
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

A C C E P T () S C A L A B I L I T Y O N L I N U X

Stephen P Molloy and Chuck Lever

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Accept() Scalability on Linux

Stephen P Molloy, University of Michigan
smolloy@engin.umich.edu

Chuck Lever, Sun-Netscape Alliance

chuckl@netscape.com

Linux Scalability Project
Center for Information Technology Integration

University of Michigan, Ann Arbor

linux-scalability@citi.umich.edu
http://www.citi.umich.edu/projects/linux-scalability

Abstract

This report explores the possible effects of a "thundering herd" problem associated with the Linux implementation
of the POSIX accept() system call. We discuss the nature of the problem and how it may affect the scalability of the
Linux kernel. In addition, we identify candidate solutions and considerations to keep in mind. Finally, we present a
solution and benchmark it, giving a description of the benchmark methodology and the results of the benchmark.

1. Introduction

Offered loads on network servers that use TCP/IP to
communicate with their clients are rapidly increasing.
A service may elect to create multiple threads or proc-
esses to wait for increasing numbers of concurrent in-
coming connections. By pre-creating these multiple
threads, a network server can handle new connections
and requests at a faster rate than with a single thread.

In recent years, the term scalability has been used to
describe a number of different characteristics, so it may
be useful to present our use now. Traditionally, scal-
ability has meant that system performance changes in
direct proportion to system resources. For this to be the
case, all operations would have to be executed in con-
stant time. Of course, it’s impossible to have a system
which achieves perfect scalability, but we can certainly
try. For our purposes, we will use this interpretation of
scalability. We feel that regardless of how many threads
are waiting on a socket’s wait queue, an accept() sys-
tem call should execute in near-constant time.

In Linux, when multiple threads call accept() on the
same TCP socket to wait for incoming TCP connec-
tions, they are placed into a structure called a wait
queue. Wait queues are a linked list of threads that wait
for some event. In the Linux 2.2 series kernel, when an
incoming TCP connection is accepted, the
wake_up_interruptible() function is invoked to
awaken waiting threads. This function walks the
socket’s wait queue and awakens everybody. All but
one of the threads, however, will put themselves back
on the wait queue to wait for the next connection. This
unnecessary awakening is commonly referred to as a
“thundering herd” problem and creates scalability prob-
lems for network server applications.

This report explores the effects of the “thundering
herd” problem associated with the accept() system
call as implemented in the Linux kernel. In the rest of
this paper, we discuss the nature of the problem and
how it affects the scalability of network server applica-
tions running on Linux. We will investigate how other
operating systems have dealt with the problem and fi-
nally, we will benchmark our solutions. All bench-
marks and patches are against the Linux 2.2.14 kernel.

This document was written as part of the Linux Scalability Project.
The work described in this paper was supported via generous
grants from the Sun-Netscape Alliance, Intel, Dell, and IBM.

This document is Copyright © 2000 by AOL-Netscape, Inc., and
by the Regents of the University of Michigan. Trademarked mate-
rial referenced in this document is copyright by its respective
owner.

2. Background

This section is intended to give a detailed view of the
current implementation of accept() and its problems.
It will describe what we found in our initial research
and explain the implications of each discovery. For the
sake of comparison we will do the same for another
widely used operating system, OpenBSD. At the end of
the section we will layout the guidelines we used when
formulating solutions to the problem.

2.1 Investigation

When a thread wants to listen for an incoming TCP
connection, it creates a TCP socket and invokes the
accept() system call. The system call uses the proto-
col specific tcp_accept() function to do all the work.
The relevant sections of this procedure are the manipu-
lations of the thread’s state and socket’s wait queue. In
Linux, a thread’s context is represented by a structure
(struct task_struct) which maintains several vari-
ables pertaining to memory allocation and runtime sta-
tistics. One of these variables is named state. The
state variable is used as a bitmask to indicate whether
a thread is running, sleeping, waiting for an interrupt or
yielding to an interrupt. Currently, when a thread calls
accept() on a TCP socket the thread's state is
changed from TASK_RUNNING to
TASK_INTERRUPTIBLE and the thread is placed at the
end of the wait queue associated with the socket. At this
point, the thread puts itself to sleep and the system re-
sumes normal operation. Every thread accepting on a
socket follows this procedure, thus lengthening the wait
queue whenever multiple threads accept() on the
same socket.

