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Abstract

The ANSI-C Standard de�nes Stdio as the I/O library for C programs. Despite its ubiquitous
use, Stdio has well-documented de�ciencies in various areas including data formatting. The S�o
library provides an alternative to Stdio with improved functionality, robustness and performance.
In particular, S�o extends the data formatting functions so that applications can deal with arbitrary
scalar objects, avoid unsafe operations and even de�ne their own conversion patterns. This paper
discusses these formatting enhancements.

1 Introduction

The Stdio printf()/scanf() family of functions [1, 5]
are the de facto standard for formatting data in
C programs. Many implementations of the C++
I/O operators [9] >> and << are also based on the
printf()/scanf() functions. Despite this popular-
ity, the Stdio formatting functions have a number of
shortcomings:

� Inadequate handling of abstract scalars: The
formatting functions only deal with primitive
scalar types. To format an abstractly de�ned
scalar object, it is customary and even neces-
sary to cast it to some presumed larger scalar
type. For example, on most platforms, a �le
o�set object declared with the Posix type off t

would need to be casted to a long for print-
ing. This trick is not portable since, on a mod-
ern platform, off t may be de�ned on top of a
newer and larger type such as long long.

� Unsafe data scanning: String scanning with
Stdio always runs the risk of over
owing the
bu�er because there is no way to tell the scan-
ning function the bu�er size. Bu�er over
ow
bugs often corrupt memory leading to disas-
trous consquences. These bugs are also hard
to detect.

� Inextensible interface: It is useful to be able to
extend the de�ned set of conversion patterns or
even to rede�ne some of them based on speci�c
needs. For example, if an application de�nes

a type Coord t for spatial coordinates, it would
be nice to be able to de�ne a corresponding for-
matting pattern, say %C, to print or scan such
a type. This cannot be done in the current for-
matting framework.

� Inadequate reuse: The POSIX Standard [8] de-
�nes commands such as printf to format data
in the same style as the corresponding Stdio
functions. Since applications cannot access the
format parsing and argument processing code
in the formatting functions, each tool must in-
vent its own way to perform these tasks. This
unnecessarily duplicates work already done in
library functions and does not help to improve
interface consistency across tools.

The S�o library [3, 7] was introduced in 1991 as
a better alternative to Stdio. In particular, the S�o
data formatting functions outperformed their Stdio
counterparts due to faster integer and 
oating point
value conversion algorithms. Although these early
S�o formatting functions addressed the mentioned
portability and robustness issues in Stdio, they were
still in
exible so that applications could not adapt
them for speci�c needs.

Starting from the 1997 release of S�o, we exper-
imented with extending the formatting functions to
allow both non-standard patterns and alternative ar-
gument processing. The early extensions were useful
but we found through experience that the frame-
work was incomplete and cumbersome to use. For
example, formatting 
ags and values such as width
and precision were not properly packaged and passed



between library and application code when process-
ing non-standard conversion patterns. It was also
impossible to rede�ne existing conversion patterns.
Since then, we have redesigned the extensions to en-
able much more natural cooperation between the for-
matting functions and applications.

The rest of this paper summarizes the new for-
matting features and gives examples of how to use
them. A performance study comparing S�o and var-
ious Stdio versions on the basic printing and scan-
ning tasks shows that S�o outperforms Stdio despite
the additional features.

2 Extended data formatting

The formatting extensions include portable scalar
formatting, safe data scanning, dealing with inte-
gers in general bases, and the ability to de�ne new
formatting patterns or rede�ne existing ones. To ac-
comodate the new extensions, the general forms of
S�o printing and scanning patterns are respectively:

%[pos$][flag][(tstr)][width[.precis[.base]]]z

%[*][pos$][flag][(tstr)][width[.width.base]]z

Arguments such as pos$, width, etc. are the same
as de�ned in the ANSI-C Standard. The base argu-
ment is introduced to accomodate generalized scalar
and string processing.

The argument (tstr) is used to de�ne a string
that will be passed to an extension function if one is
de�ned. Section 2.5 discusses how applications can
use such data for non-standard conversion patterns
and argument processing.

The below subsections discuss the new extensions.
We mostly present printing examples, but scanning
examples work in a similar way.

