
Proceedings of USITS' 99: The 2nd USENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11–14, 1999

A D O C U M E N T - B A S E D F R A M E W O R K F O R
I N T E R N E T AP P L I C AT I O N C O N TR O L

Todd D. Hodes and Randy H. Katz

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Document-based Framework for Internet Application Control

Todd D. Hodes and Randy H. Katz
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

fhodes,randyg@cs.berkeley.edu

Abstract

This paper motivates and details a document-based
framework for manipulating the components that com-
prise distributed Internet applications. In the framework,
XML documents are used to describe both server-side
functionality and the mapping between a client’s appli-
cations and the servers it accesses. Our system model
contrasts with explicitly context-aware application de-
signs, where location information must be explicitly ma-
nipulated by the application to affect change; instead, a
middleware layer is interposed between client applica-
tions and services so that invocations between the two
can be transparently remapped. This approach is use-
ful for a subset of application domains, including our
example domain of “remote control” of local resources
(e.g., lights, stereo components, etc.). We illustrate how
the framework allows for 1) remapping of a portion of
an existing user interface to a new service, 2) viewing
of arbitrary subsets and combinations of the available
functionality, and 3) mixing dynamically-generated user
interfaces with existing user interfaces.

The use of a document-based framework in addition to
a conventional object-oriented programming language
provides a number of key features. One of the most useful
is that it exposes the mappings between programs/UIs
and the objects to which they refer, thereby providing a
standard location for manipulation of this indirection.

1 Introduction

Many university and industry groups have projects in-
vestigating compositional frameworks for large-scale
distributed systems; examples include CalTech’s Info-
Spheres [11], MIT’s Oxygen [3], UCB’s Ninja [18],
IBM Almaden’s TSpaces [31], HP’s e-Speak [8], Sun’s
Jini/EJB atop Java [28, 26], and OMG’s CORBA [19].

The basic idea is to enable groups of remote objects on
independent Internet hosts to be used together (“feder-
ated”) to perform tasks via the provision of edifices such
as component discovery (e.g., the Jini Lookup service or
Ninja SDS [2]) and remote invocation.

Building large-scale software from distributed compo-
nents, or “services,”1 is a relatively new area of study,
one that has challenges that are inherently different from
those in monolithic or client/server program design.

1.1 The Challenge of Orthogonalizing Compo-
nent Management and Component Usage

Conventional component-based software specifies com-
ponent locations locally, internal to the application.
Keeping such information at the level of the application
complicates the process of adapting to components that
fail or change due to mobility: the application must either
deal with this itself, or a separate component must under-
stand the application-specific configuration files/APIs.
To reduce the burden on applications designers and en-
able generic service management middleware, the com-
ponent management (locating/spawning/etc.) function-
ality and component usage functionality can be either
partially or completely orthogonalized. This allows the
designers to focus on exposing the aggregate functional-
ity to the user, leaving the details of manipulating applica-
tions’ component references to the middleware. Benefits
of such partial or complete orthogonalization of layers
is described in [7]. But, the remaining question is, how
might we implement such layering in this domain?

1We call our framework components“services” to contrast with the
more generic term “objects.” A service is any entity that can be invoked
over the Internet using a known messaging format. Thus, a web server
is a “service,” as might be a VCR that is connected to the network and
advertising its control interface, as in [9].

1.2 The Challenge of Heterogeneous Interfaces

In the context of distributed evolution of components
(i.e., by groups scattered across the Internet), there is
the potential for independent class hierarchies to be built
such that semantically identical objects may either not
type-match due to a difference in the interface name, or
not type-match because they have differing interfaces.
For example, a three-state “on/off/dim” light switch may
not type match with a continuous dimming light switch,
or a LightSwitchInterface may not match a PowerSwitch-
Interface. This leads to a situation where the aggregate
system is not composed of objects with consistent inter-
faces and potentially different implementations; instead,
it is composed of both heterogeneous interfaces and het-
erogeneous implementations. The former case is cleanly
handled by any of the aforementioned distributed object
systems, while the latter is not.

One approach to addressing these problems is to al-
low application programs to be downloaded on-the-fly
to hand-held devices and uploaded to local computers
[9]; for example, as Java applets. The difficulty of this
approach, though, is that it does not allow the end-user to
customize applications for interaction with a heteroge-
neous set of services as related entities. In other words, it
cannot overcome minor differences in protocol — even
for functionally identical services — because the appli-
cations are opaque. For example, in the Jini [28] model, a
discovered service exposes its interface by passing a Java
applet to the client. The applet is allowed to – even en-
couraged – to use an application-specific protocol (atop
RMI) between itself and the host server. If light switch
controls were designed using such a model, a user would
need to download an applet each time he or she encoun-
tered a light switch from a different manufacturer or with
different options. The end result of this is that, though the
functionality is exposed, it is not in a form amenable to
manipulation: the client/server protocol may be opaque.

Given an inability to standardize all functional interfaces
and the need to avoid using only opaque mobile code,
is there an intermediate solution that balances the need
to expose interfaces with the need to agree on protocol
standards?

