
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

M O S I X : H O W L I N U X C L U S T E R S
S O L V E R E A L W O R L D P R O B L E M S

Steve McClure and Richard Wheeler

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MOSIX: How Linux Clusters Solve Real World Problems

Steve McClure
smcclure@emc.com

Richard Wheeler
ric@emc.com

EMC² Corporation
171 South Street

Hopkinton, MA 01748

Abstract

As the complexity of software increases, the size of
the software tends to increase as well, which incurs
longer compilation and build cycles. In this paper, the
authors present one example of how clusters of Linux
systems, using the MOSIX extensions for load
monitoring and remote execution, were used to
eliminate a performance bottleneck and to reduce the
cost of building software. We present a discussion of
our original software development cluster, an analysis
of the performance issues in that cluster, and the
development and modifications done to MOSIX and
Linux in order to produce a solution to our problem.
We finish by presenting future developments that will
enhance our cluster.

Introduction

As computers increase their processing power,
software complexity grows at an even larger rate in
order to consume all of these new CPU cycles. Not
only does running the new software require more CPU
cycles, but the time required to compile and link the
software also increases.

EMC Corporation [EMC] is a leading vendor of
storage solutions. EMC’s products are more than just
cabinets full of disks and tapes: they rely on a large
amount of software, both inside and outside the
cabinets. Each member of our development group
needs to compile and link millions of lines of code on
a routine basis. Building all versions of this code on an
individual developer’s desktop system required
approximately two hours (7,200 seconds). Spending

this much time waiting for code to build is
unacceptable.

One way to reduce this build time is to give each
developer a higher-powered desktop computer, with
better processors, huge amounts of memory, and
locally attached storage. However, with dozens of
developers, this is not a cost-effective solution. A
variation on this is to use a very large, centralized
build server, although this class of machine is
extremely expensive as well.

The last possibility is to use a number of smaller
computers as a build cluster, where each is attached to
some common storage pool so they can all operate on
the same source code base. The challenge in this
solution is to distribute the compilation jobs across the
cluster members evenly, insuring consistent results
regardless of the node on which a process runs.

The Original Cluster

EMC uses a few small clusters of computers connected
to NFS file servers as our software build environment.
As the size of our group and our builds grew, our
existing clusters gradually became overloaded when
more than two developers initiated builds
concurrently. Upgrading the nodes helped somewhat,
but we needed a more cost-effective solution.

This original cluster (see Figure 1) consisted of 26
SUN Ultra 2 workstations, each with 512MB of RAM
and dual, 300MHz UltraSparc-II processors each with
2MB of L2 cache. The backing store was a pair of
EMC Celerra NFS file servers, each connected to an
EMC Symmetrix for disk storage. Each Celerra
contains 14 NFS data movers, each with an

independent connection to the network. The network
was a FDDI ring connecting all workstations and NFS
data movers. Each user was given a single Symmetrix
volume mapped to a single physical disk, accessible
through one of the NFS data movers.

Our original cluster software was Platform
Computing’s Load Sharing Facility (LSF) version 3.1
[Platform] running on top of Solaris. The LSF solution
is based on GNU make(1), which spawns parallel
makes across the cluster, as well as some proprietary
user-level software.

On the original, idle cluster, a typical user could build
a complete set of binaries in ~13.5 minutes (813
seconds). This is a good improvement over the original
two hours, but the real problem appears when many
users want to build at once.

When two users run jobs on the cluster at the same
time, performance degrades severely as the cluster
starts to run out of resources and every node becomes
too busy to accept new jobs. In this case, each user’s
build takes 22 minutes (1324 seconds) to complete. In
addition, if subsequent users try to start new jobs, they
are locked out of the build cluster with busy cluster

error messages. In this case, LSF reports that all
cluster nodes are busy and it will not start any more
jobs. These delayed builds begin only when the
original jobs finish and the nodes are no longer busy.

In addition to the above original cluster, and at the
same time the following investigation and
implementation of the MOSIX cluster was underway,
another LSF cluster was being assembled for use in
another group. This LSF cluster consisted of 37 Sun
Ultra 2 workstations, each with dual 400MHz
UltraSparc-II CPUs each with 2MB of L2 cache, and
512MB of RAM. These workstations were connected
to a Fore ESX-2400 100Mbit switch with 96 ports. We
were able to run some test numbers on this cluster, and
were able to run a maximum of four users
concurrently. While this cluster was not investigated
extensively by us, the performance and costs are
shown in the figures and charts in relation to the other
clusters and nodes.