2.1 Portable scalar formatting

Certain platforms provide 64-bit integer and 
oat-
ing point values via types such as long long and
long double. These types are handled di�erently in
di�erent Stdio implementations. For example, the
Microsoft-C version provides an I64 
ag to specify
a 64-bit integer while other Unix platforms use the
more general 
ag ll for the same purpose.

S�o generalizes the ll 
ag to deal with the largest
primitive types on a particular platform. In fact,
to ensure portability, S�o provides types such as
Sflong t, Sfulong t or Sfdouble t that are always
mapped to the largest primitive types available. The
following examples show how to use the ll 
ag in
printing or scanning objects with large types:

Sflong_t intval;

sfprintf(sfstdout,"%lld", intval);

Sfdouble_t fltval;

sfscanf(sfstdin,"%llf", &fltval);

The ll 
ag enables printing of abstract types that
may be mapped to di�erent primitive scalar types on
di�erent platforms. For example, the familiar ANSI-
C size t for memory size and the POSIX off t for
�le o�set are often mapped to unsigned int and long

respectively. But off t may also be mapped to the
type long long on platforms that support very large
�les. To print a value de�ned by an abstract scalar
type, one should cast it to the largest corresponding
scalar type and use the ll 
ag with an appropri-
ate conversion pattern. For example, an off t value
should be printed by casting to Sflong t and using
the pattern %lld as follows:

off_t offset;

sfprintf(sfstdout,"%lld", (Sflong_t)offset);

Unfortunately, the above trick does not work with
scanning since the scanned value must be stored in a
location with a speci�c type. Printing performance
is also suboptimal if arithmetic operations on such
large types are more expensive than that on nor-
mal types. Various proposals are being debated by
the C9X Standard Committee [4] to solve this prob-
lem. For S�o, since we already needed to provide
the Microsoft-C 
ag I64 for portability, we simply
took the opportunity and generalized this 
ag to al-
low speci�cation of objects with arbitrary sizes. The
below examples show how this works:

sfprintf(sfstdin,"%I4d",intval);

sfprintf(sfstdin,"%I*d",sizeof(intval),intval);

sfscanf(sfstdin,"%I*f",sizeof(fltval),&fltval);

sfprintf(sfstdout,"%I64d",big_long);

The �rst line indicates that the integer value
intval is an object whose size is 4 bytes, i.e., a 32-bit
integer. The second line is more general and sup-
plies the size of intval via `*'. This will work with
integers of any size. The third line is similar to the
second line but for scanning a 
oating point value.
The fourth line shows that, for compatibility with
Microsoft-C, the value 64 can be used to identify a
64-bit integer.

The above use of 64 to indicate bit size instead
of byte size is potentially ambiguous. However, it
will be a long time before we need to worry about
machines with 64-byte words. In the mean time, it
solves a practical problem.



2.2 Safe data scanning

The string scanning patterns %s, %c and %[] are often
unsafe to use due to bu�er over
ow problems. The
aforementioned I 
ag can be used to de�ne bu�er
sizes. Specifying a bu�er size does not limit the
amount of scanned data. Rather, scanned data ex-
ceeding the bu�er limit are discarded. Below are two
scanning examples where the second one is slightly
more general than the �rst:

char buf[10];

sfscanf(sfstdin,"%I10s",buf);

sfscanf(sfstdin,"%I*s",sizeof(buf),buf);

In both cases, at most 9 bytes will be copied into
the bu�er. Further input data will be scanned but
discarded. S�o reserves one byte from the bu�er for
the �nal null character.

2.3 Integers in general bases

The patterns %i, %u and %d can format in bases from
2 to 64. The syntax [width[.precision[.base]]] is
used so that a base is de�ned if and only if exactly
two dots have appeared. If a base is not validly
de�ned, base 10 is used. Below are the 64 digits
used to represent numbers:

0123456789

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ @_

Pattern Value Result
%..2d 123 1111011

%#..2d 123 2#1111011

%#..16d 12345 16#3039

%#..34d -12345 -34#an3

%#..63d 123456789 63#7QKgA

Table 1: Integer values in general bases

Table 1 shows examples of printing numbers in
general bases. The 
ag # outputs a number in the
form base#representation where base is decimal and
representation is in the digits for that base.