1.3 A Solution Framework: Externalize Com-
ponent State in Documents

This paper proposes that there is a commonality in the
two challenges, and that a single framework can support

specifies definition of

service client

specifies client’s use of

reference

advertise

a collection of interfaces

& adds meta-data
service’s interface

Figure 1: The Document-based Model: services are de-
scribed by static documents that advertise the definition
of their interface; clients maintain documents that indi-
cate how the a collection of interfaces are used.

solutions to each. This framework is a middleware layer
that sits above any existing distributed object layer [13].
The new layer extends the traditional distributed compo-
nent programming approach by forcing applications to
expose a portion of their system state as documents.

Specifically, a programs’ remote object usage is sepa-
rated from its internals, in a manner exposing these loca-
tions rather than hiding them. This enables composition
by allowing this state to be manipulated by editing the
component description documents — a function that can
be affected by a third-party independent of the original
application. We call this novel use of standardized exter-
nalization a “document-based” approach. In the frame-
work, application programs and user interface programs
are associated with documents that provide either de-
scription of the available services or flexible association
of user interfaces to these services.

This document-based distributed object management
framework is illustrated in Figure 1.

The document-based approach doesn’t add any function-
ality that couldn’t otherwise be built into an application,
but instead forces there to be a standard layer of indi-
rection between certain references. This indirection is
useful in separating the concerns of the applications and
the middleware. It exposes the mapping between pro-
grams/UIs and the objects to which they refer, thereby
providing a standard location for users (and their pro-
grams) to manipulate these mappings. Such a system
model contrasts with explicitly context-aware applica-
tion designs [24], where location information is either
centralized or must be explicitly manipulated by the ap-
plication to affect change. Instead, our approach is to
interpose a middleware layer between client applications
and services so that invocations between the two can be

transparently remapped. This approach is useful for a
subset of application domains, including that of “remote
control” of local resources (e.g., lights, VCRs, stereo
components, etc.), an example we will treat in detail in
Section 5.

This disassociation of programs/UIs from the objects
they reference is similar to the Model/View/Controller
(M/V/C) architecture from Smalltalk [12]. In the M/V/C
architecture, data (the model) is separated from the pre-
sentation of the data (the view) and events that manip-
ulate the data (the controller). Similarly, documents in
our system act as the glue that associates data to user
interfaces/programs that manipulate and view that data.

How might this framework address the two challenges
presented Sections 1.1 and 1.2: implementing compo-
nent management outside individual applications, and
providing a place where heterogeneity in interfaces can
be detected and addressed?

To enable management/usage orthogonality, we can ex-
ternalize references in the form of a standardized doc-
ument format used by both the application and middle-
ware. The document is referenced by the application
whenever it wishes to make distributed object invoca-
tions, and is referenced and/or modified by the middle-
ware to check or update component locations.

To address heterogeneity in interfaces, we can use our
document model to externalize component descriptions
and user interface mappings. This hybridizes features
of the two basic approaches discussed above, allow-
ing downloading/uploading of code fragments (as spec-
ified by the documents) while imposing only a standard
for interface description and manipulation rather than
application-specific interface types. Structural typing,
similar to the approach of [25], can used for matching of
expected client interfaces to advertised service interfaces
rather than named typing. Because our documents are
described in a dialect of XML, XML queries [4, 22] can
be used for this structural type mapping, and matching on
portions of an interface (a form of subtyping) is naturally
supported. Specifically, the use of the document-based
approach solves two aspects of the heterogeneous com-
ponent interface problem: standardization of entity de-
scriptions as a step toward interoperable manipulation of
such entities, and specification of the mapping between
components and user interfaces that can access them. It
does not directly solve the final portion of the problem,
that of generating entities that wrapper incompatible in-
terfaces. We mention our proposed solution to this final
portion of the problem — using intermediaries that pro-
vide pairwise mapping of method invocations based on

structural typing — in Section 8’s discussion of contin-
uing work.

An additional feature of solving the heterogeneous in-
terface problem in this way is that fractions of service
descriptions that are not handled by any client program
can be used directly to dynamically generate a user in-
terface. This turns out to be quite useful in the domain
of “remote control” applications, our area of primary
investigation.

The rest of this paper elaborates on our document-based
framework. It is structured as follows. Section 2 de-
scribes the investigation approach. Section 3 introduces
XML, motivates its use, and describes the markup tags
we use in the interface description documents. It also
explains how these tags are used in communication end-
point resolution and choosing user interfaces. Section 4
gives details on automatic user interface generation. Sec-
tions 5–6 give examples of the use of the framework for
“remote control” and show document markup examples
along with their related applications. It includes exam-
ples of

� remapping of a portion of an existing room’s user
interface to a new room’s set of controls (for exam-
ple, due to movement of the terminal)

� exposing arbitrary subsets and combinations of the
functionality available to the user, and

� mixing dynamically-generated user interfaces with
existing user interfaces to address the case where
a native user interfaces are not available for all the
components the user wishes to access.

Section 7 describes related work, Section 8 describes
continuing work, and, finally, Section 9 summarizes and
concludes.

