage the trace
cache in dynamic optimization systems. It partitions the trace
cache into three distinct and separately managed regions, trying to
identify code lifetime at run-time. It uses a unified partitioning
proportion for all programs and CB sizes, and thus no profiling is
needed. Hazelwood and Smith showed that the generational buffer
can effectively reduce the miss rate for SPEC2000 and Windows
applications. However, we found that the partition proportion
suggested in [14] (a 45%-10%-45% ratio for three separate buffer
sizes and a promotion threshold of 1) works poorly for
resource-constrained devices in distributed VEEs.

Since the programs and environments studied in [14] are
significantly different from ours, we extend the generational
scheme for a fair comparison, using the training inputs (also used
in our schemes) to find the best configuration as well. We
investigate two ways to find the best configuration. First, for each
prospective CB size, we select the configuration with which the
generational buffer produces the minimal geometric mean of
normalized miss numbers (to the baseline) for training inputs
across all benchmarks. We call this configuration unified and use it
for all programs when that particular CB size is experimented.
Second, for each combination of prospective CB size and program,
we select the configuration with which the generational buffer
produces the minimal miss number for the training input. We call
this approach individualized and use it for the particular
combination of program and CB size.

We compare the miss reduction of the unified generational,
individualized generational, fixed, and adaptive schemes to the
baseline. When we calculate miss reduction, the size of the unified
buffer in the baseline equals the total size of all sub-buffers in the
generational and planning schemes.

In the fixed and adaptive approaches, we limit the maximal

105

number of sub-buffers to three (3) because our experience shows
that three sub-buffers are enough to classify the code partitions in
most cases. In addition, finer partitioning of the CB introduces
more fragmentation, which is expensive for resource-constrained
devices.

4.2 Miss Number Reduction

Figure 7 compares the miss reduction of the generational and

fixed schemes over the baseline for various CB sizes. For the
generational schemes, our experiments include both the unified
and individualized approaches. For the fixed scheme, both the
naïve algorithm (Figure 4) and the improved density algorithm
(Figure 6) are presented. Each chart shows the percentage of miss
reduction when the CB size is 2 KB, 4 KB, 8 KB, and 16 KB. If a
scheme produces the same number of misses as the baseline, the
miss reduction is zero (0).

The most consistent result is that the individualized
generational scheme performs better than (or as well as) the
unified generational one for every benchmark with each CB size.
Considering the performance of the generational buffer in
DynamoRio, this indicates that a tightly constrained CB is quite
different from the buffers in dynamic optimizers: CB performance
becomes very sensitive to the program when the CB is small.
Hence, a single configuration for all programs does not produce
good results.

Although the individualized generational scheme gains through
customized configuration by using profiling, the fixed scheme

exploits more benefits from profiling information. As shown, in
most cases, the fixed schemes perform better than the generational
buffer. It may be that a small generational buffer is unable to
capture the hottest code partitions accurately, since many
partitions seem to be missing frequently. Another possible reason
is the fragmentation caused by unnecessary partitioning of the CB.
Indeed, the best cache plans selected by the fixed scheme (using
density) divide the 2 KB CB into three sub-buffers for only 3
programs out of the 12 benchmarks, while the generational scheme
inherently does such partitioning for all programs.

As shown, the density algorithm can generate higher quality
cache plans than the naïve algorithm, especially when the CB size
is small. The argument to use density as a planning criterion in
constrained environment is thus well justified, as a tighter
environment demands a more careful trade-off decision between
the code hotness and size.

Not surprisingly, some programs are not friendly to the fixed
scheme, because program behavior can not always be predicted in
advance. An obvious example is patricia with a 16 KB CB in
Figure 7. Here, the fixed scheme produces 15 times more misses
than the baseline. A careful examination found that a code region
is executed once for the training data set, but its execution
frequency is over 33,000 for the reference input. The adaptive
scheme is able to correct this problem, as shown in Figure 8. We
only present the result for density because we know that density is
better able to determine cache plans than frequency. The results for
the adaptive scheme are collected when win_size = 50 and
promote_threshold = 20, which is the best configuration

Generational vs. Fixed Schemes (2 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Generational vs. Fixed Schemes (4 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Generational vs. Fixed Schemes (8 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Generational vs. Fixed Schemes (16 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Figure 7. Compar ison of miss reduction over the baseline. “ Gen (Unif.)” stands for unified generational scheme; “ Gen (Ind.)”

stands for individualized generational scheme; “ Freq (Fix.)” stands for fixed scheme using frequency in planning; and
“ Den (Fix.)” stands for fixed scheme using density in planning.