2.4 Character and string arrays

In addition to handling characters and strings,
the string patterns %c and %s can also print null-
terminated arrays of characters or null-terminated
arrays of strings. To format an array, a sep-
arator must be supplied based on the syntax
[width[.precision[.separator]]]. That is, a sep-
arator is de�ned if and only if exactly two dots have

appeared. When the separator is given in the format
string, it must be a non-alphanumeric character and
appear immediately before the conversion pattern.
Each formatted character or string always obeys the
layout rules de�ned by width and precision. Below
are three example formatting calls and results:

sfprintf(sfstdout,"%..:c", "abc");

a:b:c

sfprintf(sfstdout,"|%6..*s|", '|', words);

| trez| tres| three|

sfprintf(sfstdout,"%..s", words);

treztresthree

The second and third examples assume that the
null-terminated array words contain three words:
trez, tres and three. In the second example, the
�eld width for each word is 6 and the '*' means to
get the separator from the argument list. In the
third example, the separator is not de�ned so the
strings are simply output one after another.

2.5 Extended format processing

Applications can both de�ne new conversion pat-
terns and rede�ne existing ones. In addition, it is
also possible to use call-back functions to get the ob-
jects to be formatted instead of getting them from
the function argument list. This ability is impor-
tant for implementing certain Posix commands such
as printf that mimics the Stdio function with the
same name but whose arguments are given as strings
on the command line.

In the below, we �rst describe the mechanisms to
extend formatting, then give examples of how they
may be used. Readers not yet acquainted with these
extensions may prefer to reverse the order by reading
the examples �rst before learning the details of the
mechanisms.

2.5.1 Formatting environments and stacks

A typical formatting call has as input arguments
a formatting string with conversion patterns and a
corresponding argument list of the objects to be for-
matted based on the speci�ed patterns. Such a for-
matting string and argument list is called a format-
ting pair.

To extend pattern processing, we de�ne format-
ting environments in which both formatting pairs
and associated call-back functions can be given.
We further allow these multiple formatting environ-
ments to be stacked on top of one another on an
environment stack for recursive pattern processing.



Sffmtext_f extf;

Sffmtevent_f eventf;

char* form;

va_list args;

int fmt;

ssize_t size;

int flags;

int width;

int precis;

int base;

char* t_str;

int n_str;

Figure 1: The extended formatting environment

A formatting environment is of the type Sffmt t

with elements as shown in Figure 1:

� The �rst four members of an Sffmt t object
should be set by the application before passing
to the formatting function. The event-handling
function eventf, if not NULL, is called to pro-
cess events such as popping the stack. form and
args de�ne a new formatting pair if form is not
NULL. The extension function extf, if not NULL,
is called to process conversion patterns.

� The next six members of Sffmt t are used by the
formatting function and extf to exchange data
about the pattern being processed. For exam-
ple, on the call to extf, the formatting function
sets fmt to the pattern being processed. On
return, extf may reset that �eld to redirect fur-
ther processing.

� The last two members of Sffmt t are used by a
formatting function to pass to extf the (tstr)

string that S�o allows in specifying a conver-
sion pattern. Section 2.5.5 shall discuss a use
of such strings to unify formatting at the com-
mand level.

Each formatting call maintains a separate format-
ting stack whose bottom is a virtual formatting envi-
ronment that consists only of the original formatting
pair. A new conversion pattern %! is used to either
push a new formatting environment onto the format-
ting stack or change the extension functions of the
top environment. This works as follows:

� When the pattern %! is encountered during
processing of a format string, the formatting

function obtains the corresponding Sffmt t ob-
ject. Then, if the form �eld of this object is not
NULL, the new environment is pushed onto the
stack and processing will start with the new for-
matting pair and extension functions. On the
other hand, if form is NULL, only the extension
functions of the current top environment are
changed to the new ones and processing con-
tinues with the current formatting pair.

� The stack top is popped whenever its format
string is completely processed or if a call to
an extension function returns a negative value.
When this happens, the current eventf function
will be called to allow the application to per-
form any �nalization actions (e.g., freeing the
formatting environment object).