2 Project Approach

Leveraging the eXtensible Markup Language (XML)
[30] for syntax, we develop our document schema
as an XML document type definition (DTD). The
schema, called ISL, provides markup tags for language-
independent service descriptions and for mapping UIs
(programs) to referenced services and vice-versa. We
then build software that can heuristically generate UIs
from these service descriptions without associated cus-
tom UIs, and allows mix-and-match use of custom and

generated UIs. Additionally, we built an index applica-
tion that lists the collection of available UIs and services,
allowing a combination of them to be interactively se-
lected for presentation on the user’s machine. Finally,
we prototype applications that use the model, manually
constructing and editing documents to simulate how pro-
grams would automatically manipulate them.

Our prototype application is a “universal remote control”
based on a set of location-based services [9, 10]. The
application provides software remote control of various
rooms’ devices from a mobile, wirelessly-connected lap-
top computer. Manipulations of application documents
allows the controls to adapt as the environment changes
around the user. Specifically, the manipulations provide
for

� the remapping of a portion of an existing user inter-
face to a new room control, e.g., due to movement
of the terminal,

� viewing of arbitrary subsets and combinations of
the functionality available, and

� mixing dynamically-generated user interfaces with
custom user interfaces to address inconsistencies
due to platform heterogeneity.

This functionality is easily represented as operations on
documents containing the associations between between
programs/UIs from the services they reference, exactly
the model described above.

3 The ISL Interface Specification Lan-
guage

3.1 XML

We have chosen to build atop the extensible markup lan-
guage (XML) for our schema design, leveraging its al-
lowances for the creation of custom, application-specific
markup languages.

XML is an SGML subset providing self-describing cus-
tom markup in the form of hierarchical named-values
and advanced facilities for referencing other documents
(ala the HTML <href> tag). It is one protocol among
a group that is touted as the successors to HTML. (The
companion protocols are XSL for style sheets and XLL

for linking mechanisms.) XML includes the ability to
specify, discover, and combine a group of associated
document schemata — otherwise known as document
type definitions (DTDs). Examples include a growing
set of metadata markup proposals such as Resource De-
scription Format (RDF) and the Dublin Core.

Unlike HTML, the set of tags in XML in flexible; the
tag syntax is defined by a document’s associated DTDs.
A key property of XML, then, is that it is dependent on
these schema to be useful, and dependent on agreements
in schema to allow interoperability. Thus, the problem of
defining schema syntax (the tag set and their relationship)
and agreeing on how a schema’s associated “browsers”
(borrowing the HTML term) semantically interpret these
tags is of critical importance to XML’s success.

We believe there is a natural synergy between XML’s
need for schemata and the specification requirements of
Internet distributed object systems — the former provides
a self-describing and extensible syntax with a rapidly
expanding set of metadata tags; the latter provides a
programming model for “Internet objects” described in
XML.

3.2 ISL Usage

The key challenge in implementing our approach is defin-
ing a single schema that:

� denotes services’ interfaces,

� associates relevant programs and UIs to collections
of services, or, vice-versa, lists the service interfaces
expected by particular programs

� can compose and decompose based on constituent
elements, and

� allows for incorporation of service-specific meta-
data (i.e., data that should not affect existing func-
tionality that does not expect it).

We specifiy that a single document format is shared
among all entities in the system. A reference to a service
looks identical to the description of the service, which al-
lows the use of structural type matching to resolve such
references. Encoding the descriptions as XML docu-
ments allows middleware entities to detect documents
they may want to modify via the use of XML queries
[4, 22]; thus providing substructural matching (match-
ing against just a portion of the description) in addition

to structure matching against the entire document tree.
Additionally, the use of XML allows documents to be
programmatically modified using the Document Object
Model (DOM) [1].

As adjuncts to servers, documents act as static inter-
face definitions, and are analogous to CORBA object
IDL descriptions or the result of introspection on a Java
class. As adjuncts to clients, documents act as a stable
but manipulable (composable/decomposable) format for
specifying service collections and references, defining
interactions between services in a collection, defining
the service interfaces expected by programs and user in-
terfaces, and storing arbitrary metadata about referents.
Alongside proxies — entities that act as both a server
and a client — a single document fulfills both duties.

3.3 ISL Syntax

Our document markup language is called ISL, an
acronym for “Interface Specification Language.” We
use six tags in our initial minimal design. Other tags that
appear in our documents are assumed to be application-
specific metadata, and can be ignored by programs that
do not understand them. We now describe each tag in
turn. The ISL DTD is provided in the Appendix A.

The <service> tag is a container tag. It has one op-
tional attribute, “name”, which is either a string or ref-
erence identifying the type/class of the interface being
described. It can contain at most a single <label> tag,
zero or one <addrspec> tags, any number of <ui> tags,
and any number of <method> tags. When converted to a
user interface, an <service> is instantiated as a container
for widgets (a “frame”).

The <label> tag provides a text description of the service
which contains it. It has no optional attributes. It can
contain no additional internal tags except those providing
text formatting. When converted to a user interface, the
<label> tag is used as a title for its parent service’s frame.

