
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

E X T E N D I N G I N T E R N E T S E R V I C E S V I A L D AP

James E. Dutton

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Extending Internet Services Via LDAP

James E. Dutton
Southern Illinois University

jimd@siu.edu, http://www.usenix.org/events/usenix2000/freenix/dutton.html/

Abstract

This project report examines the use of an LDAP
(Lightweight Directory Access Protocol) V2 server to
provide an easily accessible data storage facility. The
main purpose of the LDAP database is to store related
information based on a common thread such as a per-
son’s name, an organization’s name, or the description
of a service offered, in a simple yet hierarchical struc-
ture.

The use of LDAP enables new fields to be added to ex-
isting user information to 1) enable end-users to store
pertinent user information to be used by a mainframe-to-
PC intermediary file server using Samba, 2) enable new
groupings of electronic mail distributions to be created
with little or no change to Sendmail, and 3) enhance the
granularity of InterNetworkNews (Usenet) article sub-
mission acceptance capabilities.

Some additional benefits of these facilities included us-
ing a single, non-proprietary database which required
very little new coding to make use of. The data used
for the various facilities were easily associated with
database objects defined for enterprise personnel. The
administration load for each service was reduced since
service related data, such as userids or mailboxes, were
not maintained directly as a part of the specific ser-
vice. The Internet Directory Service, as provided by the
LDAP server, is accessible by several methods, rather
than just one specialized or proprietary interface.

1 Introduction

With the advent of Internet Directory Services based
on the Lightweight Directory Access Protocol (LDAP)
standards, it is now easier to enhance, or extend, exist-
ing Internet Services as well as create new ones. An In-
ternet Directory Service need not be limited only to user
information for the benefit of electronic mail clients.

Three specific Internet Services were enhanced through
the use of an LDAP server. They included: e-
mail servers using Sendmail, Usenet or Network News

servers using InterNetworkNews (INN), and file trans-
fer servers using Samba[14] (PC NetBIOS file system
on a UNIX host) and Expect[13] (an interactive process
scripting language for UNIX).

As its basic function, the LDAP server provided a data
storage facility which was easily accessible using a Perl
script or simple modifications to supplied application
configuration code (Sendmail). This avoided develop-
ing specialized databases with specialized program in-
terfaces. Also, no fundamental changes in each of the
Services were required.

The LDAP server also provided a central data-store,
much as a traditional database, where many sets of in-
formation, such as a list of authorized Network News
posters for a given internal or local newsgroup, a list
of Internet hostnames associated with some specific ser-
vices such as electronic mail and Network News, and a
list of people within certain organizational groups which
may be independent of the other lists, could be kept –
regardless of their association with each other. In other
words, there is no need for a specialized database just
for electronic mail, and another one for Network News,
and yet another one for the file transfer mechanism. At
the same time, the data used for these enhanced Internet
Services could be, and were, related to a specific user
or entity. In the particular case of Sendmail, the LDAP
server replaced one of the Sendmail user databases.

Another benefit to using an Internet Directory Service
was the fact that there are multiple publicly available
access methods, such as Frank Richter’s Web500GW
Web interface[11], Kartik Subbarao’sldaptool.html[18]
for use with Web browsers, or one of the University
of Michigan’s specialized, yet freely available, interface
programs (i.e., Wax500, Max500, Xax500). This meant
that a commercial or proprietary program is not needed
to use or access the LDAP data, which means easy main-
tainability and reduced costs.

At the same time, access to specific data items within
the server can be easily restricted without writing spe-
cialized access application programs. Using LDAP Ac-
cess Control Lists (ACLs), the appropriate access per-
missions are established for some of the data used in

these facilities.

While each of the three services enhanced with LDAP
could have provided its own facility to store and retrieve
some of the user/service data required, this would have
led to extra maintenance for each service. Using the In-
ternet Directory Service method, very little maintenance
is required to store and obtain the necessary data for the
enhanced services. After the installation or addition of
the relatively small sets of code for each service to ac-
cess the LDAP data, all maintenance is then left to just
the LDAP service itself.

A late addition to this project is a simple Perl
script to formulate an LDAP query specifically look-
ing for information about a LAN Administrator, and
then display the result in a simple table. This re-
quired a locally installed portion of the LDAP suite
(LDAPSEARCH) to perform the actual LDAP work.
The Perl script’s main function was to take the user’s
input, generate the LDAPSEARCH parameters, execute
the LDAPSEARCH program, and display the selected
output in a more user-friendly format.

Another late addition to this project is a simple
JavaScript function for a Netscape V4 browser (which
has built-in support for LDAP) that implements a sim-
ple but effective search for LAN Administrators based
on one of several criteria. This is another example of a
relatively easy method to extend the use of and access to
data stored in an Internet Directory Server.

Lastly, this report does not discuss the implementation of
network and data security, including passwords. Some
general comments on security, however, can be found in
Section 11.