� To process a conversion pattern, the formatting
function �rst �lls the relevant Sffmt t �elds with
data such as the current states of the format
string and the argument list, the formatting
pattern, object size, 
ags, width, precision, etc.
Then, it makes the call (*extf)(f,v,fe). Here
f is the stream, v is a pointer to an object suit-
able for storing a scalar or pointer value, and fe

is the given Sffmt t object.

� The return value of extf is handled as follows:

{ A negative value pops the stack. Process-
ing will continue with the newly revealed
top environment if there is one. If there is
no more environment, the formatting func-
tion will return.

{ A positive value means that extf has �n-
ished formatting this pattern and also in-
dicates the amount of stream data that
extf reads or writes. The calling format-
ting function will record this amount, then
continue processing of the format string.

{ A zero value indicates that the format-
ting function should take over process-
ing this pattern. The extension function
may redirect processing by modifying the
Sffmt t object to change the formatting
pattern and other associated formatting
attributes. In fact, if the original pattern
was not one already de�ned by S�o, extf
should reset the �eld fmt to one already de-
�ned. Otherwise, this conversion pattern
will be ignored.



1. timeprint(Sfio_t* f,Void_t* v,Sffmt_t* env)

2. { if(env->fmt == 't')

3. { time_t t = va_arg(env->args,time_t);

4. *((char**)v) = ctime(&t);

5. env->size = -1;

6. env->fmt = 's';

7. env->flags |= SFFMT_VALUE;

8. }

9. return 0;

10. }

11. error(char* form, ...)

12. { Sffmt_t fmt;

13. va_list args;

14. static int count;

15. va_start(args,form);

16. fmt.form = form;

17. va_copy(env.args,args);

18. fmt.extf = timeprint;

19. fmt.eventf = (Sffmtevent_f)0;

20. sfprintf(sfstderr,"Error #%d, %!.\n",

++count, &fmt);

21. va_end(args);

22. }

23. error("%t:\n\tTrying to allocate %d bytes",

time(0), 1024);

Error #1, Tue Dec 1 00:39:46 EST 1999:

Trying to allocate 1024 bytes.

Figure 2: An error processing function

2.5.2 De�ning a new pattern

Figure 2 shows how to implement a function error()

that prints all normal conversion patterns and also
supports a new pattern %t to convert a clock value
to a date string. This example also shows how the
formatting stack is used.

Lines 1-10 de�ne an extension function
timeprint() to interpret the new conversion
pattern if it is speci�ed. Other patterns are simply
deferred to the calling formatting function.

Lines 3-4 obtain the time value and convert it to a
date string. The use of time t to get a value o� of an
argument list is possible here because timeprint() is
an application routine. Both time t and ctime() are
de�ned in the ANSI-C Standard.

Lines 5-7 reset the formatting pattern env->fmt

to `s' and env->size to -1 and also add the bit

ag SFFMT VALUE to env->flags. These actions tell
sfprintf() that timeprint() is returning a null-

terminated string to be printed. Although not nec-
essary in this example, the extension function should
always make sure that associated formatting at-
tributes such as width, precision and base are reset
properly along with resetting a conversion pattern.

Lines 11-22 de�ne a function error() to print er-
ror messages with embedded conversion patterns in-
cluding %t.

Lines 15-19 construct a formatting environment
fmt from the function arguments and the extension
function timeprint().

Line 17 shows the use of the macro function
va copy to copy argument lists. This macro func-
tion is provided by S�o for portability.

Line 20 calls sfprintf() to do the actual format-
ting. This call �rst outputs an error count. Then
when it encounters the pattern %!, it stacks fmt to
start processing the arguments of error(). When
that is �nished, the stack is popped and processing
returns to the original formatting string to output
the �nal period.

Line 23 gives an example of how error() may be
called to print an error message concerning an alloca-
tion error. The %t pattern is treated by timeprint()

in the described manner. However, timeprint() sim-
ply returns 0 for the %d pattern so that sfprintf()

will continue with normal processing. An example
output is shown after the error() call.

2.5.3 Rede�ning a pattern

Figure 3 shows an example that rede�nes the
system-de�ned pattern %c and also de�nes a new
pattern %C to print a pair of real numbers in two
di�erent ways, as a complex number or as a two-
dimensional coordinate. The former is presented as
a pair of numbers in parentheses while the latter is
presented in angle brackets.