The <addrspec> (address specification) tag indicates the
address and port number on which its parent service lis-
tens for method invocations and events. Instantiating
a service causes this tag to be added to its description;
a service that has not been allocated (and thus has no
addrspec) is called “unpinned.” The tag can contain no
additional internal tags and does not have any optional
attributes. When converted to a user interface, the <ad-
drspec> tag is used as the location to which any method
calls are sent (currently via string-based UDP messages

to facilitate ease of multiplexing, multicast support, and
a degree of language/system independence).

The <method> tag defines the name of a method that
can be invoked on the service in which it is contained.
It has two optional attributes: “name”, which is name
of the method call, and “lexType”, which indicated the
lexical type of messages returned due to the method
call (the list of lexical types is described below). The
<method> tag can include (only) zero or more <param>
tags. When used in automatic user interface generation,
each <method> tag is mapped to a frame with contents.
The name of the method is placed on a button at the top
of this frame; pressing this button invokes the method
call. Method invocations and returns are asynchronous,
event-based messages rather than blocking remote pro-
cedure calls. Thus, update events (“replies”) can actually
occur at any time, independent of the manual invocations
at the client. In this manner, <method> tags can also be
used as a means for subscribing to pushed updates from
a service.

The <param> tag indicates a parameter to the <method>
tag that encloses it. It has two optional attributes, “lex-
Type”, indicating the lexical type of the parameter, and
“optional”, a boolean tag that indicates whether the pa-
rameter is required or optional. The <param> tag may
have no additional internal tags, and its contents are as-
sumed to be the name of the parameter. For UI genera-
tion, parameters are mapped to individual user interface
widget objects. Widget objects are used for user input
and to marshall the parameters for method invocations.
Mapping from lexical type to UI widgets is described in
Section 4.

The <ui> tag is used to associate a particular program to
the service in which it is specified. It is unique in that
there is nothing analogus to it in conventional server-
side IDLs — it is useful only for clients and proxies.
The contents of the tag string indicates either the name
of an existing user interface object (assumed to be known
or discoverable out-of-band) that will reference the doc-
ument, or the address and port number from where such
a user interface object can be downloaded. It has one
possible attribute, “lang,” indicating the language of the
indicated program. There can be multiple UI tags for
each service, at all levels of the service description hier-
archy in an ISL document. To work with our framework,
the indicated applications need to reference the docu-
ment (e.g., add their own interface descriptions to it if
they choose to expose one), thereby respecting the indi-
rection exposed by the document-based approach.

4 User Interface Generation

4.1 Basic Approach

Many of the mechanics of generating user interfaces from
interface descriptions were described in the preceeding
section. The remaining features to be discussed are the
heuristic mapping from lexical types to user interface
widgets, and how custom user interfaces indicated by
a <ui> tag can be intermingled with these custom user
interfaces.

Dynamic user interface generation is only useful in a
limited number of application domains: there is limited
internal state maintenance and a lack of protocol transi-
tions. Though both of these limitations can be addresses
through additional markup, doing so blurs the distinc-
tion between the declarative nature of current design and
traditional full-featured scripting languages.

We currently have implemented mappings only from
primitive lexical types to objects wrapped around Tk [21]
UI widgets in the MASH toolkit [15]. Permissable lexi-
cal types include int, real, boolean, enum, string. The int
and real type can have an optional range modifier. They
are mapped to widgets as follows: an int or real with a
“range” modifier is mapped to a scale widget (a slider).
Without a range modifier, they are mapped to an entry
widget (a type-in box). A boolean is mapped to a check-
button widget (a toggle switch). An enum is mapped
to a list of radio-buttons (one-of-N list selection). A
string is mapped to an entry widget. Structured types
are expected to be expressed as (possibly hierarchical)
collections in/of <service> tags, treated as aggregates
through the structural type matching.

Co-mingling generated collections and existing UIs ref-
erenced in <ui> tags is done at a granularity of individual
services. Thus, all services receive a frame, and it is filled
with either the custom-generated contents mapped from
<method> and <param> tags, or the existing UI. The lat-
ter is handed a handle to this window and is expected to
instantiate itself as a child of that window.

4.2 Return Values

One approach to dealing with return values is to require
per-method output type descriptions, and require that
components respect these output descriptions. In this
case, separate entities may be required on the reverse

path to remap this data is there are type mismatches. We
have not incorporated this extension into our software
but believe it to be a straightforward extension. Instead,
we simplify things by forcing the input and output types
to be identical — a form of call-by-reference for all the
arguments. This avoids the need for output specifica-
tions entirely. The simplified approach has the important
benefit that reverse (response) paths can be the same as
the forward (invocation) paths, just in opposite order. In
the more general case, a completely separate response
path might be needed, which both complicates the prob-
lem of attempting to set up such a path and adds more
elements that must be checked by the user for semantics
preservation. An addition important advantage is that it
allows all the widgets on automatically generated user
interfaces to be updated directly from the contents of the
method call results, a convenient mechanism given our
focus on control applications (which are amenable to use
with automatic UI generation because).