2 Executive Overview of LDAP

The Lightweight Directory Access Protocol is an In-
ternet standard that brings X.500 Directory services to
the Internet. Implementations of LDAP provide for a
structured database with entries, referred to as “objects,”
formed by single-word character key and multi-word/-
line character value pairs. A few special attributes pro-
vide for binary data values. A standard set of keys are
well defined in the LDAP standard and can be consid-
ered as user friendly, for the most part. In general,
the keys are usually abbreviations of an LDAP attribute
name. For example, two common keys, or attributes, are
dn, Distinguished Name (DN), andcn, Common Name
(CN).

Many of the LDAP attributes are used to store, human
readable information about people and organizations.

The attributes usually identify something specific about
a person or organization such as an electronic mail ad-
dress (mail), or a commonly used name, nickname, or
pseudonym for a person, organization, or organizational
unit (cn), or computer userid (uid).

The basic LDAP implementation usually provides for
clear text password authentication only. This means that
when an LDAP client is required to send a password to
an LDAP server, that the password is not encrypted, but
is sent as plain or clear text. Some specific implemen-
tations or site provided add-on programs may provide
for secure client, or user, authentication using Secure
Sockets Layer (SSL) or other mechanisms, but this is
not yet a function of the LDAPv2 protocol itself. Au-
thentication is the process of sending a user-identifying
data string, commonly an LDAP Distinguished Name
from an LDAP database object entry, and its associated
password string. This is normally required only when
updating an LDAP database entry. Most LDAP queries
are performed without any authentication, and appear to
the LDAP server as a “null” or undefined user or client.
User/client authentication is independent of access con-
trol mechanisms, ACL lists (see Section 10).

Some descriptions of LDAP liken it to an electronic tele-
phone book, or “yellow pages” directory, though that
is only part of what LDAP can be used for. LDAP
databases are most often organized in a tree or hierarchi-
cal structure. A large structure may be distributed over
more than one LDAP server, and may include references
to other LDAP servers, providing for a distributed direc-
tory service.

3 Why Choose LDAP?

Many database systems are available, so why choose an
LDAP database? Without going into great lengths to ex-
amine all of the possibilities, here are some reasons for
choosing LDAP versus other database or X.500 (DAP)
products:

� Two well known and publicly available LDAP
packages are LDAP-3.3[6] from the University of
Michigan (UMich) and OpenLDAP-1.2.x[15] from
the OpenLDAP Project.

� Netscape V3/V4 Directory Server is a good com-
mercial implementation of an enhanced/updated
UMich LDAP-3.3, which provides another good
LDAP source that closely follows the open (IETF)
LDAP standards

� some X.500/DAP servers are not user-extensible,
which is not a limitation of X.500/DAP per se, but

of the particular implementations. The LDAP im-
plementations mentioned in this paper are all user-
extensible. Where a given X.500/DAP server is
user-extensible, then it may be used in place of an
LDAP server.

� LDAP compliance and compatibility is appearing
in more and more user and networking software

� in many cases, a proprietary interface is not needed
to access an LDAP database, as is true with at least
some commercial database systems and some com-
mercialized X.500/DAP databases which require a
specialized access client program that works only
with that particular system

� LDAP is oftentimes a lightweight database well
suited for simple, lightweight, data storage that
is easily accessible by many Internet-based appli-
cations; this at least partly implies that a large
database system is not needed, though one could
probably be used; it should be noted, however, that
there have been some very large LDAP databases
implemented

� data inquiries are relatively simple, especially when
compared to some types of commercial database
systems

� methods developed to access an LDAP database are
not limited to one particular language or compiler

� as more Internet-based applications become LDAP
compatible, they will increase the number of ap-
plications that can be easily integrated with other
Internet-based applications using common data in
an LDAP server

� LDAP provides a fairly nice data structure that
lends itself well to organizing certain types of data,
most of which relates to people, processes, organi-
zations, and services

� LDAP databases are easily extendable in their data
types and data structure

� small to medium sized LDAP servers can be imple-
mented on small to medium sized computers quite
easily, which may seem trivial until compared with
the size of machines dedicated for large database
systems

� LDAP can be implemented on commercial com-
puter systems or free UNIX-like systems, which
may lead to sizable cost benefits

4 Project Overview

The following is a brief overview of the three major and
two minor uses of LDAP already mentioned. The later
additions will be presented first since they are short and
simple.

� a simple script to query LDAP database for LAN
Admin information

Having the requisite portions of the LDAP suite in-
stalled locally, a short line-mode Perl script was de-
veloped to perform an LDAP search for the Admin-
istrator of a LAN, based on one of several types
of identifiers. The purpose is to provide a simple,
easy, and quick method to look up the LAN Ad-
ministrator for a given LAN, providing their name,
phone number, and electronic mail address.