The Investigation

Due to the problems cited above, we initiated a project
to investigate alternative cluster technologies. Given
one author’s past experience with an earlier version of

FDDI Ring

26 SUN Ultra 2s

SCSI

2 EMC Celerra NFS
Servers

2 Symmetrix
Systems

Figure 1: The Original Cluster

MOSIX [Barak et al., 1993], we tried to use the Linux-
based MOSIX cluster at Hebrew University [MOSIX]
to build our code images.

MOSIX adds load information about the cluster,
process migration, and various other clustering
features to Linux without adding any new, cluster-
specific APIs. This allows us to continue to use the
existing compilers and build environments with little
to no modifications. (Note that we use a standard GNU
tool set on Linux and our other UNIX hosts).

Although MOSIX did an excellent job measuring the
load across the nodes, relying on its process migration
mechanism to distribute the sub-makes across the
cluster nodes failed. MOSIX on Linux redirects many
system calls for migrated processes through the
network to a stub process that runs on the process’
creation node. Since make(1) forks children locally
and since compilation is system call intensive, few if
any migrations actually occurred. When make(1)
sub-processes were forced to migrate, we observed a
huge performance drop.

After discussion with the MOSIX team, we suggested
that one way to avoid this performance degradation
was to use static placement of the builds instead of
migration. This uses the MOSIX information
monitoring abilities in order to determine process
placement and then uses a local daemon on each
cluster node that creates the process on the selected
node. This approach avoids the performance
degradation of remote system calls by using remote
execution and static placement instead of local forking
and dynamic migration.

As the MOSIX team worked on the remote executor,
EMC started a more in-depth analysis of our existing
builds. A snapshot of the build environment and source
code was taken and used in all tests to ensure
consistent results in our experiments. Our test
measured a full, clean build (all previous results were
removed from prior runs each time). Like our original
cluster, source code and binaries were stored in NFS.
It was also noted that large portions of the builds were
not parallelized. This problem would have to be
tackled later in order to see greater performance gains.

The next step in the investigation was to characterize
the performance of single computers and determine a
good choice for the nodes of the cluster. After running
the build environment on various computing nodes, it
was determined that the best hardware platform based
on cost, size, network port considerations and

performance was a VA Linux [VA/Linux] 3500. Each
VA Linux 3500 is a quad-CPU Intel Xeon computer,
running each processor at 500MHz with 512KB of L2
cache on each processor, and 1GB of RAM. Using a
single VA Linux 3500, the existing builds for a single
user for a single job would take a little over 37
minutes (2233 seconds).

In addition to characterizing the performance of the
individual candidate nodes, we profiled the build
itself. Using slow-CPU nodes, the majority of a build’s
elapsed time is spent computing. As we moved to
faster CPUs, the builds became increasingly I/O
bound. Depending on the particular stage of the build,
it could be either I/O bound or CPU bound. Overall, it
was determined that the I/O requirements for a single
build were huge: reading in the source files, writing
out object files, linking binaries, etc. This finding
reinforced our understanding of why MOSIX’s default
migration failed initially: since MOSIX currently does
not perform local I/O, it instead sends the I/O back to
the node where the process originated. The most recent
release of MOSIX allows remote processes to perform
I/O to some cluster file systems directly, as explained
further in the Future Work section of this paper.

MOSIX Enhancements

The MOSIX team produced a set of tools, called the
MExec/MPMake package that built on the kernel load
information as described above. This package can be
combined with GNU make(1) to spawn remote jobs
across the cluster by using the load information to
determine the best node on which to place the remote
job. In this way, processes are distributed across the
cluster and are able to do local I/O. The
MExec/MPMake package consists of a small server
that runs on each node of the cluster. This server acts
as a proxy that creates local processes when passed the
command name, argument list, etc. from the remote
node. EMC sponsored the development of this package
and encouraged its release under the GNU Public
License (GPL).

A small client sends commands to these servers based
on the node with the lowest load in a list supplied to
the command. This client only ran on nodes in the
MOSIX cluster. An additional, non-MOSIX dependent
client was created that can send commands to a
specific node in the cluster, so that the remote make
can be started on the cluster from computers that are
not members of the MOSIX cluster. This client
currently runs on Linux, FreeBSD, Solaris, and

Windows. This is useful because users do not have to
log directly into the MOSIX cluster; instead, scripts
and local makefiles remotely start jobs on the cluster.
Process migration is disabled so that processes stay on
the nodes where they start.