Lines 1-4 de�ne the object type Obj t, a struct

with two 
oating point value members.

Lines 5-17 de�nes the extension function
objprint() to print an Obj t object based on the
speci�ed formatting patterns. The default clause of
the switch statement shows that objprint() returns
0 on all conversion patterns other than %c and %C.
This means that sfprintf() will continue process-
ing them normally.

Lines 8-13 show how recursive calls to sfprintf()

are used to process the patterns %c and %C. In each
case, data is output directly to the stream. The
output amount is returned to indicate to the the
original sfprintf() call that the pattern has been
completely processed and also so that sfprintf()

can correctly update its output count.



1. typedef struct obj_s

2. { double x;

3. double y;

4. } Obj_t;

5. objprint(Sfio_t* f,Void_t* v,Sffmt_t* env)

6. { Obj_t* o;

7. switch(env->fmt)

8. { case 'c': /* print a complex number */

9. o = va_arg(env->args,Obj_t*);

10. return sfprintf(f,"(%g,%g)",o->x,o->y);

11. case 'C': /* print a coordinate pair */

12. o = va_arg(env->args,Obj_t*);

13. return sfprintf(f,"<%g,%g>",o->x,o->y);

14. default :

15. return 0;

16. }

17. }

18. Sffmt_t fmt;

19. fmt.form = (char*)0;

20. fmt.extf = objprint;

21. Obj_t obj = {1.11, 2.22};

22. sfprintf(sfstdout,"%!%c\n",&fmt,&obj);

(1.11,2.22)

23. sfprintf(sfstdout,"%!%C\n",&fmt,&obj);

<1.11,2.22>

Figure 3: Printing user-de�ned data

Lines 18-20 construct a formatting environment.
The �eld fmt.form is set to NULL so that only the
extension function of the current top environment
would be changed to objprint().

Lines 21-23 initialize an object obj with the shown
values, then print it both as a complex number and
as a two-dimensional coordinate. The resulting out-
puts are shown along with the respective calls.

2.5.4 Application-de�ned arguments

Figure 4 shows how to extend sfprintf() so that the
values to be formatted can be obtained either from
the argument list or via a call-back function that
gets them from the process environment.

Lines 1-18 de�ne the function envprint() to pro-
cess environment variables. The special processing
is done only when an environment variable name is
given via the use of the (tstr) syntax.

Lines 4-5 construct the name of the environment
variable. This explicit construction is necessary be-
cause the (tstr) string env->t str is not necessarily
null-terminated.

1. envprint(Sfio_t* f,Void_t* arg,Sffmt_t* env)

2. { char name[1024], *v;

3. if(env->n_str > 0)

4. { memcpy(name,env->t_str,env->n_str);

5. name[env->n_str] = 0;

6. if((v = getenv(name)) && *v)

7. { *((char**)arg) = v;

8. env->size = -1;

9. env->fmt = 's';

10. }

11. else

12. { *((char*)arg) = '?';

13. env->fmt = 'c';

14. }

15. env->flags |= SFFMT_VALUE;

16. }

17. return 0;

18. }

19. Sffmt_t ft;

20. ft.extf = envprint;

21. ft.form = (char*)0;

22. sfprintf(sfstdout,"%!%s=%(*)d\n",

&ft, "LINES", "LINES");

LINES=24

23. sfprintf(sfstdout,"%!%s=%(*)s\n",

&ft, "SHELL", "SHELL");

SHELL=/bin/ksh

24. sfprintf(sfstdout,"%!%s=%(*)s\n",

&ft, "UNKNOWN", "UNKNOWN");

UNKNOWN=?

Figure 4: Application-de�ned arguments

Lines 6-15 attempts to obtain the value of the
speci�ed environment variable. If this value exists,
it is returned in the given argument arg. The conver-
sion pattern is changed to `s' since this is a string. If
the value does not exist, the character `?' is returned
and the conversion pattern is accordingly changed to
`c'. In either case, the 
ag SFFMT VALUE is set to in-
dicate that further processing of the returned value
is needed by the orginal sfprintf() call.