� a simple LDAP search via a short JavaScript-based
Web page

The intent here is to use an LDAP-enabled Web
browser to initiate an LDAP inquiry without re-
quiring any CGI scripts or other services from a
Web server. The Web browser itself acts as the sole
LDAP client. A simple HTML form is used to ob-
tain the LDAP search item, and a simple JavaScript
function then converts that into an LDAP URL[16].
When this is inserted into the browser’s location
field, the LDAP search is performed.

� LDAP implementation with Sendmail source and
LDAP enhancements to Sendmail process

Using LDAP required two enhancements to Send-
mail: using internal hooks in Sendmail for
LDAP; and an LDAP-based mail delivery program,
mail500[12, 15], external to Sendmail. With these
extensions, simple virtual mail users with differ-
ent address formats are easily created and ser-
viced. Once Sendmail is installed with the required
LDAP libraries, a small set of code is added to the
Sendmail configuration file to enable both enhance-
ments. In one case, the mail was handed off to the
mail500LDAP tool, which performed the final de-
livery. In the other case, Sendmail itself connected
to the LDAP server to find the requisite information
to complete the mail delivery that it would perform.

� enhancement to INN (InterNetwork News) via a
Perl script

The InterNetwork News product provides a
simple security scheme to control access to
newsgroups[10]. More finely detailed access meth-
ods are not directly available with the basic INN

program. Starting with version 2 of INN, a Perl
“hook”[8, 9] is provided to invoke user defined
code. Using this Perl script and data stored in an
LDAP database, a finer grained access method is
now possible. It also provides the ability to define
a multi-tiered access method. In this report, this
method is used to control authorized postings to a
local newsgroup that did not use the network news
“moderated” format and controls.

� implementing a mainframe-to-PC File Relay using
Samba, Expect, and LDAP

This facility used a UNIX server running Samba,
the OpenSource UNIX NetBIOS file system ser-
vice, to provide a type of automated file relay be-
tween a Windows PC and a mainframe. In real-
ity, the PC user had two network drives, an “input
share” and an “output share,” that appeared to con-
nect them directly to the mainframe for simple out-
put retrieval and job submission. LDAP stored user
specific information to be used by the FTP process
to the mainframe. Expect was used to automate the
process of FTPing a user “job” to the mainframe
for execution from the “input share,” and keeping
a log of the FTP process. Mainframe output was
FTPed to the “output share” by some additional
job control language statements that executed an
outbound FTP session from the mainframe to the
Samba server.

4.1 Environments Used

There were three network environments used for differ-
ent stages of developing these facilities. The statistics
listed elsewhere will be affected by the capabilities of
the different networks and hosts listed below. Note that
system loads are not reported in any of the statistics.

� development and test environment (#1)

LAN: 10Mb/s Ethernet

LDAP/Sendmail server: 50MHz Motorola 68060
CPU, 32MB RAM, 10000rpm SCSI HD, Amiga
A2000 workstation

INN server: 40MHz Motorola 68040 CPU, 32MB
RAM, 7200rpm SCSI HD, Amiga A2000 worksta-
tion

� test environment (#2)

LAN: 10Mb/s Ethernet

INN/Sendmail server: 400MHz Intel Pentium II
CPU, 128MB RAM, 7200rpm IDE HD. Dell Op-
tiPlex GX1 workstation

LDAP server #1: 400MHz Intel Pentium II CPU,
128MB RAM, 7200rpm IDE HD, Dell OptiPlex
GX1 workstation

LDAP server #2: 70MHz Fujitsu microSPARC
II CPU, 64MB RAM, 7200rpm SCSI HD, Sun
SPARCstation 5 Model 70 workstation

� production environment (#3)

User LAN: 10Mb/s Ethernet

Server LAN: 100Mb/s FDDI

LDAP server: 167MHz Sun microSPARC II CPU,
256MB RAM, 7200rpm SCSI HD, Sun Ultra En-
terprise 2 server

INN server: IBM RS/6000 CPU, 192MB RAM,
7200rpm SCSI HDs, IBM PowerPC Model 250
server

5 Simple Perl Script To Perform LDAP
Query For LAN Admin

The LDAPSEARCH tool is a line-mode access tool that
sends an LDAP query to an LDAP server, and displays
all of the data returned inhkeyihvaluei pairs. The actual
LDAP search is a one-line command. The Perl script
enables the user to identify something about the desired
LAN Administrator such as IP subdomain name, or Ap-
pleTalk network number range. The script then calls the
LDAPSEARCH tool to talk to the LDAP server and get
the desired data, which was limited by a set of search
command, key selectors. The results are displayed as a
simple line-mode table, as shown in the example in Fig-
ure 1.

While the LDAPSEARCH tool performs the actual
LDAP lookup, its command format can be very long,
tedious to enter, and not pleasing to the eye to behold.
Also, LDAP results are usually one or more lines of
hkeyihvaluei pairs that usually have a raw appearance.
The Perl script performs all of the work to make the
search process simple and effective, and provides a bet-
ter display.