The second part of this routine occurs each time an-
other process (local or remote) initiates a TCP connec-
tion with the accepting socket. When the connection
comes in, the network interface pulls the packet into
kernel memory and passes it to the function
tcp_v4_rcv(). This function parses the TCP packet
header and identifies it as an attempt to connect with a
listening socket. The TCP stack then calls
wake_up_interruptible() on the corresponding
socket’s wait queue to wake and signal a thread to han-
dle the new connection.

To completely understand how the Linux TCP stack
awakens threads on a socket’s wait queue requires a bit
more detail. The socket structure in Linux contains a
virtual operations vector that lists six methods (referred
to as call-backs in some kernel comments). These

methods initially point to a set of generic functions for
all sockets when each socket is created. Each socket
protocol family (e.g., TCP) has the option to override
these default functions and point the method to a func-
tion specific to the protocol family. TCP overrides just
one of these methods for TCP sockets. The four most
commonly-used socket methods for TCP sockets are:

 sock->state_change
 (pointer to sock_def_wakeup)
 sock->data_ready
 (pointer to sock_def_readable)
 sock->write_space
 (pointer to tcp_write_space)
 sock->error_report
 (pointer to sock_def_error_report)

The code for each one of these methods invokes the
wake_up_interruptible() function. This means
that every time one of these methods is called, tasks
could be unnecessarily awakened. In fact, in the
accept() routine alone, Linux invokes three of these
methods, essentially tripling impact of the “thundering
herd” problem. The three methods invoked to wake
tasks on a socket's wait queue are
tcp_write_space(), sock_def_readable() and
sock_def_wakeup(), in that order.

Because the most frequently used socket methods all
call wake_up_interruptible(), the thundering herd
problem potentially extends beyond the accept()
system call and into the rest of the TCP code. In fact, it
is rarely necessary for these methods to wake up the
entire wait queue. Thus, almost any TCP socket opera-
tion could unnecessarily awaken tasks and return them
to sleep. This inefficient practice robs valuable CPU
cycles from server applications.

2.2 Comparison

In investigating the characteristics of thundering herd
issues in Linux, we thought it might be a good idea to
see how other systems deal with the issue. In particular,
we examined the OpenBSD system to see how it be-
haves in the accept() system call. In OpenBSD 2.6,
when a thread calls accept() on a socket, the thread
puts itself to sleep with a socket specific identifier.
When a connection is made to a socket, the kernel
wakes up all threads sleeping on that socket's identifier.
So it would appear that OpenBSD has the same thun-
dering herd issues as Linux, but this is not the case. The
OpenBSD kernel serializes all calls to accept(), so
only one thread is waiting for a particular socket at any

time. Although this approach prevents the thundering
herd condition, it also limits performance, as we will
see in section 5.

2.3 Guidelines

When developing solutions to any problem, it its im-
portant to establish a few rules to warrant acceptability
and quality. While investigating the Linux TCP code,
we set forth this particular set of guidelines to ensure
the correctness and quality of our solution:

• Don’t break any existing system calls - If the
changes affect the behavior of any other sys-
tem calls in an unexpected way, then the solu-
tion is unacceptable.

• Preserve “wake everybody” behavior for
calls that rely on it - Some calls may rely on
the “wake everybody” behavior of
wake_up_interruptible(). Without this behav-
ior, they may not conform to POSIX specifica-
tions.

• Make solution as simple as possible – The
more complicated the solution, the more likely
it is to break something or have bugs. Also, we
want to try to keep the changes as local to the
TCP code as possible so other parts of the ker-
nel don't have to worry about tripping over the
changed behavior.

• Try not to change any familiar/expected in-
terfaces unless absolutely necessary - It would
not be a good idea to require an extra flag to
an existing function call. Not only would
every use of that function have to be changed,
but programmers who are used to its interface
would have to learn to supply extra arguments.

