
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

E F F I C I E N TL Y S C H E D U L I N G X C L I E N T S

Keith Packard

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

EÆciently Scheduling X Clients

Keith Packard

XFree86 Core Team, SuSE Inc.

keithp@suse.com

Abstract

The X server is charged with providing window sys-
tem services to many applications simultaneously,
and needs a scheduling mechanism to distribute it's
limited resources among these applications. The
original scheduling mechanism was simplistic and
caused graphics-intensive applications to starve in-
teractive applications.

A new scheduling mechanism has been designed
which fairly distributes time among the requesting
applications while at the same time increasing per-
formance by a small amount. Descriptions of the
original and new scheduling mechanism and em-
pirical measurements demonstrating the e�ects of
scheduling within the X server are included along
with a discussion on how the design was arrived at.

1 Problems to be solved

1.1 User Feedback Latency

A window system provides an interface between ap-
plications and the user, it doesn't receive, transmit
or process the underlying data. As such, it focuses
on collecting user input, distributing it among the
applications and displaying the resulting changes in
application state to the screen. For a satisfactory
user experience, the delay between event generation
and the change in display should be small. As the
window system is dependent on the application to
generate the appropriate display changes, the delays
within the window system should be kept as small
as practical.

1.2 Smooth Animation

While the eye will accept more jitter than the ear,
animations still require relatively consistent delays
between frames. For the window system, this means
that when time is scarce, it must parcel it fairly
among applications and with �ne enough granular-
ity to provide a smooth degradation in frame rates.

1.3 Inter-client synchronization

The X Sync Extension [GCGW91] provides a way of
synchronizing X clients with other X clients and var-
ious other events. It also provides priorities which
are used to schedule among active clients. For this
to work well, the X server must minimize the time
needed to recognize clients when they become ac-
tive.

1.4 Speed

Advances in hardware have made the core X graph-
ics operations fast enough in most environments.
However, changes which reduce performance are
never well received. While X provides for simultane-
ous active windows, frequently only a single appli-
cation is drawing. Especially when measuring per-
formance with benchmarks. Any improvements in
behavior under heavy load must not negatively im-
pact the common case of a single busy application.

2 Characterizing Scheduler Perfor-

mance

To e�ectively analyze the performance of scheduling
changes some empirical measurements are helpful.

Based on the problems identi�ed above, the follow-
ing measurements can be made:

2.1 Measuring Latency

Each X event contains a timestamp marking when
the event was generated within the X server. For in-
put events, this should mark the time of the physical
action. However, the Linux kernel doesn't provide
timestamps marking when the event was received
by the kernel, so the X server marks the time they
were received by the X server. For mouse events,
this is done from within a SIGIO handler and so is
relatively close to the physical time.

Applications can cause the X server to generate
timestamped PropertyNotify events. By doing this
after rendering the feedback and then measuring the
di�erence between the event time and the associated
property notify time, a reasonable measurement of
user latency can be obtained.

2.2 Animation Update Jitter

Because the X protocol is asynchronous, there can
be a large delay from when the application makes a
rendering request to when the resulting update ap-
pears on the screen. While this delay is important,
the jitter generated by di�erences in scheduling are
more visible to the user. Therefore, two di�erent
measurements are needed to accurately assess the
performance of the system. The delay between when
the application generates the rendering requests and
when they are displayed measures the latency. The
time between displayed frames provides a measure
of the jitter in the display.

Again, PropertyNotify events can be used to deter-
mine the time at which rendering was completed.
The X server computes timestamps for events us-
ing the system clock, so as long as the application
and X server share the same clock, the delay from
generation to display can be measured.

2.3 Measuring Speed

X11perf [MKA+94] is an application used to ana-
lyze X server performance and to generate bench-
mark numbers. This tool can be used to accurately

measure the performance impact of changes made
to the X server.

3 Existing Practice

The original scheduling algorithm in the X server as
developed at Digital in 1987 was relatively simplis-
tic. X applications were modest in their demands
on the server as the bulk were simple text-based
applications such as emacs or xterm.

Soon thereafter some simple demonstration applica-
tions were written which would render the X server
essentially unusable. Plaid is one of these. It sends
an endless stream of rendering requests to the server
of just the right length to tie up the system for long
periods of time.