5 The Framework in Action

We now illustrate some examples. Each highlights a dif-
ferent element of the design of the overall architecture.
We limit the scope of the examples to a single (varying)
collection of services being referenced by a single (vary-
ing) user interface. Conceptually, though, the framework
is amenable for use with transformational/proxy entities
that are both referenced as a service by a user interface
and perform references to other services to fulfill the
incoming request.

The first example shows an XML document that de-
scribes the interface to a portion of the functionality
available in Soda Hall’s “CoLab” (“Collaboration Labo-
ratory,” borrowing Xerox PARC’s terminology) and the
resulting automatically generated user interface to it, as
shown in Figure 2. The document describes two services,
one contained in the other. The outer service implements
a method for setting a preset for the entire room; the in-
ner service is one of the services referenced by the outer
one (i.e., one of the things affected by the preset) — an
interface to a pair of power switches in the room. These
two services, though notated and used in this hierarchical
manner in this example, can also be controlled indepen-
dently of one another. The <param> tags contain various
lexical types, illustrating our use of heuristic mapping to
widgets. This utility of this functionality is that it allows
users the possibility to interact with dynamically discov-
ered services where otherwise there is no available client
program.

<service name="326">
<label> Soda (CoLab) </label>
<addrspec>spade.cs.berkeley.edu/0001</addrspec>
<method name=’preset’>

<param lextype="string"> person </param>
<param lextype="int:range=1-8"> number </param>

</method>
<service name=’powerswitches’>

<label>powerswitches</label>
<addrspec>spade.cs.berkeley.edu/0002</addrspec>
<method name=’power’>

<param lextype="enum:on,off"> state </param>
<param lextype="int:range=0-1"> port </param>

</method>
</service>

</service>

(a) XML document (b) User interface

Figure 2: An example document and generated user interface.

The second example illustrates combining a downloaded
user interface with a generated one. The document is
identical to that in the previous example except a single
new tag is added: a <ui> tag to the internal (power
switch) service, as shown in Figure 3(a). This causes
that service’s interface to be replaced by the UI object
referenced in the tag rather than generated on-the-fly.
The resultingdifference is illustrated in Figure 3(b). This
example illustrates how dynamic extensions to existing
applications can be seamlessly incorporated using our
architecture, a form of “plug-in” architecture similar to
that used in Photoshop.

The third example illustrates use of the indirection ex-
posed by our “document-based” model. A referent under
a multiple-service <ui> tag is replaced. The document
fragment shown in Figure 4(a) is assumed to be used by
an existing application. The user interface for this appli-
cation is a custom-designed monolithic interface refer-
enced in the topmost <ui> tag. In Figure 4(b), one of the
component services in the container has been replaced.
Because the type of the referenced service remains the
same, only the <addrspec> tag changes. The result of
this change is that the application looks the same, but a
portion of it now references a new service. This function
illustrates the possibility for remapping interfaces due to,
e.g., terminal mobility or fault tolerance. Specifically, the
example takes a portion of the document describing the
interface to the 405 Soda Hall seminar room and remaps
the light switch to the one in the CoLab.

The fourth and final example illustrates the ability to
easily specify the use a subset of the available function-
ality. The document in Figure 5(a) is the same as that
from Figure 4, except all the internal services referenced
from the outermost container object have been omitted.

The resulting user interface is presented in Figure 5(b).
This example shows how a user can easily elide material
not considered relevant or not frequently used. In this
case, we leave only the interface to the light switch ex-
posed, simulating the case where the user has chosen to
save screen real estate because, e.g., controlling only the
lights is the most common usage.

6 The User Environment

In addition to building software to parse ISL and gener-
ate appropriate interfaces, we need to provide the user
with a way to manage the set of documents and avail-
able interfaces. We provide this functionality through
use an “index” application, called “UC” (for “universal
client”), and shown in Figure 6. One the left side of the
application, all services are listed by “type” and address
specification. Each type has an associated document and
an associated user interface. When one of the check-
buttons beside an service name is set, the associated user
interface is displayed for use by the user. Locally edited
files are listed in the index with their name preceded by
a hyphen. This figure illustrates a case where the user
has selected to interact with three services through two
user interfaces. The SodaLights UI is composed of a
native light application for the Soda Hall CoLab and an
automatically-generated UI for room 405. The Camer-
aUI is another native MASH shell user interface.

The Index application provides a front-end a service dis-
covery service (e.g., [2, 27]). Once a component is dis-
covered, if a client-side user interface exactly matching
the component name is available, it is used when then

<service name="326">
<label> Soda (CoLab) </label>
<addrspec>spade.cs.berkeley.edu/0001</addrspec>
<method name=’preset’>

<param lextype="string"> person </param>
<param lextype="int:range=1-8"> number </param>

</method>
<service name=’powerswitches’>

<label>powerswitches</label>
<addrspec>spade.cs.berkeley.edu/0002</addrspec>
<ui lang=mash> PowerSwitchUI </addrspec>
<method name=’power’>

<param lextype="enum:on,off"> state </param>
<param lextype="int:range=0-1"> port </param>

</method>
</service>

</service>

(a) XML document (b) User interface

Figure 3: An example document and associated user interface, this time where a <ui> tag allows for the incorporation
of a custom UI in addition to the generated components.

component is selected. If not, then the components’ ISL
file is downloaded (component advertisements must in-
clude a URL that points to its associated ISL file) and a
user interface is generated automatically when selected.
In our current prototype, other operations must be af-
fected via manual editing of the documents; we are in
the process of creating helper applications that automate
common manipulations such as our cannonical “remap
to local room controls” example.