• Make the solution general, so it can be used
by the entire kernel - If any other parts of the
kernel are experiencing a similar “thundering
herd” problem, it may be easily fixed with this
same solution instead of having to create a
custom solution in other sections of the kernel.

3. Implementation

The fundamental idea behind solving the “thundering
herd” problem is to somehow prevent all sleeping
threads from waking up. This section will outline the
implementation of a couple proposed solutions, includ-
ing one that was incorporated into the 2.3 development
series of the Linux kernel.

3.1 Task Exclusive

One proposed solution to this problem was suggested
by the Linux community and incorporated into the 2.3
development kernel series. The idea is to add a flag to
the threads state variable, change the handling of wait
queues in wake_up_interruptible() and imple-
ment a new wait queue maintenance method called
add_wait_queue_exclusive(). To use this solu-
tion, the soon to be sleeping thread would set the new
TASK_EXCLUSIVE flag in the thread structure's state
variable, then add itself to the wait queue using
add_wait_queue_exclusive(). In the case of
accept(), the protocol specific accept function
(tcp_accept()) would be responsible for doing this
work.

In handling the wait queue, __wake_up() (called by
wake_up_interruptible()) will traverse the wait
queue, waking threads as it goes until it runs into its
first thread with the TASK_EXCLUSIVE flag set. It will
wake this thread and then exit, leaving the rest of the
queue waiting. To ensure that all threads that are not
marked exclusive were awakened,
add_wait_queue() will add threads to the front of a
wait queue, while add_wait_queue_exclusive()
will add exclusive threads to the end of a wait queue,
after all non-exclusive waiters. Programmers are re-
sponsible for making sure that all exclusive threads are
added to the wait queue with
add_wait_queue_exclusive(). Special handling is
required to wake all exclusive waiters in abnormal
situations (like listening sockets being closed unexpect-
edly).

3.2 Wake One

Another solution, stemming from the idea that the deci-
sion point for waking one or many threads should not
be made until wake time, was developed here at CITI.
Processes or interrupts that awaken threads on a wait
queue are generally better able to determine whether
they want to awaken one thread or many. This solution
does not use a flag in the task structure* and doesn't use
any special handling in add_wait_queue() or
add_wait_queue_exclusive(). With respect to the
guidelines above, we felt that the easiest way to imple-
ment a solution is to add new calls to complement
wake_up() and wake_up_interruptible(). These
new calls are wake_one() and
wake_one_interruptible(). They are #defined
macros, just like wake_up() and
wake_up_interruptible() and take exactly the
same arguments. The only difference is that an extra
flag is sent to __wake_up() by these macros, telling
the system to wake only one thread instead of all of
them. This way it’s up to the waking thread whether it
wants to wake one (e.g., to accept a connection) or
wake all (e.g., to tell everyone the socket is closed).

For this “wake one” solution we examined the four
most commonly used TCP socket methods and decided
which should call wake_up_interruptible() and
which should call wake_one_interruptible().
Where we elected to use
wake_one_interruptible(), and the method was
the default method for all socket protocols, we created a
duplicate function just for TCP to be used instead of the
default. We did this so the changes would affect only
the TCP code, and not affect any other working socket
protocols. If at some point later it is decided that
wake_one_interruptible() should be the generic
socket default, then the new TCP specific methods can
be eliminated. Based on our interpretation of how each
socket method is used, here's what we came up with:

sock->state_change - (tcp_wakeup)
 wake_one_interruptible()

sock->data_ready - (tcp_data_ready)
 wake_one_interruptible()

sock->write_space - (tcp_write_space)
 wake_one_interruptible()

sock->error_report (sock_def_error_report)
 wake_one_interruptible()

Notice that all three of the methods used in accept()
call wake_one_interruptible() instead of
wake_up_interruptible() when this solution is
applied. The main obstacle with this approach is that
system calls like select() depend on being awoken
every time, even if there are threads ahead of them on
the wait queue.