Real applications with such behavior were not far
behind, today users have a wide variety of increas-
ingly complex applications that ask much from our
venerable protocol. The primitive scheduling which
was an occasional annoyance ten years ago has be-
come more of a problem today.

3.1 The Original Algorithm

The sample X server is a single-threaded network
server, each client connects to the service using a
well known port and sends requests over that con-
nection for processing by the server. Replies, asyn-
chronous events and errors are returned over the
same link. As with many single-threaded network
server applications, the X server uses select(2) to
detect clients with pending input.

Once the set of clients with pending input is deter-
mined, the X server starts executing requests from
the client with the smallest �le descriptor. Each
client has a bu�er which is used to read some data
from the network connection, that bu�er can be re-
sized to hold unusually large requests, but is typi-
cally 4KB. Requests are executed from each client
until either the bu�er is exhausted of complete re-
quests or after ten requests.

After requests are read from all of the ready clients,
the server determines whether any clients still have
complete requests in their bu�ers. If so, the server

foregoes the select(2) call and goes back to pro-
cessing requests for those clients. When all client in-
put bu�ers are exhausted of complete requests, the
X server returns to select(2) to await additional
data.

3.2 Analysis of this Algorithm

One problem with this algorithm is that it uses a
poor metric for the amount of work done by appli-
cations. In most cases, ten requests can be executed
very rapidly. Applications tend to render only a few
objects in each request and the rendering requests
are typically quite simple. It is possible, however,
to generate requests which run for quite some time,
X requests can contain thousands of primitive ob-
jects. Ten such requests could take several hundreds
of milliseconds to execute. This leads to large vari-
ations in the amount of time devoted to each appli-
cation.

Another issue is that applications which generate
few requests are starved for attention. As the X
server busily empties the bu�ers from more active
clients, it remains deaf to those with more modest
demands. Until every client request bu�er is empty
of requests, the server doesn't check on the remain-
ing clients.

Less obviously, the server stops processing requests
for a client whenever the request bu�er doesn't con-
tain a complete request. This means that for rapidly
executed large requests, the server calls select(2)
more often as the request bu�er will hold fewer re-
quests.

The bene�t of this system is that when clients are
busy, the server spends most of its time executing
requests and wastes little time on system calls.

4 Available Scheduling Parameters

The information available and the execution context
control the design of a scheduler as much as the
desired performance characteristics. The X server
is a user-mode process written in a high-level lan-
guage and is designed to be relatively independent of
operating system and hardware architecture. This
makes the information available limited to that pro-

vided by common OS interfaces and library func-
tions.

4.1 Request Atomicity

The X protocol requires that

the overall e�ect must be as if individ-
ual requests are executed to completion
in some serial order, and requests from a
given connection must be executed in de-
livery order (that is, the total execution or-
der is a shu�e of the individual streams).
[SG92]

This makes suspending request processing in the
middle of a request diÆcult (in general) as objects
manipulated by each request must not appear to
other clients in any intermediate state. As a result,
the design of the single threaded X server is largely
predicated on scheduling clients at request bound-
aries. There are a few exceptions dealing with net-
work font access which preserve atomicity by chang-
ing no global state before suspending request exe-
cution.

For the most part, this limitation is not too severe,
X requests are usually small and execute quickly.
However, when drawing lines and arcs thicker than
a single pixel, the server can spend quite some time
on a single request. Drawing arcs requires �nding
three solutions to an eighth order polynomial per
scan-line and approximating an elliptical integral
for dash lengths. Fortunately, applications largely
avoid these primitives as they are so slow making
them less of an issue.

Changing this architectural constraint is beyond the
scope of this project and so the atomicity require-
ment translates into a scheduling granularity no
�ner than a request boundary.

4.2 System Performance

The cost of system calls and other operating-system
procedures is important in determining how often
each call can be made without a signi�cant impact
on overall performance.