7 Related Work

This approach is quite similar in flavor to the use of shell
scripting to associate arbitrary programs using the UNIX

pipe facility [14]. Instead of using just file handles (i.e.,
stdin, stdout, stderr) to differentiate and route data, struc-
tured data and cross-network references can be expressed
in a document.

The Configurable Chrome group [17] of the Mozilla.org
open source project is investigating a related effort. This
project aims to allow users to add buttons with arbi-
trary functions to the Mozilla web browser (outside the
main browser window) via specifications notated in a
XUL document [16]. Similarly, the WinAmp MP3 client
provides facilities for customizing the user interface via
changing widget bitmaps, or “skins” [29]. Our approach
is similar to these two approaches in the use of a docu-
ment as a UI description, but adds the ability to reference
full client-side interfaces in the documents rather than
just widgets, and proposes that such descriptions be ma-

nipulated as the program runs.

The TSpaces project at IBM Almaden had proposed
MoDAL [5] as an XML-based interpreted application
description language for mobile Internet devices. In the
system, documents includes such information as screen
size, button tags, and label tags, and there is a two-level
hierarchy: MoDAL applications are downloaded to de-
vices running the MoDAL interpreter. In contrast, we
espouse using documents as peers to application pro-
grams; i.e., there is 1) a “platform” which contains the
interpreter and class libraries, 2) a traditional language
(i.e. a scripting language) layer amenable to wiring to-
gether platform components, creating custom user in-
terfaces, and being passed around on the network [15],
and 3) applicationdocuments that describe interfaces and
how opaque programs are combined.

8 Continuing Work

A logical next step of this work is dealing with mis-
matched service “types.” For example, assume a light
switch in some locale implements a different interface
than the one in the user’s home environment. Rather
than require the use of a dynamically-generated user in-
terface, we’d prefer to allow for the use of an existing
user-interface. To do so, we must transparently remap
method invocations to the new location and also remap
the call parameters to match the new type. Incorpo-
rating such functionality allows far more flexibility in
the reuse of existing user interfaces and intermingling of

<service name="405">
<label> 405 Soda (HTSR) </label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<ui lang=’tcl/tk’>htsr.cs.berkeley.edu/6903</ui>
<service name=’lights’>

<label>lights</label>
<addrspec>htsr.cs.berkeley.edu/6902</addrspec>
<method name=’power’>

<param lextype="enum:on,off,dim"> state </param>
</method>

</service>
...

</service>

(a) Original XML document

<service name="405">
<label> 405 Soda (HTSR) </label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<ui lang=’tcl/tk’>htsr.cs.berkeley.edu/6903</ui>
<service name=’lights’>

<label>lights</label>
<addrspec> spade.cs.berkeley.edu/9999 </addrspec>
<method name=’power’>

<param lextype="enum:on,off,dim"> state </param>
</method>

</service>
...

</service>

(b) Document with replaced referent

Figure 4: Remapping of function by replacing a referent under a multiple-service <ui> tag. A fragment of the
“original” document is show in (a); the modified document is shown in (b), where the only difference is the new
<addrspec> tag. (The <addrspec> tags are highlighted.)

existing interfaces and discovered services, but requires
the use of external transformational operators that pro-
vide type coercion for method calls. Fortunately, such
transformational operators could be written once, reused,
and shared among the community of users; additionally,
they could be chained together in order to provide new
type-to-type coercions [6]. This functionality is a natural
extension of our framework. We are in the process of im-
plementing it by applying the document type conversion
approach of Ockerbloom [20] to interface conversion in
a system comprised of heterogeneous distributed com-
ponents. The approach allows the underlying system
to evolve without forcing agreement on particular com-
ponent interfaces. I.e, in the language of documents,
without requiring a single specific intermediate format
per document style. Instead, independent pairwise con-
versions can be combined in chains (“paths” using the
language of Ninja [18]) to allow end-to-end interoper-
ability amongst semantically matching – but differently
typed – components. Matching transformational op-
erators are determined through the use of evolutionary
structural type matching of components [25], and imple-
ment a form of wrappering [23] to encapsulate one inter-

face in a form usable by another. Additionally, because
such transformational operators can only match based on
structure, there is the potential for semantic discrepan-
cies. To address this, our approach is to require users
to “bless” the use of a particular mapping operator(s)
for use in particular situations. Though such a function
cannot be automated (i.e, a computer cannot understand
the semantics described in a textual documentation), the
overhead can be reduced by allowing such decisions to
be made once and shared among groups of users.