Figure 1 is a sample result of theQLANADMIN Perl
script used to provide this service, searching for the LAN
Administrator of a specific IP subnet. When no parame-
ters are given, the script will display information on how
to use the script, listing the various parameters accepted.
Figure 2 is a sample of the the LDAPSEARCH com-
mand used and the data returned from the LDAP server.

The LDAPSEARCH command is given several “selec-
tion attributes” that it passes to the LDAP server to re-
strict the number of attributes that will be returned by

the server. In this script, the four selection attributes
specified were:lanadmin postofficebox telephonenum-
ber dnsadmin.

qlanadmin 216.000

====================================
Subdomain : grdsch
Network Protocol : IP
LAN Administrator: FirstName LastName
Department : Department Name
E-mail Address : userid@mail.host
Telephone Number : (xxx) xxx-xxxx
DNS Administrator: FirstName LastName
======================================

Figure 1: QLANADMIN

ldapsearch -h ldap.hostname -b o=ournet,
c=us "subnet=216.000" lanadmin
postofficebox telephonenumber dnsadmin

dc=grdsch,dc=ournet,dc=edu,o=ournet,c=US
lanadmin=cn=LAN Admin name,
group=employee,ou=orgName,o=ournet,c=US

postofficebox=userid@mail.host
telephonenumber=(xxx) xxx-xxxx
dnsadmin=cn=DNS Admin name,group=employee,
ou=orgName,o=ournet,c=US

Figure 2: Raw LDAP search command and response

The distinction between IP subdomains and AppleTalk
zone objects is made in the DN entry. Other attributes
within each entry could have been used that are not a
part of the DN. There are trade-offs to both approaches,
but they won’t be covered here.

As it was implemented, IP subdomains were repre-
sented by a DN which contained a Domain Compo-
nent (DC) attribute for each component of the subdo-
main name. In the example above, the IP subdomain
grdsch.ournet.edu has a DN that begins with
dc=grdsch,dc=ournet,dc=edu. A representa-
tive AppleTalk zone is similarily identified, but only uses
two DC attributes: one for the actual AppleTalk zone
name, and one for a pseudo domain ofAppleTalk.

Late note: multiple LDAPSEARCHs may, or may not,
be better acccomodated withperldap[20].

5.1 Performance Observations

Two versions of theQLANADMIN script were created:
one using Perl and one using REXX[19]. The test runs
obtained and displayed the same LDAP data, and were
run on the LDAP server in test environment #2 but
used the production environment LDAP server for data
lookups. “u” and “s” refer to user and system CPU us-
ages, in seconds.

Test Performed Perl Script REXX Script
size 3,178 bytes 2,879 bytes
Perl Validate 0.012u,0.006s -na-
display results 0.013u,0.014s 0.009u,0.015s

Table 1: Sample QLANADMIN Performances
Test #2 and Production Environment

6 Simple LDAP Query Via Short
JavaScript Based Web Page

A simple Web page instructs the user to input part of
an IP address or hostname, which is entered into an
HTML text input field. Upon clicking on the Search but-
ton, the embedded JavaScript function creates an LDAP
URL[16], in simplified and sample forms:

ldap://<LDAP server hostname>/

<LDAP search base> <LDAP search string>

ldap://<LDAP server>/o=siuc,c=us??dc=<hostname>

The JavaScript function then changes the browser’s cur-
rent document URL, or “location field,” to the composed
LDAP URL which causes the built-in LDAP client to
perform the LDAP search. Note that this requires the
equivalent of Netscape V4 or higher.

The browser displays the LDAP results in a raw format
as seen in Figure 3. The entire record returned by the
LDAP server is displayed except for those fields that are
restricted by LDAP access controls.

Object Class top
domain
localadmin

dc ournet
Notes Internet network domain

for our.network
associatedname our.network
City location
Organization department name
postofficebox mailbox@mail.host
subdomain sub.domain.name
subnet 999.999
dnsadmin LDAP DN (which includes

user name)
lanadmin LDAP DN (which includes

user name)
creatorsname LDAP Manager DN
modifiersname LDAP Manager DN
createtimestamp19990519180831Z
modifytimestamp19990519180831Z

Figure 3: Sample Raw Web-based Data Display

Since there were only two possible choices for the LDAP
search string, or target, a simpleif . . .else statement

is all that is necessary to create the dynamic portion of
the LDAP URL. In the end, a fixed URL prefix was con-
catenated with the determined URL search target suf-
fix obtained from the input field, for example (“+” is
JavaScript string concatenation):

URLsuffix = "dc=" + form.SearchData.value;

document.location = sSearchURL + URLsuffix;

which is then inserted into the browser’s “location” field,
causing the built-in LDAP client to perform the LDAP
lookup.