Procedure Time (� seconds)
Null procedure activation 0.0470
Null syscall (getppid) 0.4708
Gettimeofday 0.8333
Read (1 byte) from /dev/zero 0.9789
Write (1 byte) to /dev/null 0.7709
Select on 10 fd's 9.3765
Signal handler overhead 3.158
UDP latency using localhost 77.3502
TCP latency using localhost 128.1683

Table 1: Performance for Linux System Operations

Measurements made with lmbench [MS96] on a Pen-
tium 300 MHz Mobile MMX laptop by Theodore
Ts'o yield the numbers shown in Table 1.

4.3 System Time

In any system which interacts with the user, one
reasonable scheduling metric is real time. The X
server would check the current time after each re-
quest and terminate processing for a client at the
appropriate time. However, the current time is
only available to user applications through a system
call. The X server can execute an \NoOperation"
request in 0.360 � seconds, making it more than
twice as fast as a call to gettimeofday(2). Call-
ing gettimeofday(2) after processing each request
would be too expensive, so the X server needs a
more eÆcient mechanism for obtaining the current
time.

A low resolution clock can be generated using the
interval timer mechanism (setitimer(2)). A mea-
sure of time can be computed by incrementing a
global variable from the signal handler. Signals may
occasionally be lost under heavy system load. Under
heavy load, the X server would already be starved
for CPU resources making scheduling decisions less
precise in any case.

The X server should be idle when no work is to
be done. When the ITIMER REAL timer is used,
SIGALRM is delivered even when the server is waiting.
As the server suspends using select(2), that sys-
tem call will immediately return EINTR causing the
server to execute a signi�cant amount of code be-
fore re-entering select(2). To eliminate the load of
both a signal handler and another call to select(2)
on the system, the X server temporarily disables the

timer if it receives a signal while the server is sus-
pended within select(2). When the server awak-
ens again, it restarts the timer.

The X server could use ITIMER VIRTUAL which
would report CPU time consumed by the X server.
While the X server was idle, no signals would be
generated. However, on a busy system, the X server
would use progressively larger timer intervals. Ad-
ditionally, the Linux kernel only accrues CPU time
to a process when it happens to be running dur-
ing the timer interrupt, occasionally increasing the
scheduling interval.

4.4 User Intent

Unlike other window systems, X applications regis-
ter the set of events they are interested in receiving
so that unwanted events are not transmitted over
the network. When an application receives a re-
quested mouse or keyboard event, the server can in-
fer that the application is likely to generate screen
updates based on that event. The scheduler can
grant additional resources to those applications.

The X server already used this to a limited extent.
Events generated by the user are given priority and
are delivered as soon as any current request com-
pletes. However, as mouse motion events can be
numerous, they were not handled in this manner.
Typical modern mouse devices generate fewer than
100 events per second when in motion, not a consid-
erable burden for a modern machine. This behav-
ior was changed to produce the results shown here.
Without such changes, pointer motion events would
be delayed until a normal scheduling interval. This
caused long lags between pointer event generation
and application receipt of that event.

4.5 Queued Requests

Another factor available to the scheduler is whether
request bu�ers are empty, contain a partial request
or contain one or more complete requests. The ex-
isting scheduler uses this to avoid making additional
select(2) calls. The existence of a partial request
makes it likely that the remaining data are waiting
in an OS bu�er and that a read(2) would likely
result in additional data.

5 Proposed Scheduler

With the parameters outlined above, the design of
the scheduler is straightforward. The goal is to pro-
vide relatively �ne grained time-based scheduling
with increased priority given to applications which
receive user input.

5.1 Dynamic Priorities

Each client is assigned a base priority when it con-
nects to the server. Requests are executed from the
client with highest priority. Various events cause
changes in priority as described below. The Sync
extension also applies priorities, the scheduler pri-
orities sort among clients with the same Sync prior-
ity so that applications can override the internally
generated priorities.

Clients with the same priority are served in round-
robin fashion, this keeps even many busy clients all
making progress.

5.2 Time Based

Using the ITIMER REAL mechanism outlined above,
a copy of the system clock is kept in the X server ad-
dress space, updated periodically while the X server
is active. The resolution of the clock limits the gran-
ularity of scheduling and is set to 20ms.