The difficulty of this approach is not in creating these
mapping operators and storing them in a shared repos-
itory, but instead that of building the use of them into
the end-user software. Users should be able to visually
manipulate service mappings and the correct transfor-
mations should be done automatically. As a concrete
example, this means that when a new light switch is
discovered, the user should be able to indicate which
program element should manipulate it, and any required
remapping of method calls — i.e., document manipula-
tions — should be done automatically, though possibly
heuristically. Additionally, users should then be able to

<service name="405">
<label> 405 Soda (HTSR) </label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<service name=’lights’>

<label>lights</label>
<addrspec>htsr.cs.berkeley.edu/0000</addrspec>
<method name=’power’>

<param lextype="enum:on,off,dim"> state </param>
</method>

</service>
</service>

(a) XML document (b) User interface

Figure 5: Subsetting functionality. The example illustrates how functionality can be aggregated or subsetted by
modifying the document associated with a program. The full description of the interface to 405 Soda has been cut
down so that only a single service remains. The user interface is updated accordingly.

easily modify these mappings.

Another important extension of this work is designing
how to notate one service’s use of other so as to allow for
the “proxy” transformational services described above;
this requires separation of input and output interface de-
scriptions. This requires extension and modification of
our schema to allow such notation and extension to the
software to utilize it.

Yet another area under investigation is the need for output
type descriptions as described in Section 4. Similarly, to
support the evolvable structural type matching of [25],
we will need to add “ignorable” and “optional” attributes.

Finally, in order to allow for programmers to more easily
use this document-based model — without having to
manually create interface description documents — we
would like to automatically generate the documents from
existing Java objects and other distributed component
system pieces. To do so, we can leverage the CORBA
Interface Definition Language (IDL) and Java reflection
API to create descriptions in our XML schema. ISL will
need to be extended to support structured parameter types
in order to allow such a mapping, a straightforward, but
clearly important, extension.

9 Summary

Large-scale federation (composition, management, and
control) of distributed Internet components requires re-
consideration of how applications are structured; an ideal
is to allow manipulation in response to changes in needs
or component availability while not burdening applica-
tion designers with details they may not require. We ar-

Figure 6: The Index application lists all locally avail-
able interfaces and allows the user to interactively select
which ones he or she wishes to use. Illustrated here, the
user has selected the aggregate user interface to some
power switches and an interface to a remote-controllable
camera.

gue that distributed object models used with traditional
application development techniques are insufficient for
this purpose because they make remote object references
look like static, unchanging pointers. Instead, changes
should be affected at the level of a middleware layer
(as they are now), but also allowed to be communicated
upward to the applications in a manner allowing the ap-
plications to either ignore such changes or use them.
This paper proposes a new model, a document-based
framework, for description and interaction with Internet
services. We describe a simple version of the framework
in the context of remote control applications, illustrating
how it allows for:

� the remapping of a portion of an existing user inter-
face,

� viewing of arbitrary subsets and combinations of
functionality, and

� mixing dynamically-generated user interfaces with
existing user interfaces.

The use of a document-based framework exposes an in-
direction between programs/UIs and the remote objects
to which they refer, making this mapping explicitly ma-
nipulable, and can be used to generate user interfaces
when custom ones are not available or unacceptable. It
also forms the basis for continuing work on addressing
interface heterogeneity through the use of structural typ-
ing, paired with wrappering in “proxy” transformational
operators.

To implement our scheme, we use an XML-based lan-
guage, ISL, and accompanying software. ISL:

� denotes services’ available functionality, or inter-
face, in a manner designed for interpretation and
ease of manipulation at clients,

� can flexibly compose and decompose based on con-
stituent elements, and

� allows for easy incorporation of service-specific
meta-data via the self-describing, extensible nature
of XML.

10 Availability

The software described herein is available in prototype
form as part of the MASH toolkit, which can be down-
loaded from http://www-mash.cs.berkeley.
edu/mash/.

11 Acknowledgments

The authors would like to thank the students, faculty, and
staff of the MASH, Ninja, and Iceberg projects at UCB.
Thanks to Michelle Munson at IBM Almaden for fruit-
ful late-night discussions on future directions. We would
also like to thank the anonymous reviewers, whose de-
tailed commentary led to improvements in this paper (we
hope). This work was supported in part by grants from
Ericsson, Intel, Sprint, and Motorola, DARPA through

contract DABT63-98-C-0038, the NSF through infras-
tructure grant CDA 94-01156,and the California MICRO
program.

A Schema DTD

The document type definition (DTD) for the inital, min-
imal version of ISL is as follows:

<!ELEMENT service (label?, addrspec?, ui*,
method*, service*)>

<!ATTLIST service
name CDATA #REQUIRED>

<!ELEMENT method (param*)>
<!ATTLIST method

name CDATA #REQUIRED>
<!ELEMENT param (#PCDATA)>
<!ATTLIST param

name CDATA #REQUIRED
lexType (int | real | boolean | enum

| string | ...) ’string’
optional #BOOLEAN>

<!ELEMENT label (#PCDATA)>
<!ELEMENT addrspec (#PCDATA)>
<!ELEMENT ui (#PCDATA)>

References

[1] Tim Bray and Lauren Wood. The W3C Document Object Model
(DOM) – A Programmer’s View of Documents. The Gilbane
Report on Open Information and Document Systems, 6(4):1–13,
1998.