The returned data is neither formatted nor limited, as it
was in the case of theQLANADMIN Perl script, other
than being limited by access controls on the LDAP
server (see Section 10 for more information). This may
allow more data to be displayed than needed or antici-
pated and may not be as visually appealing as desired.

Other LDAP search tools such as Web500GW,
Wax/Max500, or Netscape Directory Server V3/V4
gateway (similar to Web500GW) might format the re-
turned LDAP data differently. In some cases, they don’t
– it has the same appearance as the raw format. They
also may provide special functions for some of the at-
tributes, such as providing an automated e-mail func-
tion upon clicking on the e-mail address. Any URLs in
the returned LDAP data may also be turned into active
URLs (i.e., clicking on them goes to the specified Web
page).

This example Web page facility demonstrates a unique-
ness about LDAP-enabled Web browsers in that it does
not depend nor rely upon a Web server for any assis-
tance. There is no CGI script that gets executed to re-
ceive the search data, perform the LDAP search, create
a new Web page for the data returned, and send the new
Web page back to the client for display. The LDAP-
enabled Web browser is able to display the LDAP search
result all on its own. For a very simple search tool that
is easy to develop and use, the raw data format may not
be pretty, but may suffice – at least for testing.

Kartik[18] has a nice example of an extensive
JavaScript/HTML tool for administrative LDAP
searches and database updates, also without the need for
a Web server.

7 Sendmail Enhancements Using LDAP

When Sendmail Version 8[3, 4] is compiled with UMich
LDAP-3.3 or OpenLDAP (or possibly Netscape Direc-
tory Server) libraries, it has direct access to an LDAP
database. Sendmail[4, 5] also comes withsendmail.cf

configuration file examples for using this LDAP access.
While Sendmail configuration programming is consid-
ered a black art in some cases, the enhancements dis-
cussed later used only a small number of additions or
changes to thesendmail.cffile to provide the LDAP ser-
vices previously mentioned.

In addition to Sendmail source code that provides ac-
cess to LDAP databases, both the UMich LDAP-3.3 and
OpenLDAP distributions include useful and important
LDAP client contributions, one of which is related to
electronic mail and Sendmail:mail500. Mail500[12] is
used to provide external access to an LDAP database.
Sendmail passes pending messages off tomail500
which does all of the work of extracting e-mail addresses
from the LDAP server.Mail500 then passes the mes-
sages back to Sendmail for final delivery with the LDAP
extracted e-mail addresses in place.

Sendmail can make use of many user-defined databases,
which usually are either regular “flat files,” or “hash
mapped” database files. Using LDAP is not necessary to
provide for virtual e-mail users, but makes the process
more flexible as well as eliminating constant changes to
Sendmail configurations and/or databases.

To use the LDAP function from within Sendmail, an
LDAP “database map” and “relay host macro” definition
is added to thesendmail.cfconfiguration file, along with
a few additional lines in Sendmail’s rule set #5. Using
the external LDAP function viamail500required a one-
line addition to Sendmail’s rule set #98 and a two-line
“mailer” definition for the mail500 external “mailer”
program. Thesendmail.cf“rule sets” are the means by
which Sendmail determines what to do with any given
piece of mail.

Each set of additional lines defined a specific charac-
ter string which when matched to a supplied e-mail ad-
dress, would invoke the respective LDAP-enabled ser-
vice. Many trigger combinations are possible, but this
implementation limited itself to just the two sets detailed
later. The intent is to provide a simple yet effective
means of selecting e-mail addresses from a fixed set of
virtual e-mail users.

Virtual users, in the context of this facility, are consid-
ered to be users whose e-mail addresses map to the lo-
cal Sendmail server but whose userids (left-hand por-
tion of each of the e-mail addresses) are not found in the
Sendmail server’s password file. With the modifications
mentioned in place, if Sendmail fails to resolve a local
userid via its password file, it then calls upon the de-
fined LDAP server to retrieve an e-mail address from the
LDAP database. In this manner, many users who have
an LDAP entry based on a userid or other attribute which
matches the left-hand portion of an e-mail address, and

who have an LDAP e-mail attribute defined, can be con-
sidered as local to the Sendmail server.

With the aid of LDAP, the number of the e-mail users,
their identities, and their final e-mail addresses to be
used for mail delivery need not be known in advance
by Sendmail, thus obviating work required to create
“static” user definitions for special purposes. No ad-
ditional Sendmail configuration is necessary other than
what has already been mentioned. Nor is any additional
Sendmail configuration necessary when virtual e-mail
users change, so long as the required LDAP attribute
names do not change.

In Sendmail’s rule set #5, one rule compares the given
e-mail address with a specific format that separates the
left-hand side of the address from the rest. This rule
set is used to perform some specific tests on e-mail ad-
dresses that are determined to be local to the Sendmail
server. One part of it attempts to locate the userid ex-
tracted from the e-mail address in the mail server’s pass-
word database. This occurs in the section labelled as,
“send unrecognized local users to a relay host.” If the
userid is not found, it will later be passed to another
Sendmail rule which will attempt to send the pending
mail to another mail server, defined as a mail relay.