Each client is allowed to execute requests for the
same interval after which time other clients are given
a turn. If the client is still running at the end of
the interval, the client's priority is reduced by one

(but no less than a minimum value). If the client
hasn't been ready to run for some time, priority is
increased by one (but no more than the initial base
value). These priority adjustments penalize busy
applications and praise idle ones. This is a simpli-
�cation of discovering precisely how much time a
client has used; that would require a system call.

Each time a client has �nished running, the X server
recomputes the set of clients ready for execution.
That includes examining each client request bu�er
to determine whether a complete request is already
available and also making a call to select(2) to
discover whether any idle clients have delivered new
requests. This is necessary to ensure that requests
from higher priority clients are served within a rea-
sonable interval independent of the number of busy
low priority clients.

5.3 Monitor User Events

When a client receives user mouse or keyboard
events, their priority is raised by one, but no more
than a maximum value which is above the base pri-
ority. Just as in the Unix scheduler [Tho78], it is
desirable to have applications which wait for user
input to receive preferential treatment. However,
there is no easy way to know whether the applica-
tion is waiting for input in this case so instead we
give modest praise when events are delivered.

5.4 Keep Reading From Clients

When a request bu�er no longer contained a com-
plete request, the original scheduler would stop pro-
cessing a client and wait until select(2) indicated
that additional data were available. Now read(2)

is tried �rst. When that fails to �ll the request
bu�er with a complete request, the server stops pro-
cessing requests for that client. This increases the
number of requests executed before another call to
select(2) is made.

5.5 Lengthen Timeslice for Single
Client

The scheduler monitors how many applications are
making requests, when only a single client is mak-
ing requests for an extended time (one second) the

scheduler increases the amount of time allotted to
that client. This improves performance for a single
busy application. When another client makes a re-
quest, the timeslice interval is returned to normal.
While this reduces interactive performance, the ef-
fect is transient as it is eliminated as soon as another
application is ready to execute.

6 Experimental Setup

The machine used was a Compaq Prosignia with a
466MHz Celeron processor and an S3 Savage4 PCI
video board with 32Meg of video ram.

In order to generate reasonable intervals in the an-
imation test, the Linux 2.2.10 kernel was compiled
with HZ set to 1000 instead of the default 100. This
causes the hardware clock to be programmed for an
interval of 1ms instead of the usual 10ms. An alter-
native would have been to increase the animation
interval by a factor of 10, but that would have used
an unrealistically low frame rate.

Because the measurements used timestamps re-
ported in X events, they were only accurate to the
nearest 1ms. This means that the measurement ac-
curacy of shorter intervals is somewhat limited.

7 Results

To measure the e�ects of this scheduler, two test
cases were written. They were �rst run on an oth-
erwise idle X server, next they were run while twelve
copies of an actively drawing application (plaid)
were also running. The idle measurements were (as
expected) identical between the two schedulers, only
one copy of those results are included in the tables
below.

7.1 Interactive Application

The �rst is a simple interactive feedback demon-
stration, a rubber band line is drawn following the
cursor position. The delay between event genera-
tion and receipt is measured (Receipt), along with
the total delay from event to the drawing of the line
(Echo). See Figure 1.

The old scheduler su�ers from signi�cant latency
both in delivering events and in scheduling the in-
teractive client for execution. Subjectively, the feed-
back was jerky and lagged the actual pointer posi-
tion by long intervals making it diÆcult to control
the application.

The new scheduler also su�ers additional latency
when other applications are running, but total feed-
back delay is over 20 times lower (7.4 vs 170) when
compared to the old scheduler. There was little per-
ceptible di�erence between this and the Idle case.
Feedback between the mouse and the display was
slightly jerky but still quite usable.

7.2 Animation Application

The second test is an animation example. The
\xengine" application was modi�ed to delay 15ms
between frames. The time between drawing a
frame and the subsequent display on the screen was
measured (Drawing), along with the time between
frames (Frame). See Figure 2.

In this test, the old scheduler su�ered from two
problems, the long delay between image generation
and display (219ms mean), and the large devia-
tion in inter-frame intervals. The long delays would
make synchronization with other media, such as au-
dio, diÆcult. The large range of inter-frame inter-
vals indicates that while busy with other clients, re-
quests from the animation would queue up to be
processed several frames at a time. The visible ef-
fect was a jerky sequence of images lacking a
uid
sense of motion.