Lines 19-21 set up a new formatting environment.
Since the �eld form is set to NULL, only the extension
function of the current top formatting environment
on the formatting stack will be changed.

Lines 22-24 give examples of printing the names
and values of three environment variables: LINES,
SHELL and UNKNOWN. In each case, the conversion pat-



tern %! is used to change the extension function to
envprint(). After that, processing continues with
the current formatting string and argument list.
This would cause the name of the variable and the
character `=' to be output. Then, the * directive in
the \(tstr)" construct obtains the second instance
of the variable name from the argument list to pass
on to envprint(). In turn, the envprint() call com-
putes and returns the value of the speci�ed environ-
ment variable in the manner described above.

2.5.5 Command-level formatting

Commands like ls, ps and �nd can produce data
in tabular formats. Classic implementations provide
a variable format controlled by option 
ags, each

ag enabling another column in the formatted out-
put. These commands have been independently ex-
tended by various groups to allow printf-style spec-
i�cations, but because of the earlier lack of a pro-
grammable printf interface, such extensions are of-
ten incompatible.

The S�o \(tstr)" construct allows a common
syntax for extending formatting at command level.
For example, our ls command provides a -f format
option that accepts format parameters of the form:

%[-+][width[.precis[.base]]](id[:subformat])char
Here, id is path or any member of the

<sys/stat.h> stat structure (with the leading st

omitted.) If char is s then the string representation
of the item is formatted; otherwise, the integer form
is formatted. Consider the below example option:

-f '%(mode)s %(mtime:time=%H:%M:%S)s %(path)s'

This would print:

� The �le mode in the style of ls -l,

� The �le modify time using the strftime(3) for-
mat %H:%M:%S (hours, minutes, seconds), and

� The �le path name.

Within the ls implementation, such an option is
simply passed to the formatting function sfprintf()

after a formatting environment has been set up with
an appropriate extension function that knows how
to interpret the mentioned (tstr) strings. Then,
sfprintf() parses the format string and calls the
extension function for actual formatting.

Figure 5 shows parts of an extension function
lsprint() to interpret the above example (tstr)

strings for printing the path name and modi�cation
time of a �le. Although this code is not the same as

1. typedef struct _lsfmt_s

2. { Sffmt_t fmt;

3. struct stat* sb;

4. char* path;

5. } Lsfmt_t;

6. lsprint(Sfio_t* f,Void_t* arg,Sffmt_t* env)

7. {

8. Lsfmt_t* ls = (Lsfmt_t*)env;

9. if(...path name...)

10. { *((char**)arg) = ls->path;

11. env->size = -1;

12. env->flags |= SFFMT_VALUE;

13. return 0;

14. }

15. else if(...modification time...)

16. { char buf[1024], pattern[1024];

17. ...extract strftime() pattern...

18. strftime(buf, sizeof(buf), pattern,

19. localtime(ls->sb->st_mtime));

20. return sfwrite(f,buf,strlen(buf));

21. }

22. ...

23. }

Figure 5: Printing �le modi�cation time

in our implementation of the ls command, it shows
how the formatting extensions may be used.

Lines 1-5 de�ne a type Lsfmt t that combines the
Sffmt t type, a struct stat* for a �le status object,
and a char* for the �le name. In this way, the ls
application can pass along the �le status data and
�le name to the formatting function. C casting rule
allows a pointer to a Lsfmt t object to be treated
as a pointer to an Sffmt t object. This way of ex-
tending a data structure to be passed back and forth
between the library and the application code is com-
monly used in our libraries based on the discipline
and method library architecture[10].

Line 9 identi�es a formatting request for a path
name via examining the string env->t str to see if
it de�nes the id path.

Lines 10-14 simply return the path name as a
string to be further processed by the calling format-
ting function.

Line 16 identi�es the print modi�cation time re-
quest by examining the string env->t str to see if it
de�nes the id mtime.

Line 18-20 extracts from the form �eld the con-
version string %H:%M:%S to pass to the ANSI-C func-
tion strftime(). This conversion string is assumed



to be stored in the bu�er pattern. The function
localtime() is called �rst to convert the time t value
env->sb->st mtime to an object of the type struct

tm as required by strftime(). Both strftime() and
localtime() are de�ned in the ANSI-C Standard.