106

that we found in our experiments. Figure 8 shows that the adaptive
approach can dramatically reduce the misses more than the fixed
scheme for certain benchmarks at some CB sizes. In other cases, it
does as well or is very close to the fixed scheme.

4.3 Impact on Execution Time

A common pitfall in cache performance evaluation is the

overemphasis on miss (rate) reduction while omitting the fact that
a significant miss reduction sometimes affects little in the overall
optimization objective. In our work, nevertheless, CB miss
reduction can translate into a meaningful performance
improvement. In VEEs for resource constrained devices, the time
for downloading a partition often dominates total execution time,
as wireless bandwidth can be severely limited.

Figure 9 shows the impact of the miss reduction on the
execution time. The speedup is calculated by a method which has
been used in [31]. The calculation of total execution time is
divided into four parts: the download time for partition
transmissions, the connection setup time due to network delays,
the runtime environment time, and the real CPU time for the
program. Similar to the experimental settings used in [31], we
assume a bandwidth of 106 kb/sec, a connection time of 20 ms per
setup, a context switch (between the application and the VEE)
consuming 100 dynamic instructions, and an internal clock
frequency of 66 MHz. When we calculate the time for the fixed
and adaptive schemes, we add a byte, which records a cache

blueprint, to the size of each transferred partition. The additional
overhead of cache blueprint is amortized by greater miss reduction.
As demonstrated in the figure, the planning schemes have a
greater speedup than the generational schemes in most cases. As
these results show, it is important to reduce the CB miss rate and
small reductions can lead to large run-time improvements.

From the results, our schemes have a significant improvement
over a unified circular buffer and a generational buffer in terms of
miss reduction, which translates into considerable performance
speedup. In particular, the adaptive scheme does as well as the
fixed scheme in most cases, and in a few cases does substantially
better. Yet, it has low overhead. We conclude that the adaptive
scheme is a good choice for resource-constrained devices in
distributed VEEs.

5. RELATED WORK

DELI [9], an infrastructure for manipulating or monitoring

running programs, provides a mode (called code streaming) for
remote execution, where a remote application is loaded
on-demand piece by piece. The authors discussed the method
when the emulated ISA and the target ISA are the same, while we
extended the idea to general VEEs, even if the original and target
ISAs are different.

There are several buffer management approaches proposed for
dynamic translation/optimization systems, including: flushing the

Generational vs. Planning Schemes (2 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (4 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (8 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATR
IC

IA

SUSAN c

SUSAN e

SUSAN
 s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (16 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Figure 8. Compar ison of miss reduction over the baseline. “ Gen (Unif.)” stands for unified generational scheme; “ Gen (Ind.)”

stands for individualized generational scheme; “ Den (Fix.)” stands for fixed scheme using density in planning; and
“ Den (Adp.)” stands for adaptive scheme using density in planning.

107

Generational vs. Planning Schemes (2 KB)

0

1

2

3

4

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (4 KB)

0

1

2

3

4

BF d
ec

BF e
nc

CRC

DIJ
KSTR

A

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (8 KB)

0

1

2

3

4

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (16 KB)

0

1

2

3

4

BF
dec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Figure 9. Execution time speedup over the baseline. “ Gen (Unif.)” stands for unified generational scheme; “ Gen (Ind.)” stands

for individualized generational scheme; “ Den (Fix.)” stands for fixed scheme using density in planning; and
“ Den (Adp.)” stands for adaptive scheme using density in planning.