Visually, the new scheduler was diÆcult to distin-
guish from the idle case. However, the long time-
slices granted to each client had measurable e�ects.
The average delay between the generation of the
frame and subsequent display is very close to half
of the time slice interval. The deviation in frame
intervals shows the same e�ect, that the scheduler
was limited in precision by the slice interval.

With both of these tests, the new scheduler is mea-
surably better than the old.

0.1

1

10

100

1000

Idle Old New

Delay

Scheduler

Receipt Mean
Receipt Std Dev

Echo Mean
Echo Std Dev

Figure 1: Scheduler Performance for Interactive Test

0

5

10

15

20

25

30

35

40

45

50

Idle Old New

Delay

Scheduler

Drawing Mean
Drawing Std Dev

Frame Mean
Frame Std Dev

Figure 2: Scheduler Performance for Animation Test

7.3 Performance Measurement

X11perf is a tool used to measure X server perfor-
mance. It is entirely synthetic, measuring repeated
sequences of hundreds of primitive operations. The
methods used to collect the data are relatively pre-
cise, and with some analysis and understanding,
useful data can be extracted.

By inferring what e�ects can be expected from the
scheduler changes, particular x11perf tests can be
used to verify those e�ects. As x11perf is expected
to run without competition from other applications,
most of the dramatic changes seen above will be
absent. One change which seemed promising was
the e�ort to reduce calls to select(2). The old
scheduler would call select(2) whenever the client
request bu�er no longer contained a complete re-

Test Old New New/Old
PolyPoint 4740000 4900000 1.03
NoOp 2130000 2680000 1.26

Table 2: X11perf Performance Comparison

Old New New/Old
Xmark 24.9919 25.4732 1.02

Table 3: Xmark Comparison

quest. The new scheduler instead tries a read(2)

call instead. This will return any pending data or
EWOULDBLOCK if no data are available, if no data are
ready, the server then waits in select(2).

The e�ect of this change should be greatest for re-
quests which execute quickly, and as seen in table
2 this is indeed the case. The units are operations
per second.

Although the tests noted above did show measur-
able changes, for most of the test results, the two
schedulers performed within 2% of each other. This
shows that the scheduler changes have little e�ect
on this performance measurement tool.

A standard synthetic benchmark, Xmark, has been
created which performs a weighted geometric av-
erage of the x11perf test results. While it is more
meaningless than most benchmarks, it has, nonethe-
less gained some popularity.

As the results in table 3 are generated from the
x11perf numbers, the result is not surprising.

8 Kernel Timer Granularity

As measured above, the scheduling interval within
the X server is not short enough to eliminate signif-
icant jitter in animation applications. The schedul-
ing interval within the X server was set to 20ms with
the knowledge that the usual Linux kernel timer in-
terrupt was set to 10ms. Thus the operating system
limits the ability of the X server to schedule clients
precisely.

The 10ms interval has remained unchanged since it
was chosen for the BSD Unix implementation for the

Digital VAX machines [LMKQ89]. 100 interrupts
per second was considered a negligible load on a
machine of that era. With modern machines being
somewhat faster, it seems reasonable to consider a
higher resolution timer.

Fortunately, Linux provides a single constant which
de�nes the frequency for timer interrupts. The ker-
nel was rebuilt with a 1ms timer interval, and the
X server was run with various scheduler intervals to
measure the scheduler behavior as well as overall X
server performance.

8.1 Interactive Test with Various
Scheduler Intervals

For each scheduling interval, the performance of the
interactive test was measured. The results are dis-
played in Figure 3. The mean delay between event
generation and receipt is displayed (Receipt) with
error bars indicating the standard deviation. The
mean delay between event generation and the draw-
ing of the line is also displayed (Echo). Again error
bars indicate the standard deviation.

As the X server scheduling interval decreases, the
latency between mouse motion and the echo on the
screen decreases. Furthermore, the variation in echo
latency values also decreases. There is no change
in the event receipt latency because the X server
checks for pending user input before processing each
request.