File System Issues

Consistency is the responsibility of the build
environment or the distributed filesystem. EMC
addresses this by turning off name, data, and attribute
caching in NFS. Otherwise, nodes do not see newly
created files or directories, which results in
inconsistent or failed builds. While this creates
consistency, it also greatly hinders performance, as
network traffic is much higher. Users of a cache
coherent file system, like GFS [GFS], should be able
to run with caching enabled.

The Test MOSIX Cluster

With the arrival of the new MOSIX tools, we built our
first test cluster. The test cluster consisted of 8 VA
Linux 3500 computers (1GB of RAM, 4-way 500MHz
Intel Xeon processors each with 512KB of L2 cache)
and one gatekeeper node that is a Compaq 550MHz
Intel Pentium III with 128MB of RAM. We used the
same backing store as the original LSF cluster, but
replaced the original cluster’s FDDI ring with a Cisco

6506 100Mbit switch with 96 ports.

The Compaq gatekeeper box is used as a non-
computing member of the cluster; all MOSIX build
jobs are submitted through this gatekeeper. Since all
MOSIX nodes are peers, this is not a necessary step.
However, it creates a nice place to keep track of all
incoming jobs, run monitoring software, or control
access to the cluster without wasting an expensive
machine. Note that if this node is removed, jobs can be
sent directly to the computing members of the cluster.

On this test cluster, the total time for a single user to
build alone on an idle cluster was about 9 minutes
(537 seconds).

The next test was to have multiple users running jobs
at the same time. Running with six different users
concurrently, the time for each user to complete their
build was 26 minutes (1560 seconds). Note that all
users were slowed down equally, i.e. they all shared
the load of the cluster equally.

The Production MOSIX Cluster

Once we proved that the test cluster worked well, we
added 16 additional nodes, bringing the total up to 24
VA Linux 3500 computers (now shipping with
550MHz CPUs) (see Figure 2).

SCSI

100 Mbit
100 Mbit

2 EMC Celerra NFS
Servers

2 Symmetrix
Systems

Figure 2: The Mosix/Linux Cluster

Cisco 6506

24 VA Linux 3500s

On the next test, all 24 nodes were used. An
interesting effect, as shown in Figure 3, was that the
build time remained mostly constant for a single user,
yielding a slightly improved build time of 8.5 minutes
(508 seconds). Further investigation using a network
analyzer revealed that the 100Mbit connection from
the switch to the NFS data mover was completely
overwhelmed by the compute nodes. We set up a
network analyzer to monitor traffic on the switch. The
switch showed that once we started the build process,
the link from the switch to the data mover would
become 100% utilized, while the links to the
individual nodes would be at most 5% to 10% utilized.
Upgrading the network is the next step to overcoming
this limitation.

The most noticeable improvement occurred when
multiple users would build simultaneously. With 12
users building concurrently on different NFS data
movers, the time for each user to complete a build
increased from 8.5 minutes (508 seconds) to about 12
minutes (715 seconds). Although this is about 40%
slower than the time spent building on an idle cluster,
it is still faster than a single user running a build on the
original LSF cluster when idle. If two or more users
share an NFS data mover, those users do see
significant decreases in performance as they are
contending for the same physical device.

Performance Analysis

In Figure 3, we detail the average build time in
seconds per user for the various platforms tested. The
numbers were achieved by taking the time in seconds,
from start to finish, of the user’s build jobs and then
dividing by the number of users building concurrently
to get the average build time per user.

As Figure 3 shows, we were able to gain
approximately 1100% improvement in performance
when 12 users are using the Production MOSIX
Cluster as compared to the two users using the LSF
Cluster. Note that the original LSF cluster allowed a
maximum of two users at once. This was a major
restriction since we potentially have upwards of 20-25
developers trying to build concurrently.

One of the bottlenecks we observed (as shown before)
was the network connection to the NFS data movers
being saturated by the compute nodes in the cluster.
Preliminary testing on one NFS data mover shows that
upgrading the link between the switch and the data
mover to Gigabit Ethernet reduces build times by
approximately 23%. Upgrading this link and the data
mover to its newest release reduces build times by
approximately 42%. Our best times were measured
with the Gigabit Ethernet, upgraded data movers, and
with a striped disk file system behind the NFS data

Figure 3: Average seconds per build per user

7200

4224

3453

2233

813

662

560

537

508

260

228

60

0 1000 2000 3000 4000 5000 6000 7000 8000

AP200 (Single PII 450, 1 user)

Ultra 60 (Dual UltraSparc 360, 1 user)

SP700 (Dual Xeon 550, 1 user)

Quad Xeon 500 (1 user)

LSF (26 Dual UltraSparc 300, 1 user)

LSF (26 Dual UltraSparc 300, 2 users)

LSF (37 Dual UltraSparc 400, 1 user)

MOSIX (8 Quad Xeon, 1 user)

MOSIX (24 Quad Xeon, 1 user)

MOSIX (8 Quad Xeon, 6 users)

LSF (37 Dual UltraSparc 400, 4 users)

MOSIX (24 Quad Xeon, 12 users)

mover. This configuration reduces our current build
times by 51%, making the cluster more than twice as
fast.