3.3 Always Wake

A third solution, which has not yet been implemented,
combines the most desirable characteristics of the two
previous solutions. The decision to wake one or many
threads would still be deferred until the time of awak-
ening by using wake_one() and
wake_one_interruptible(). However, for the rare
case where a thread would always need to wake up
(like select()), a bit in the threads state could be set
to indicate this. These threads would reside at the front
of the wait queue and always be awoken on calls to
__wake_up(). This solution is still easy for program-
mers to use, and only requires special care for the spe-
cial cases. It gives the power to decide between awak-
ening one or many threads to the more informed wak-
ing thread, while still providing a mechanism for the
sleeper to make the decision if it knows better.

4. Performance Evaluation

Our focus is on improving system throughput. In this
case, we hope to accomplish our goal by eliminating
unnecessary kernel state CPU activity. To measure the
performance of each solution we consider two ques-
tions. First, how long does it take for all threads to re-
turn to the wait queue after a TCP connection is initi-
ated? Second, how does a network service perform un-
der high load/stress situations with the new solutions?
We took two different approaches to benchmarking the
performance impact of the “wake one” and “task

* Although, there is a set of flags passed to __wake_up()
that resemble the state variable in the task structure, i.e., the
flags are set with the same bit masks as those used for the
task structure. TASK_EXCLUSIVE is still #defined and
passed as a bit to __wake_up() even though it is not used in
the task structure.

Table I: The results of the microbenchmark (in usecs) are
very rough estimates. But even at such a level of granularity,
they still show significant improvement in settle time for the
patched kernels over the stock kernel

exclusive” patches. The first is a simple micro-
benchmark that is easy to set up and quick to run. We
ran this to

get a rough idea of what sort of improvement we can
expect with each patch. The other is a large-scale
macro-benchmark on the patched kernels, to see if the
patch improves performance under high loads as well.

4.1 Small Scale Performance

To measure how much time it takes for all unused
threads to return to the wait queue after a connection is
made, we wrote a small server program that spins X
number of threads and has each of them accept on the
same port. We also wrote a small client program that
creates a socket and connects to the port on the server
Y (in this case 1) times. We issue a printk() from the
kernel every time a task is put on or removed from the
wait queue. After the client has “tapped” the server, we
examine the output of the printk()’s and identify the
points where the connection was first acknowledged (in
terms of wait queue activity) and where all threads have
returned to the wait queue.

Figure I: This graph shows the difference in the time com-
plexity between the stock kernel and the ones patched with
thundering herd solutions.

The results are reported as an estimated elapsed time
for the wait queue to settle down after an accept()
call is processed. The measurements are not exact, as
we were using printk()s and only ran the tests once.
These two points can result in a slight skew of the re-
sults in three ways. First, printk()’s are not free op-
erations and add to the execution time each time they
are used. Second, to provide less room for statistical
error, many samples should be taken, but these tests
were only run once and could produce slightly different
results on subsequent runs. However, even with these
degrees of inaccuracy, this micro-benchmark is still
able to give us a rough estimation of the time complex-
ity involved with each scenario. Table I gives the set-
tling time for stock and patched kernels with various
numbers of threads on the wait queue. The server was
running Linux 2.2.9 on a Dell PowerEdge 6300 with
four 450 MHz Pentium II Xeon processors, a 100 Mbps
Ethernet card and 512M of RAM (lent to the Linux
Scalability Project by Intel).

The key observation to be made when looking at these
rough estimates is the difference in time complexity.
While the stock kernel settles in O(n) time, both of the
patched kernels settle in nearly constant time. Figure I
illustrates these differences.