8.2 Animation Test with Various Sched-
uler Intervals

For each scheduling interval, the performance of the
animation test was measured. The results are dis-
played in Figure 4. The mean delay between issu-
ing drawing requests and the display on the screen
is displayed (Drawing latency) with error bars indi-
cating the standard deviation. The mean time be-
tween the display of consecutive frames is displayed
(Frame interval) with error bars indicating the stan-
dard deviation.

As the X server timer interval is made shorter, the
deviation in the frame interval is reduced along with
the drawing latency. Reducing the frame interval
deviation will make animations appear smoother.

0

2

4

6

8

10

12

14

0 5 10 15 20

Latency

Scheduling Interval

Receipt

3 3 3 3 3

3

Echo

+ + +

+

+

+

Figure 3: E�ects of Changing Scheduler Interval on Interactive Test

0

5

10

15

20

25

0 5 10 15 20

Time

Scheduling Interval

Drawing latency

3 3

3

3

3

3

Frame interval

+ + + + +

+

Figure 4: E�ects of Changing Scheduler Interval on Animation Test

Reducing the drawing latency will improve synchro-
nization with other media.

8.3 Performance E�ects from Various
Scheduler Intervals

Two e�ects should tend to decrease performance
with shorter scheduling intervals. As the server uses

a signal to duplicate the kernel clock inside the X
server, increasing the frequency of signal delivery
will increase the overhead of this process. Further,
as the X server checks for other client activity by
using select(2), an increase in the scheduling fre-
quency will increase the amount of time spent in
select(2).

The new scheduler includes two separate parameters

24.5

24.6

24.7

24.8

24.9

25

25.1

0 5 10 15 20

Xmark

X Server Scheduling Parameter

Changing Timer Interval3

3

3

3

3

3

Changing Timeslice
+

+

+

+ +

+

Figure 5: E�ects of Changing Scheduler Parameters on Xmark Measurements

to control these two e�ects, the �rst is the timer
interval and the second is the maximum timeslice
granted to the client.

To gauge the overall impact of these two variables,
x11perf was run with the X server set to use a a
variety of timer intervals and maximum timeslice
values. The results are displayed in Figure 5.

The e�ect of calling select(2) every millisecond is
not very large in this X server. There is less than
a 2% decrease in Xmarks when decreasing the time
between select(2) calls from 20ms to 1ms.

While the overall e�ect is small, particular appli-
cations may see larger changes, depending on the
balance between X server CPU and graphics accel-
erator usage. Operations which are limited by the
graphics accelerator will show small performance
impact, while operations limited by the CPU will
show more.

Also evident is that most of the performance impact
comes not from a high-resolution timer, but from
the cost of select(2). The new scheduling system
dynamically increases the timeslice when running a
single application, balancing the bene�ts of reduc-
ing system call overhead with providing accurate
scheduling for multiple clients.

8.4 Performance E�ects of a Kernel
Timer Change

The kernel timer is set to a compromise between
scheduling precision and the performance impact of
additional timer interrupts. Increasing the timer
frequency brings an associated increase in ker-
nel processing as it reschedules processes more
frequently, possibly context switching more often
which a�ects TLB/cache performance.

X11perf was run with identical scheduling param-
eters with a kernel timer of 1ms and then 10ms,
the resulting Xmark numbers appear in Figure 6.
As the graph shows, the performance e�ect of an
increase in kernel clock resolution is a decrease of
between 1 and 1.5 percent.

8.5 The Kernel Timer Should Change

The measurements above demonstrate that the X
server could provide signi�cantly better scheduling
if a higher resolution kernel clock were made avail-
able. The impact of raising the timer interrupt fre-
quency, at least on X performance, is nominal given
the performance of modern hardware.

Graphics hardware is in a unique situation, it pro-
vides output without generating interrupts. This

24.5

24.75

25

25.25

25.5

0 50 100 150 200

Xmark

X Server Scheduling Timer

1ms Timer Interrupt
3

3

3

3
3

3
3

3

10ms Timer Interrupt

+
+

+ +

+

Figure 6: E�ects of Changing Kernel Timer on Xmark Measurements

makes it diÆcult to schedule graphics activities pre-
cisely enough to avoid jitter even when the system
is idle.