Line 21 writes the result out to the given stream
and returns the number of bytes written. Subse-
quently, the formatting function continues with pro-
cessing the format string.

3 Performance

The new features do add complexity to the format-
ting functions. Since many applications, especially
those based on Stdio, only use the basic formatting
tasks, we need to assure that their performance are
not adversely a�ected by the new features when they
are not used. Toward this end, we perform a study
comparing S�o against various Stdio versions on ba-
sic data printing and scanning tasks.

Hardware MHZ OS

O Pentium II 200 SCO UNIX 3.2
K Pentium II 333 UWIN/WIN32
F Pentium II 333 Linux 2.2.12-20
W Pentium II 450 BSDI 4.0.1
D HP9000/889 400 HP-UX B.10.20
G UltraSparc2 2x300 SUNOS 5.6
R SGI Origin 200 4x270 IRIX64 6.5
T DEC-Alpha 500 UNIX V4.0D

Table 2: Tested platforms

Table 2 shows the platforms used in the perfor-
mance study. The �rst four systems are PCs running
various Unix operating systems. UWIN/WIN32 is
David Korn's UWIN system [6] that provides a Posix
layer on top of the WIN32 environment. The last
four are large servers from Hewlett-Packard, Sili-
con Graphics, Sun Microsystems and Digital Equip-
ment running some respective Unix operating sys-
tems available from the vendors.

The conditions of the experiments were as follows:

� A test program prints 25,000 lines out to a �le,
then scanning the same lines back. Each line
contains an instance of each of the patterns:
c,d,o,x,f,e,s. The amount of data generated
per run is about 1.7Mbs.

� To ensure uniformity, we wrote a single test pro-
gram based on the Stdio interface. To test Stdio
on a particular platform, we simply compiled
the program using the native stdio.h header

and library. To test S�o, we compiled the
program using the source compatibility header
stdio.h provided by S�o. This header mapped
Stdio calls to S�o calls mostly via macros. Such
mappings did add some more work to the S�o
tests but we deemed that to be insigni�cant
compared to the work done by the formatting
tasks themselves.

� For UWIN/WIN32, the native WIN32 Stdio
was used instead of the UWIN Stdio since the
latter is just the same source compatibility in-
terface provided by S�o.

� The test programs always performed I/O to a
same �le in /tmp. In our environment, this en-
sured that the �le would be on a disk local to
the processing computer.

� All test runs were performed at night on lightly
loaded machines. In fact, most machines were
single user during the tests except for platform
R, a large compute server.

� Times shown are totals of CPU and System
time measured in seconds. Each data point was
obtained as follows. Each test was run nine
times. Then the highest two and lowest two
values are discarded to remove certain outliers
due to �le caching e�ects on some platforms.
The remaining �ve values are then averaged to
produce the �nal result.

Printing Scanning
S�o Stdio S�o Stdio

O .82 1.01 .86 1.00

K .42 1.96 .61 .73

F .52 1.29 .66 1.22

W .21 .43 .26 .30

D .85 .90 2.06 2.07

G .75 .85 .78 1.09

R .40 .40 .49 .70

T .25 .26 .33 1.39

Table 3: Timing results

Table 3 presents timing results on the mentioned
platforms. Figure 6 shows the same data in bar
charts. Below are a few comments on the data:

� S�o outperforms Stdio on all platforms. Most
of the improvement is due to new data con-
version algorithms. For example, the decimal
printing algorithm uses table look-up and an in-
line binary search to compute digits instead of
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Figure 6: Formatting performance

the usual method of division and modulo by 10.
This works particularly well on hardwares such
as SUN SPARCs that use function calls for divi-
sion and modulo. A full description of the S�o
conversion algorithms is not appropriate for this
paper whose focus is on the new formatting fea-
tures. Interested readers can peruse the freely
available S�o source code for details.

� It should be noted that S�o is built from a sin-
gle source base but con�gured di�erently on dif-
ferent platforms. For optimal performance, it
is important that certain basic functions, e.g.,
string or memory copy, are matched to the best
available methods on a particular platform. We
use the tool I�e[2] to automatically detect and
compare di�erent functions made available by
a platform for the same purposes and generate
appropriate con�guration parameters.