Threads Stock TaskEx WakeOne

100 4708 649 945

200 11283 630 1138

300 21185 891 813

400 41210 776 1126

500 52144 567 1275

600 75787 1044 599

700 96134 1235 707

800 118339 1368 784

900 149998 1567 1181

1000 177274 1775 843

4.2 Large Scale Performance

To set up the test harness for this benchmark, the Linux
Scalability Project purchased new machines for use as
clients against a web server. Four client machines are
equipped with AMD K6-2's running at 400 MHz and
100 Mbps Ethernet cards. The server is a four processor
Dell PowerEdge 6300 running with 400 MHz Pentium
II Xeon processors, 512M of RAM and a 100 Mbps
Ethernet card. The clients are all connected to the
server through a 100 Mbps Ethernet switch. All ma-
chines used in the test are running a 2.2.14 Linux ker-
nel. The server runs Red Hat Linux 6.0 with a stock
2.2.14 kernel as well as the "task exclusive" and "wake
one" patched 2.2.14 kernels.

We elected to use the Apache web server as our net-
work service because it’s a widely used application and
is easily modified to make this test more useful. Stock
Apache 1.3.6 uses a locking system on Linux to prevent
multiple httpd processes from calling accept() on
the same port at the same time, which is intended to
reduce errors and improve performance in production
web servers. For our purposes, we want to see how the
web serving machine will react when multiple httpd
processes all call accept() at once. We modified
Apache so that it doesn’t wait to obtain a lock before
calling accept(). This non-locking behavior is the
default on systems where multiple accept()s are safe.
The patch for this modification can be found on our
web page at:
www.citi.umich.edu/projects/linux-scalability

To stress-test our web server, we used a pre-release
version of SPEC’s SpecWeb99 benchmark, courtesy of
Netscape's web server development team. Because the
benchmark is pre-release, SPEC rules constrain us from
publishing detailed throughput results. However, we
can still make general quantitative statements about the
performance improvements.

Running the benchmark maintains between 300 and
1000 simultaneous connections to the web server from
the client machines and measures throughput by re-
questing as many web pages as possible. Each connec-
tion requests a web page and then dies off while a new
connection is generated to take its place. The Apache
web server is configured to use 200 httpd daemons
and does not support keep-alive connections (so idle
connections do not linger). All httpd daemons accept
on the same port. The throughput is measured by Spec-
Web99 in terms of how many requests per second each
of the 300 to 1000 simultaneous connections can make.

The results of the SpecWeb99 runs are very encourag-
ing. While running with moderate to sizable loads of
300 to 1000 simultaneous connections to the web
server, the number of requests serviced per second in-
creased dramatically with both the “wake one” and
“task exclusive” patches. While the performance impact
is not as powerful as that evidenced by our micro-
benchmark, a considerable gain is evident in the testing.
The performance increase due to either patch remains
steady at just over 50% for all connection rates. There
is no discernable difference between the “wake one”
and “task exclusive” patches.

5. Application

Up to this point, the evaluation of the elimination of
thundering herd problems seems overwhelmingly posi-
tive. However, there is one issue that seems unresolved.
In the performance testing, SpecWeb99 was run against
a modified Apache web server. Why did we put forth
the effort to modify our web server and why would
anybody want to do so in practice? To answer these
questions, we performed a short evaluation of the stock
Apache 1.3.9 web server and our patched version.

The stock Apache web server uses various locking
schemes to prevent the servers threads from all calling
accept() at the same time. This is done to prevent
internal errors when the server receives connections on
many different IP addresses or ports. When running an
Apache web server on one IP address and one port,
locking around accept() is not necessary.

If Apache server threads were all allowed to call
accept() at the same time, then each thread could
process a good portion of the accept() system call
before a connection is even received. This in turn
would reduce the effective overhead of accepting each
incoming connection, since half the work is already
done. To test this idea, we set up another test against a
uniprocessor machine which would show the usefulness
of these thundering-herd solutions on more common
hardware.

This evaluation used a single processor AMD K6-2
machine running at 400 MHz equipped with a 100
Mbps ethernet card and the same four processor ma-
chine described in the macro-benchmark section. The
quad-processor was used as a client machine running
httperf to ensure that the web serving host (and not
the client) would be under a significant load. The client
was tested using two different configurations: a stock
2.2.14 Linux kernel with a stock locking Apache 1.3.9

Figure II: This graph shows the rate at which the web server
replied (y axis) for each level of client request-rates (x axis).
Notice the point at which each server started to lose perform-
ance.

web server and the same kernel with the modified non-
locking Apache 1.3.9 web server. The Apache web
servers were configured to run a modest 20 serving
threads (httpd’s) and to not support keep-alive con-
nections.