This implementation inserts a Sendmail rule after the
above section to then attempt to look up the userid in
the defined LDAP database. Here, the modified Send-
mail program itself is the LDAP client. If the database
search returns an e-mail address, Sendmail then uses it
in place of the original address and eventually attempts
to deliver the pending mail to the new e-mail address.
This provides for a virtual user who is not directly asso-
ciated with or defined on the host running the Sendmail
server but whose e-mail address conforms to the normal
format for that particular server.

In rule set #98, a new rule was added to select process-
ing by themail500 program. This rule set is part of the
Sendmail logic used to determine how the actual mail
delivery will be completed, and by which program. As
a part of this processing, an external program, such as
mail500, may be selected to complete the mail delivery.

In this implementation, the rule added to rule set #98 se-
lects mail based on the following pattern, which matches
one of the LDAPcn entries as shown in Figure 4:

<firstname>.<lastname>@<Sendmail server E-

mail domain>

Now, mail with the indicated address format will be
directed tomail500 for a simple LDAP CN attribute
lookup based on the<firstname>.<lastname>
portion. If a correspondingmail attribute is found,
mail500will then formulate a new address and pass the

mail back to Sendmail for final delivery. This is expected
to return a single e-mail address for one person.

Another rule, added later on to rule set #98, selects mail
based on the next pattern to extract multiple e-mail ad-
dresses associated with a mailing list.

<mailing list name>.mlist@<Sendmail server E-

mail domain>

The rule strips off just the mailing list name, and passes
it to mail500, along with the contents of the message.
Mail500 then searches for a CN attribute belonging to an
LDAP rfc822MailGroupobject that matches the mailing
list name. If found, it then scans the LDAP object for all
mail andmemberattributes, using the corresponding e-
mail addresses to form a single mailing list. When all
of the addresses are found,mail500passes the message
back to Sendmail with the list of new addresses, and
Sendmail finishes the mail delivery, assuming no other
matching process occurs with the new e-mail address
list.

Part of an LDAP entry that works with these methods
might look something like the following:

dn: cn=Jim Dutton, ou=<deparment>,
ou=People,o=<our domain>, c=US

objectclass: ...
cn: Jim Dutton
cn: jim.dutton
cn: Jim_Dutton
cn: jimd
sn: Dutton
uid: <userid>
mail: <userid>@<hostname>

Figure 4: Sample LDAP Entry For Sendmail Use

For the LDAP database lookups this facility chose to use
the LDAP Common Name (CN) attribute to search for
an entry that would have amail attribute defined. The
left-hand side of the e-mail address is extracted via the
applicable Sendmail rules. This is then used as the key
value for the LDAP CN search. The LDAP search will
then return the value of themail attribute if the corre-
sponding CN attribute is located and it has amail at-
tribute defined. Another LDAP attribute could have been
used to provide the LDAP search key, but it must be re-
lated to an LDAP entry which will return a valid e-mail
address.

With LDAP, some attributes can have multiple instances
whereas others normally cannot. The Common Name
attribute is one that is normally allowed to have multi-
ple instances, or occurances, of attribute values. Since
this does not require any special LDAP configuration
to use, it is easy to make use of in this facility, and
in other situations. In the above sample, multiple CN

attributes are defined including one with the specific
hfirstnamei.hlastnamei format. This provides for mul-
tiple versions of a “name” attribute which can be used to
locate a specific LDAP object, which doesn’t necessarily
have to be a person.

While an LDAP server also provides for internal sub-
string matching of search keys, thus providing for en-
try matches based upon part of an attribute value but
which can be quite costly to perform, using multiple
CNs provides for a set of easily matched and defined
qualifiers that may be considered alternative spellings of
a primary Common Name. The use of multiple CNs,
and some other attributes, increases the probability of an
LDAP search hit including the possibility of providing
for misspellings of the primary attribute. This becomes
very apparent when a user’s name as used for the LDAP
DN is not the same as the user’s name as used in prac-
tice. Without additional search qualifiers (i.e., multiple
attributes), searches for the specified DN may indeed be-
come difficult and frustrating. This is one of the impor-
tant benefits of the LDAP data structure and usability.

7.1 Performance Observations

Test Performed LDAP Lookup Mail Delivery
1-user LDAP � 2 secs 2 secs
1-user direct -na- � 1 sec
5-user list < 3 secs 5 secs

Table 2: Sample Sendmail Performances
Test #1 Environment

The 1-user note size 902 bytes, including all SMTP
header records and one text line. The second test was
sent directly to the same mailbox acquired in the first
test from LDAP. The 5-user mailing list was directed to
2 users withmail attributes and 3 users withmemberat-
tributes in the mailing list LDAP object. Themember
attributes where subsequently looked up in the LDAP
database for their relatedmail attributes. The mailing
list note delivered was 868 bytes in size, including all
SMTP header records and one text line. The mail log en-
try for the mailing list contained extensive debug state-
ments that would not normally be present.