buffer when it gets full (Dynamo [5] and DELI [9]), an unbounded
buffer (Strata [27] and DynamoRio [6] by default), and a circular
buffer. The generational buffer was proposed to overcome the
limitations of these techniques [14]. The results presented in
Section 4 show that these techniques are unsuitable for distributed
systems with tight resource constraints. Zhang and Krintz
proposed an adaptive code unloading method for JVMs with JIT
compilation [30]. Their cached element is method based, which
may include cold code. And the fragmentation is handled by the
system's garbage collector, which is too expensive to execute on a
constrained device. They mentioned a very simple offline profiling
method in their paper but its result was disappointing. Popa et al.
proposed a mechanism called code collection to support large
applications on mobile devices [24], which is similar to our
approaches. But their heuristic algorithm necessitates a client to
collect run-time information for selecting code units to discard,
while ours does not. And their scheme is also method-based and
requires a garbage collector running on the client. Zhang et al.
proposed a buffer management technique, function caching, for
smart cards [32]. Their approach is not adaptive as the compiler
fully controls the management, and their caching elements are
functions which may contain unneeded code. Another undesirable
side is that they only applied the technique in user defined calls
where source code is available.

Another related research is profile guided code compression [7],
which compresses cold code to achieve size reduction, and leaves
hot code uncompressed to minimize run-time penalty. The number
of their code categories is fixed to 2 (hot and cold), and the

classification can be adaptive to neither a particular input nor
available memory size.

Regarding the security concerns, our approaches can easily
incorporate the tamper-resistant partitioning method [32], and
transferred code could be encrypted.

Hazelwood and Smith have found that pure FIFO policy is not
enough for real world applications due to some complications,
such as undeletable cache code and program-forced evictions.
Pseudo-circular policy, a variant of FIFO, can be used in this
situation [14]. Our scheme is compatible to use the pseudo-circular
policy as the local policy.

6. CONCLUSION

As the memory requirements of distributed VEEs is growing,

we proposed to store the original programs on a code server, and
to execute a VEE with its code buffer on the client. The original
program is divided into code partitions and partitions are
downloaded on-demand. This paper described two schemes to
manage the CB with profile guidance. From experimental results,
we showed that these schemes have fewer CB misses than a
generational buffer and a unified circular buffer, which translates
into significant speedup. In particular, the adaptive scheme
performed better than the fixed scheme. Yet, it has low overhead
and it is a good choice for resource-constrained devices in
distributed VEEs.

108

7. ACKNOWLEDGEMENTS

This research is supported in part by the National Science

Foundation, under grant CNS-0305198. We thank Naveen Kumar
for his considerable contribution to the preliminary work [33] of
this paper. We also thank the anonymous reviewers for their useful
suggestions and comments on how to improve the paper.

8. REFERENCES

[1] T. Abdelzaher et al. EnviroTrack: Towards an Environmental

Computing Paradigm for Distributed Sensor Networks. IEEE
Intl. Conf. on Distributed Computing Systems. March 2004.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive Optimization in the Jalapeño. Conf. on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA '00). October 2000.

[3] M. Arnold and B. G. Ryder. A Framework for Reducing the
Cost of Instrumented Code. Conf. on Programming
Language Design and Implementation (PLDI'01). June 2001.

[4] Atmel's ATmega128 Processor Online Document.
http://www.atmel.com/dyn/resources/prod_documents/2467S.
pdf. November 2004.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
Transparent Dynamic Optimization System. Conf. on
Programming Language Design and Implementation (PLDI).
June 2000.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An
Infrastructure for Adaptive Dynamic Optimization. Intl.
Symp. on Code Generation and Optimization (CGO’03).
March 2003.

[7] S. Debray and W. Evans. Profile-Guided Code Compression.
Conf. on Programming Language Design and
Implementation (PLDI). June 2002.

[8] J. C. Dehnert et al. The Transmeta Code Morphing™
Software: Using Speculation, Recovery, and Adaptive
Retranslation to Address Real-Life Challenges. Intl. Symp.
on Code Generation and Optimization (CGO'03). March
2003

[9] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi and J. A.
Fiser. DELI: A New Run-Time Control Point. Proceedings of
the 35th Annual Intl. Symp.on Microarchitecture
(MICRO-35). November 2002.

[10] D. Deville, A. Galland, G. Grimaud, and S. Jean. Smart Card
Operating Systems: Past, Present and Future. Fifth
USENIX/NordU Conference. February 2003.