The results of this test are plotted in Figure II. This
graph demonstrates how Apache can increase the
threshold rate at which it begins to fail by having all 20
httpd’s accept at the same time, rather than deferring
the accept overhead until later. You can imagine that if
more httpd’s are started the difference in thresholds
would decline, because on a stock 2.2.14 Linux kernel
the system would begin to feel the effects of the thun-
dering herd problem. It is not uncommon though, for
medium to high traffic sites run more than 100 httpd
processes.

6. Conclusion

By thoroughly studying this “thundering herd” prob-
lem, we have shown that it is indeed a bottleneck in
high-load server performance, and that fixing it signifi-
cantly improves the performance of a high-load server
regardless of the method used. This performance in-
crease is due to the fact that less time is spent in the
kernel needlessly scheduling tasks which are not yet
ready to run. All solutions presented resolve the issue
by awakening as few tasks as necessary, thus reducing
kernel overhead.

At first look, the “task exclusive” solution appears to be
fairly complex. Upon closer examination though, it
seems to fit in well with the new structure of Linux wait
queues (doubly linked in 2.3 to make end-of-queue
additions fast). Extra demands are placed on the pro-
grammer to get this solution to work, but the fix is ex-
tensible to all parts of the kernel and appears not to
break any existing system calls. The “wake one” solu-
tion, on the other hand, is cleaner, easier for program-
mers to implement and is also extensible to all parts of
the kernel. This fix is easily used by programmers since
it requires just one line of code.

As previously mentioned, the process that awakens
tasks is usually better able to determine if it wants to
awaken one or more tasks. However, in the case of
select(), the selecting process will want to be awak-
ened regardless of whether or not it will continue on to
handle the connection (perhaps it is monitoring the
socket and collecting some statistics). For this case, the
“task exclusive” model is a better fit. Conversely, if an
application error occurs, a program may like to inform
all of its associated tasks which are waiting on a socket.
For this case, the “wake one” model is the better fit.
Perhaps the most sound and elegant solution is the
“always wake” hybrid of these two solutions which was
presented in section 3.3.

6.1 Availability

All work and patches presented and used in this paper
were written and performed at CITI and are available
on the Linux Scalability Project’s home page at
http://www.citi.umich.edu/projects/linux-scalabilty/

6.2 Acknowledgements

Many Linux developers have contributed directly and
indirectly to this effort. The authors are particularly
grateful for input and contributions from Linus Tor-
valds and Andrea Arcangeli. Special thanks go to Dr.
Charles Antonelli and Professor Gary Tyson for provid-
ing hardware used in the test harness for this report.
The authors would also like to thank Peter Honeyman
and Stephen Tweedie for their guidance, as well as the
USENIX reviewers for their comments.

7. References

[1] M Beck, H Bohme, M Dziadzka, U Kunitz, R

Magnus, D Verworner, Linux Kernel Internals,
2nd Ed., Addison-Wesley, 1998

[2] Samuel J Leffler, Marshall K McKusick, Micheal
J Karels, The Design and Implementation of the
4.3BSD UNIX Operating System, Addison-
Wesley, 1989

[3] Stevens, W Richard, UNIX Network Program-
ming, Volume 1: Networking APIs: Sockets and
XTI, 2nd Ed., Prentice-Hall, Inc., 1998

[4] The Single UNIX Specification, Version 2,
www.opengroup.org/onlinepubs/7908799

[5] Apache Server, The Apache Software Foundation.
www.apache.org

[6] D. Mosberger and T. Jin, “httperf – A Tool for
Measuring Web Server Performance,” SIGMETRICS
Workshop on Internet Server Performance, June
1998.

[7] SPECWeb99, Standard Performance Evaluation
Corporation. www.spec.org

[8] Apache Performance Tuning, The Apache
Software Foundation.
www.apache.org/docs/misc/

 perf-tuning.html