8 INN Enhancement Using LDAP

InterNetwork News (INN) is server software used to pro-
vide Network News, or Usenet, services. The host which
provides this service is usually referred to as the news
server. In many cases, an Internet Service Provider (ISP)

will automatically provide Network News service to new
customers, giving them Read and Post access to the all
of the newsgroups, sometimes also known as “discus-
sion groups,” that the ISP provides via their news server.

For the most part, the general newsgroup article reading
and posting access privileges are sufficient, and no ad-
ditional access mechanism is necessary. Combinations
of the fields in the INN access security file,nnrp.access
(see Figure 5), provide the basic capability to allow or
disallow access to a newsgroup or the news server itself,
and allow or disallow reading and posting of a news arti-
cle. In some cases, however, this simple security scheme
is not sufficient to enable more complex access criteria,
or to provide for other qualifiers for access control.

Version 2 of INN introduced a Perl script called by
nnrpd, the server program that handles users newsgroup
accesses. It is referred to as a “hook” since thennrpd
program automatically executes the specific Perl pro-
gram namedfilter nnrpd.pl, if it exists. The function of
this hook is to allow the local news administrator the op-
portunity to code whatever conditions are necessary for
establishing a user’s right to post an article, thus provid-
ing an extended access control function. With the basic
INN user access control, article posting is either “yes” or
“no” from the time the user connects to and is accepted
by the news server. With thefilter nnrpd.pl Perl hook,
the news server can now say “maybe” to an attempt to
post an article, and then make a more informed decision
based upon the final outcome.

INN uses a file namednnrp.access, whose syntax is de-
scribed in [10] and illustrated in Figure 5, to control
access to newsgroups. Newsgroups may be defined as
“moderated” or “not moderated.” Most generally avail-
able newsgroups are of the “not moderated” variety. To
be a “moderated” newsgroup means that article submis-
sions are sent to one or more persons via electronic
mail, rather than being posted to the specified news-
group. These “moderators” then review the article-to-
be-posted, and if they accept it, complete the posting
process (which will not be discussed here).

The goal was to provide a local newsgroup, one that is
not distributed across the world, which had three special
needs. The first was to allow any user with access to
the newsgroup the right to post a new article (i.e., one
that has no previous references). This fits into the basic
INN access method whereby “Read” would be included
in the permissionsfield of nnrp.access. However, the
basic INN “Post” permission does not provide for any
distinctions about what, who, or when an article may
be posted. The permissions of “Read Post” allow any-
one who can access the newsgroup to read any existing
article, and post any desired article at will to that news-

group, without any limitations. For a new article, the
basic INN access permissions are just fine.

<F#1>:<F#2>:<F#3>:<F#4>:<F#5>

<F#1> = IP hostname or address of user’s
IP host; may be empty

<F#2> = newsgroup access permissions
R(ead) P(ost); may be empty

<F#3> = username user will be known as when
using this service; may be empty

<F#4> = password user will use when using
this service; may be empty

<F#5> = list of newsgroups accessible for
this particular user/host

Figure 5: INNnnrp.accessfile

The second special need was to implement selective
posting of an article that referred to a previous article,
usually referred to as a “followup.” Thefilter nnrpd.pl
hook is used to make the final decision of whether to ac-
cept the article or not. Specific project instructions were
given that identified only a select handful of people who
were given the referenced article (followup) posting per-
mission. They and they alone would be able to reply to
an existing article with a followup article, and were to
be defined as “authorized reply posters.” All other users
would be denied this privilege.

The third special need was to allow authorized reply
posters the ability to post followup articles without hav-
ing to use the “moderated” control scheme, which is the
basic INN method to control article posting. This need
was taken care of as a side affect of the solution for spe-
cial need #2.

An LDAP database is used to store the list of authorized
reply posters, including information used for security
purposes, and other information about the special news-
group. When the news server receives an article from a
user to be posted, it invokes thefilter nnrpd.plhook. If
the pending article is destined for the special local news-
group, the Perl script uses the LDAPSEARCH tool to
obtain the authorized reply poster list and their associ-
ated security data. If the pending article is a new article,
it is automatically accepted. If it is a reply, or followup,
article to the special local newsgroup, the article author
is verified against the authorized reply posters list and
their associated security data. If there is a match, the
article is accepted and subsequently posted.