However, the performance impact of such a change
needs to be addressed, even the minor 1 to 1.5
percent decrease in performance measured by this
change. The measurements made here indicate that
the kernel is spending additional cycles managing
the increased timer interrupt rate. Perhaps the in-
teraction between the timer interrupt and the upper
level timer management code could be adjusted to
avoid this overhead.

9 Remaining issues

There are still a few diÆcult problems which remain
unsolved by this new scheduler.

9.1 Threading the X Server

Most X requests are short and execute rapidly, how-
ever there are a few core protocol requests and many
extension requests which are not so well behaved.
A straightforward solution to this problem is to
create separate threads executing requests for each

client, and then to build suitable locking mecha-
nisms throughout the server to protect global data.
MIT, Data General and Omron cooperated in 1991-
1992 to build such a server [Smi92].

The result demonstrated that the rendering en-
gine was a resource that every application needed
to access for nearly every request, reducing the
multi-threaded X server to a lock-step procession
of threads waiting for the display hardware mutex.
With multiple screens, a small amount of parallel
execution would be possible.

9.2 Multiple Client Performance

The performance optimization of increasing the
timeslice granted to a single application to reduce
the system call overhead isn't currently done when
multiple applications are running. This makes it
likely that some requests will execute more slowly
under the new scheduler than with the old, but only
when more than one client is active.

9.3 Other Kernel Changes

To provide better support for user-mode scheduling,
the kernel could make available an inexpensive copy
of the system clock. One simple idea would be to

create a shared segment containing a copy of the
clock and make that mappable by user-mode pro-
grams. Additional information about system load
might usefully be included in such a segment. Such
a change would improve this scheduler by increasing
the resolution of the clock, providing more accurate
updates when the system is heavily loaded and elim-
inate the burden of frequent timer signal generation
and reception.

A way of detecting when new data are available
for the X server to read without the expense of
select(2) would be useful. The X server con-
stantly calls select(2) to see if any idle clients
happen to have new requests pending. Perhaps
the server could poll a local variable to determine
whether select would return di�erent information
from the previous call. Such a variable could be set
from a signal handler.

10 Conclusion

A simple scheduler, based on what information
could be easily obtained by the user-mode X server,
demonstrates some signi�cant advantages over the
original scheduler without negatively impacting per-
formance. These changes are largely hidden from
the user, who will only notice them by the absence
of large delays when dealing with applications which

ood the X server with requests.

11 Acknowledgments

I thank SuSE for encouraging me to work full time
on X. This work was implemented during the X Hot-
house event sponsored by SuSE at the Atlanta Linux
Showcase in October 1999.

12 Availability

A previous version of this work has been incorpo-
rated into the 4.0 release of the X Window System
from the XFree86 group. The current version will
be available in the next public XFree86 release.

http://www.xfree86.org

References

[GCGW91] Tim Glauert, Dave Carver, Jim Gettys,
and David P. Wiggins. X Synchroniza-
tion Extension Protocol, Version 3.0. X
consortium standard, X Version 11 Re-
lease 6, 1991.

[LMKQ89] Samual J. Le�er, Marshall Kirk McKu-
sick, Machael J. Karels, and John S.
Quarterman. The Design and Imple-

mentation of the 4.3BSD UNIX Oper-

ating System. Addison Wesley, 1989.

[MKA+94] Joel McCormack, Phil Karlton, Su-
san Angebranndt, Chris Kent, Keith
Packard, and Graeme Gill. X11perf -
x11 server performance test program.
Manual page, X11 Version 11 Release
6.4, 1994.

[MS96] Larry McVoy and Carl Staelin. lm-
bench: Portable tools for performance
analysis. In Technical Conference Pro-

ceedings, pages 279{284, San Diego,
CA, January 1996. USENIX.

[SG92] Robert W. Schei
er and James Gettys.
X Window System. Digital Press, third
edition, 1992.

[Smi92] John Smith. The Multi-Threaded X
Server. The X Resource, 1:73{89, Win-
ter 1992.

[Tho78] K. Thompson. Unix implementation.
The Bell System Technical Journal,
57(6):1931{1946, July-August 1978.