Cost Analysis

For the original LSF cluster, total cost is
approximately $660,000, with software costs of
$61,141.25 up front and an annual cost of $16,835 for
support licenses for a two year life span, as shown in
Figure 4. The Production MOSIX cluster cost is
approximately $390,000, with no recurring software
costs, for a two year life span, also shown in Figure 4.
In addition, having the full source code of the system
and tools enables us to debug and fix problems as they
arise. Detailed cost information is shown in Appendix
A.

Overall, cluster costs were reduced by 41% (about
$270,000) while performance was increased at least
eleven fold. In Figure 4, we use these numbers to
compute the cost per build per user (assuming a two
year life span for each cluster). In all cases, the chart
assumes that builds run 24 hours a day. The numbers
are all normalized to the equivalent of building 1440
builds per day (the amount that the fastest cluster – the
Production MOSIX cluster - could sustain). Stated
another way, the numbers show what the cost per build

is if you could linearly scale each solution to achieve
1440 builds per day.

Administration

The Production MOSIX Cluster administration
consists of monitoring the cluster for availability.
Once the cluster was turned on for general use, the
cluster has needed little to no attention or intervention
other than two hardware memory failures. Users can
submit jobs directly from Linux, FreeBSD, Windows,
or Solaris clients.

By comparison, the LSF Cluster administration
consists of maintaining a license server for the LSF
cluster management software and monitoring the
cluster for availability. Only Solaris clients can submit
jobs directly to the cluster, and each Solaris client
wishing to submit jobs to the cluster must be pre-
configured by the cluster administrator as a client to
the cluster.

Future Work

We are currently working with the MOSIX team to
explore several enhancements to the cluster. One
obvious shortcoming is the lack of support for a cache-
coherent, distributed file system like GFS. Working

Figure 4: Average cost per build per user (normalized to 1440 builds daily)

$28.56

$65.13

$15.77

$18.73

$115.90

$76.85

$78.98

$12.25

$13.09

$26.61

$2.87

$0.37

$0 $20 $40 $60 $80 $100 $120 $140

AP200 (Single PII 450, 1 user)

Ultra 60 (Dual UltraSparc 360, 1 user)

SP700 (Dual Xeon 550, 1 user)

Quad Xeon 500 (1 user)

LSF (26 Dual UltraSparc 300, 1 user)

LSF (26 Dual UltraSparc 300, 2 users)

LSF (37 Dual UltraSparc 400, 1 user)

MOSIX (8 Quad Xeon, 1 user)

MOSIX (24 Quad Xeon, 1 user)

MOSIX (8 Quad Xeon, 6 users)

LSF (37 Dual UltraSparc 400, 4 users)

MOSIX (24 Quad Xeon, 12 users)

with EMC, the MOSIX team has added this support,
enabling a process to issue its I/O system calls locally,
even after migration. This should allow the cluster to
use its normal dynamic process migration for a larger
group of I/O intensive tasks, including our distributed
builds. EMC’s efforts will focus on tuning the rest of
the components of the system: the network will be
upgraded to Gigabit Ethernet and users’ directories
will be striped across multiple NFS data movers to
exploit EMC’s high-end storage systems.

Related Work

Process migration has been an active area of research
since the early 1980s, but has had limited success in
the commercial world. In early systems, like the
original MOSIX implementation, migration was added
to existing systems by restructuring the internals of the
base operating system. This approach produced a great
deal of transparency: user processes could migrate
freely without any requirement to link against special
libraries or use special system calls. A significant
drawback was the difficulty of maintaining the
migration code in the continually changing host
operating system.

Sprite [Douglis and Ousterhout, 1987], developed at
UC Berkeley, simplified this process by introducing
the concept of the home node as is used in the current
MOSIX implementation. In this scheme, migrated
process redirect some of their system calls back to
their creation node. This retained the transparency of
migration for user processes, but also had a
performance impact for certain types of processes.

In the same era, work started on user-level process
migration. This approach traded transparency and
performance for portability. For example, little to no
changes were required to port Condor [Litzkow, 1987]
to a new host platform. Condor had a strong influence
on the development of Utopia [Zhou et al., 1994], the
academic precursor of LSF, and Loadlevelor from
IBM.