� The native Stdio on platform K, Windows NT,
has the worst printing performance relative to
S�o. Some of this poor performance is due the
bu�ering strategy of the I/O package (i.e., small
stream bu�er) but a larger part is due to anti-
quated conversion algorithms.

� Platforms K and F are based on the same
processor but use di�erent operating systems,
UWIN for K and Linux2.2.12 for F. The S�o
performance is slightly poorer on F than on K.
To see if this di�erence is due to compilation
environments, we reran the S�o tests on plat-
form K after recompiling with gcc version egcs-
2.91.66, the same compiler on Linux2.2.12. The
S�o printing and scanning times on K are then
0.80s and 0.77s respectively. This shows that
either gcc generates worse code than the native
Microsoft-C compiler or its supporting libraries
are not as optimized as the Microsoft-C ones,
or both. Since the gcc-based timing results on
K are also worse than that on F, it is likely that
the support libraries for gcc on F are more op-
timized than on K.

� The printing performance of Stdio on platforms
G, R and T is close to that of S�o but its scan-
ning performance is relatively much worse. This
is particularly bad on T where Stdio scans data
at a rate 4 times slower than S�o. Since printing
is more popular than scanning, perhaps these
platforms recently improved their printing fa-
cilities though not the scanning ones.

� Platform D clearly has the worst performance
in both printing and scanning. This is espe-
cially disappointing given the advertised proces-
sor speed. Since the timing results are similar
between S�o and Stdio, the poor performance
must be due to the platform itself, i.e., the com-
piler or the support standard libraries.

The additional formatting features to de�ne new
patterns or rede�ne existing patterns do incur cost
due to extra function calls. To see how much this
cost might be, we wrote test programs to print a
sequence of complex numbers whose real and imagi-
nary parts are equal and range from 1 to n. For any
given n, all programs produced identical output. Be-
low are brief descriptions of the programs:

� s�o%c: This prints numbers using the method
shown in Section 2.5.3.

� s�o: This prints numbers using the format
string \(%g,%g)" in direct sfprintf() calls. For
fair comparison with s�o%c, the program con-
structs Obj t objects before using their parts in
the printing calls.

� complex: This uses the complex<double> type
in C++ and the output operator >> to print
numbers to the standard output.
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All programs were compiled on platform R us-
ing the compiler g++ version 2.95. Figure 7 shows
CPU+System times from test runs with n from
100,000 to 1,000,000 in increments of 100,000. Not
surprisingly, the program s�o using direct sfprint()
calls was fastest. The mapping of the new conver-
sion pattern in s�o%c increased computation cost
by about 50% relative to s�o. The program com-

plex was slowest, about twice slower than s�o%c

and three times slower than s�o. This shows that
there is a signi�cant performance cost to use the new
extensions. However, this cost is not unreasonable
in light of the cost incurred by a commonly used I/O
facility in C++.

4 Conclusion

We discussed a number of extensions made to the
printing and scanning functions in the S�o library.
These extensions enable safe and 
exible manipula-
tion of strings and scalar objects. Data formatting
is fully generalized so that applications can provide
their own interpretation of the conversion patterns
and also de�ne new ones. Examples were given to
show how the new features enable applications that
would be hard to build using Stdio.

A performance study was presented to show that,
despite the additional formatting features, S�o still
performed as well or better than currently popular
Stdio implementations when only standard format-
ting tasks are done. A separate experiment showed
that the extended formatting features to de�ne new
patterns and/or rede�ne old ones could incur sig-
ni�cant cost due to extra function calls. This cost
should be balanced against the extra programming

exibility.

Although the S�o's API is distinct from Stdio's,
S�o does provide source and binary compatibility

packages for programs written on top of Stdio. The
extensions discussed here are orthogonal to the fea-
tures de�ned in the ANSI-C Standard[1]. Therefore,
they can be transparently used by Stdio applications
that are compiled or linked with the compatibility
packages provided by S�o.

Code availability

The source code for S�o is freely available at:

http://www.research.att.com/sw

In addition, related commands and libraries are
available at:

http://www.research.att.com/sw/download
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