[2] Steven Czerwinski, Ben Zhao, Todd Hodes, Anthony Joseph, and
Randy Katz. An Architecture for a Secure Service Dis covery
Service. In Proceedingsof the Fifth Annual InternationalConfer-
ence on Mobile Computing and Networking, Seattle, WA, August
1999. ACM.

[3] Michael L. Dertouzos. The Future of Computing. Scientific
American, August 1999.

[4] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon
Levy, and Dan Suciu. XML-QL: A Query Language for
XML, August 1998. http://www.w3.org/TR/1998/
NOTE-xml-ql-19980819/.

[5] K. Eustice, T. Lehman, A. Morales, M. C. Muson, S. Edlund, and
M. Guillen. A Universal Information Appliance. IBM Systems
Journal, pages 454–474, August 1999. (to appear).

[6] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Adapting to
Network and Client Variation Using Active Proxies: Lessons and
Perspectives,. IEEE Personal Communications, special issue on
adaptation, August 1998.

[7] Armando Fox. A Framework for Separating Server Scalability
and Availability from Internet Application Functionality. PhD
thesis, University of California, Berkeley, 1998.

[8] Hewlett-Packard. e-Speak White Paper. http://www.hp.
com/go/e-speak/, 1997.

[9] Todd Hodes, Randy Katz, E. Servan-Schreiber, and Larry Rowe.
Composable Ad hoc Mobile Services for Universal Interaction.
Proceedingsof the 3rd ACM International Conference on Mobile
Computing and Networking, pages 1–12, September 1997.

[10] Todd Hodes, Mark Newman, Steve McCanne, James Landay,
and Randy Katz. Shared Remote Control of a Video Conferenc-
ing Application. SPIE Multimedia Computing and Networking,
pages 17–28, January 1999.

[11] InfoSpheres. The InfoSpheres Project. http://
infospheres.cs.caltech.edu.

[12] G. Krasner and S. T. Pope. A Cookbook for Using the Model View
Controller User Interface Paradigm in Smalltalk-80. Journal of
Object-Oriented Programming, August/September 1988.

[13] David Krieger and Richard Adler. The Emergence of Distributed
Component Platforms. IEEE Computer Magazine, pages 43–53,
March 1998.

[14] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman.
The Design and Implementation of the 4.3 BSD UNIX Operating
System. Addison-Wesley, Reading, MA, Nov 1989.

[15] Steven McCanne et al. Toward a Common Infrastructure for
Multimedia-Networking Middleware. Proc. 7th Intl. Workshop
on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV ’97), May 1997.

[16] Mozilla.org. Introduction to a XUL (XML-based User Inter-
face Language) Document. http://www.mozilla.org/
xpfe/xptoolkit/xulintro.html.

[17] Mozilla.org. Mozilla Configurable Chrome. http://www.
mozilla.org/aurora/config.htm.

[18] Ninja. The Ninja Project. http://ninja.cs.berkeley.
edu.

[19] Object Management Group. Common Object Request Broker
Architecture. http://www.omg.org/.

[20] John Mark Ockerbloom. Mediating Among Diverse Data For-
mats. PhD thesis, Carnegie-Mellon University, 1998.

[21] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Pub-
lishing Company, Reading, MA, 1994.

[22] Jonathan Robie, Joe Lapp, and David Schach. XML Query Lan-
guage (XQL). In QL ’98 - The Query Languages Workshop,
December 1998.

[23] M. T. Roth and P. Schwarz. Don’t Srap It, Wrap It! A Wrapper
Architecture for Legacy Data Sources.Proceedings of 23rd VLDB
Conference, 1997.

[24] Bill N. Schilit, Norman I. Adams, and Roy Want. Context-
Aware Computing Applications. In Proceedingsof the Workshop
on Mobile Computing Systems and Applications, pages 85–90.
IEEE Computer Society, December 1994.

[25] Mike Spreitzer and Andrew Begel. More Flexible Data Types.
IEEE Eighth InternationalWorkshopson Enabling Technologies:
Infrastructure for Collaborative Enterprisese, 1999.

[26] Sun Microsystems. Enterprise Java Beans. http://java.
sun.com/ejb.

[27] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service
Location Protocol Internet Draft #17, draft-ieft-svrloc-protocol-
17.txt. IETF, 1997.

[28] Jim Waldo. The Jini Architecture for Network-centric Comput-
ing. Communications of the ACM, pages 76–82, July 1999.

[29] WinAmp. WinAmp skins. http://www.winamp.com/
skins/.

[30] World Wide Web Consortium. eXtensible Markup Language.
http://w3c.org/XML/.

[31] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T Spaces.
IBM Systems Journal, 37(3):454–474, August 1998.