[11] K. Ebcio�lu and E. R. Altman. DAISY: dynamic compilation
for 100% architectural compatibility. Intl. Symp. on
Computer Architecture (ISCA'97). June 1997.

[12] K. Hazelwood and M. D. Smith. Code Cache Management
Schemes for Dynamic Optimizers. Sixth Annual Workshop on
Interaction between Compilers and Computer Architectures.
February 2002.

[13] K. Hazelwood and M. D. Smith. Characterizing Inter-
Execution and Inter-Application Optimization Persistence.
Workshop on Exploring the Trace Space for Dynamic
Optimization Techniques. June 2003.

[14] K. Hazelwood and M. D. Smith. Generational Cache
Management of Code Traces in Dynamic Optimization
Systems. Proceedings of the 36th Annual Intl. Symp. on
Microarchitecture (MICRO-36). December 2003.

[15] Infineon's SLE 88CFX4002P Smart Card Document.
http://www.infineon.com/cmc_upload/documents/098/829/SP
I_SLE88CFX4002P0104.pdf. January 2004.

[16] G. Kortuem, S. Fickas, and Z. Segall. On-Demand Delivery
of Software in Mobile Environments. Nomadic Computing
Workshop. April 1997.

[17] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. Intl. Symp.
on Code Generation and Optimization (CGO'04). March
2004.

[18] D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable
Virtual Machines Enabling General, Single-Node, Online
Maintenance. Proceedings of the 11th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS'04). October 2004.

[19] J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA:
Dynamic Instrumentation, Optimization and Transformation
of Applications. Compendium of Workshops and Tutorials
Held in conjunction with Intl. Conf. on Parallel Architectures
and Compilation Techniques. September 2002.

[20] MediaBench. http://cares.icsl.ucla.edu/MediaBench.
[21] MiBench. http://www.eecs.umich.edu/mibench.
[22] Doug Palmer. A Virtual Machine Generator for

Heterogeneous Smart Spaces. USENIX 3rd Virtual Machine
Research and Technology Symposium (VM’04). May 2004.

[23] Pin Website. http://rogue.colorado.edu/Pin/.
[24] L. Popa, C. Raiciu, R. Teodorescu, I. Athanasiu, and R.

Pandey. Using Code Collection to Support Large
Applications on Mobile Devices. Proceedings of the 10th
Annual Intl. Conf. on Mobile Computing and Networking
(Mobicom’04). September 2004.

[25] RSA SecurID 5100 Smart Card Online Document.
http://www.rsasecurity.com/node.asp?id=1215. June 2004.

[26] E. Schnarr, M. Hill, and J. Larus. Facile: A Language and
Compiler For High-Performance Processor Simulators. Conf.
on Programming Language Design and Implementation
(PLDI'01). June 2001.

[27] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson,
and M. L. Soffa. Reconfigurable and Retargetable Software
Dynamic Translation. Intl. Symp. on Code Generation and
Optimization (CGO’03). March 2003.

[28] F. Vacherand. New Emerging Technologies for Secure Chips
and Smart Cards. The 3rd Intl. Micro and Nanotechnology
Meeting (MINATEC). September 2003.

[29] E. Witchel and M. Rosenblum. Embra: Fast and Flexible
Machine Simulation. Conf. on Measurement and Modeling of
Computer Systems (SIGMETRICS'96). May 1996.

[30] L. Zhang and C. Krintz. Adaptive Code Unloading for
Resoruce-Constrained JVMs. Conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES'04).
June 2004.

[31] T. Zhang, S. Pande, A. Santos, and F. J. Bruecklmayr.
Leakage-Proof Program Partitioning. Conf. on Compilers,
Architectures and Synthesis for Embedded Systems
(CASES'02). October 2002.

[32] T. Zhang, S. Pande, and A. Valverde. Tamper-Resistant
Whole Program Partitioning. Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES'03). June 2003.

[33] S. Zhou, B. R. Childers, N. Kumar. Profile Guided
Management of Code Partitions for Embedded Systems.
Conf. on Design, Automation and Test in Europe (DATE'04).
February 2004.

109