The rare commercial implementations of process
migration include Locus Computing’s migration
support in OSF1/AD for the Intel Paragon [Zajcew et
al., 1993] and Platform Computing’s LSF.

For a comprehensive survey of process migration, see
Milojicic, et al [Milojicic et al., 2000]. In this survey,
many of the seminal migration papers are presented as

a collection, including the early MOSIX, Condor, and
Sprite papers.

Conclusion

Our project demonstrates that it is possible to create
high performance, distributed build environments from
commodity hardware and open source software, such
as Linux and MOSIX. In addition, this project
demonstrates that collaboration between the open
source community, an industrial systems group, and
our system administrators works well. Together, we
produced a system with an order of magnitude
performance improvement at less cost than our
original cluster. In the future, as software becomes
more complex and requires more CPU processing
power, the cost benefits will become both more
apparent and more important.

Acknowledgements

We would like to thank Amnon Barak and Amnon
Shiloh from the MOSIX team for putting together a
great cluster package for Linux clusters. We would
also like to acknowledge the efforts of Kathie
Graceffa, who lead the EMC MOSIX cluster project
from the system administration side, Varina Hammond
and Clem Cole for their comments and revisions of
this paper.

References

Barak, A., Guday, S., and Wheeler, R. (1993) The
MOSIX Distributed Operating System. Lecture
Notes in Computer Science, Vol. 672, Springer-
Verlag.

Douglis, F. and Ousterhout, J. (September 1987).
Process Migration in the Sprite Operating System.
Proceedings of the Seventh Conference on
Distributed Computing Systems, pages 18-25.

EMC² Corporate Home Page: http://www.emc.com

Global File System Home Page:
http://www.globalfilesystem.org

Litzkow, M. (June 1987). Remote UNIX – Turning
Idle Workstations into Cycle Servers. Proceedings
of the Summer USENIX Conference, pages 381-
384.

Milojicic, D., Douglis, F., Paindaveine, Y., Wheeler,
R., Zhou, S. (to appear in 2000). Process Migration
Survey. ACM Computing Surveys.

Milojicic, D., Douglis, F., and Wheeler, R. (February
1999). Mobility: Processes, Computers and Agents.
Addison-Wesley Longman and ACM Press.

MOSIX Project Home Page: http://www.mosix.org

Platform Computing Corporate Home Page:
http://www.platform.com

Popek, G. and Walker, B. (1985): The Locus
Distributed System Architecture. MIT Press.

VA/LINUX Corporate Home Page:
http://www.valinux.com

Zajcew, R., Roy, P., Black, D., Peak, C., Guedes, P.,
Kemp, B., LoVerso, J., Leibensperger, M., Barnett,
M., Rabii, F., and Netterwala, D. (January 1993).
An OSF/1 UNIX for Massively Parallel
Multicomputers. Proceedings of the Winter
USENIX Conference, pages 449–468.

Zhou, S., Zheng, X., Wang, J., and Delisle, P.
(December 1994). Utopia: A Load Sharing Facility
for Large, Heterogeneous Distributed Computer
Systems. Software-Practice and Experience.

Appendix A

Table 1 shows the cost of the individual cluster nodes,
based on the full manufacturer’s list price as of
February 1, 2000. Note that any possible discount was
not factored into the calculations.

Table 1: Hardware prices

VA Linux 3500 Quad Xeon - 1GB/550Mhz $14,215.00

Compaq AP200 PII - 128MB/450Mhz $2,085.00

Compaq SP700 Dual Xeon -
512MB/550Mhz

$5,004.00

Sun Dual Ultra 2 - 512MB/300Mhz/FDDI $20,870.00

Sun Dual Ultra 2 - 512MB/400Mhz $21,090.00

Sun Dual Ultra 60 - 512MB/360Mhz $13,815.00

Cisco 6506 + 96 100BaseT ports $46,975.00

Fore ESX-2400 + 96 100BaseT ports $40,780.00

Table 2 shows the total costs of each of the clusters,
including network and software costs, but does not
include the cost of the storage (since the storage costs
are constant and can be shared across clusters).

Table 2: Cluster prices (2 year life)

LSF (26 Dual UltraSparc 300, FDDI) $663,601.25

LSF (37 Dual UltraSparc 400, 100Mbit) $953,036.25

MOSIX (8 Quad Xeon, 100Mbit) $160,695.00

MOSIX (24 Quad Xeon, 100Mbit) $390,220.00