The choice of using an LDAP database is mostly to give
the owner of the special local newsgroup the ability to
make changes to the authorized reply posters list with-
out requiring any changes to INN (including the Perl

hook). It also is meant to take advantage of existing
LDAP entries for the individuals responsible for the lo-
cal newsgroup, and entries for locally provided services
(i.e., Network News). Using LDAP also means that the
news administrator does not need to perform any ongo-
ing maintenance to INN orfilter nnrpd.plto keep the list
up to date. It also provided ancillary information about
the authorized reply posters that would not have been
possible with just a hard-coded userid innnrp.access.

Thefilter nnrpd.plscript, as implemented for this facil-
ity, is set up with a Perl array to specify more than one
LDAP server. This assures access to an LDAP server
in the event that one or more of the servers defined
is unavailable for service. Required LDAPSEARCH
command parameters and LDAP search parameters are
stored in Perl variables to make LDAPSEARCH com-
mand execution simpler to code. A local log writ-
ing facility, logger, is called upon to enter lines in the
news.noticelog file to show important operations of the
script.

To obtain the list of authorized reply posters, the LDAP
search base is set to the LDAP Common Name of the
object representing the special newsgroup. The list of
attributes to return is assigned to theattr variable as,

$attr = "certifiedAuthor";

and the LDAP search is performed, using the following
Perl statement,

@result = ‘$ldapcmd $ldaphost[$i] $parm

$scope "$base" "$filter" $attr‘;

where predefined Perl variables are used for the com-
mand and its parameters. The LDAP search results are
put into theresult array, which is then searched for
the desired information. Access to the data is controlled
by the LDAP ACL as shown in the first ACL example in
Section 10 (Figure 8) where the LDAP server receives
a network connection from the news server and matches
its IP address against theby addrportion of the ACL.
Using information obtained from the pending news arti-
cle and the LDAP server, the script determines whether
the article will be accepted for posting.

Using the Web500GW[11] Web interface, the special
newsgroup owner can readily see and change the LDAP
data relevant to their newsgroup. They are then able to
manage the authorization list without any further work
by the news administrator. With the Perl hook and cod-
ing added to access the LDAP database, simple or com-
plex decisions can be made with regards to specific ar-
ticle postings. This then extends the levels of security
normally available to INN without requiring local mod-
ifications of the INN programs themselves.

8.1 Performance Observations

While not exhaustive, the following simple data may
help to show some of the performance differences be-
tween using an INND server without any LDAP en-
hancements, and an INND server using the enhanced
filter nnrpd.plfilter with multiple LDAP searches. The
“Prod. Script” uses LDAP and extra coding whereas the
“Orig. Script” that comes with INN basically does noth-
ing.

Test Performed Prod. Script Orig. Script
size 14,091 bytes 1,207 bytes
Perl Validate 0.548u,0.233s 0.127u,0.180s
One line Post-s 0.975u,0.747s 0.404u,0.363s
One line Post-u � 6 secs < 0.75 sec
NNRPD write/log < 4 secs -na-
NNRPD reject/log � 6 secs -na-
LDAP search/log � 3 secs -na-

Table 3: Sample INN/LDAP Performance
Test Environment (#1)

Test Performed Prod. Script Orig. Script
size 14,100 bytes 1,207 bytes
Perl Validate 0.180u,0.060s 0.010u,0.050s
One line Post-s 0.400u,0.380s 0.180u,0.280s
One line Post-u � 2.25 secs < 0.5 sec
NNRPD write/log � 2 secs -na-
NNRPD reject/log � 2 secs -na-
LDAP search/log < 2 secs -na-

Table 4: Sample INN/LDAP Performance
Production Environment

The “u” and “s” symbols in the times represent user and
system CPU usages in seconds, respectively. Those en-
tries which are not applicable since the script does not
perform or have any impact on the indicated function
are identified with “-na-.”

The Perl validation is the simpleperl -c test which val-
idates the Perl code (i.e., performs the Perl “compile”
operation) which is affected by the size of the code be-
ing tested and the complexity of the code. The original
script contains only a few active lines – the remaining
being either blank or commented out.

The “One line Post” times come from a new article
posted to the special test newsgroup that contained one
line of text, which varied slightly in size, plus the normal
article header records. The “-s” times are news server
times for just thennrpd program itself. The “-u” times
represent the real-time measures of time from when the

user initiates the posting action (i.e., presses the Post but-
ton, or equivalent), and the article is posted (as reported
by the user’s news client).

All “/log” entries represent the elapsed time observed
for the particular function performed, reported as integer
values. Logging is accomplished with the systemlogger
command, where each log line is a seperate call tolog-
ger. Time values indicated as “less than” are strictly less
than the value indicated. Values indicated as “less than
or equal to” are predominantly less the the value indi-
cated – there were a small number of observations that
did equal the specified value.

“NNRPD write/log” times represent the total elapsed
time for filter nnrpd.pl to write its entries to the log file
after the user posts the article (i.e., presses the Post but-
ton, or equivalent), andfilter nnrpd.placcepts it.

“LDAP search/log” times are taken from an LDAP
server log which show the total elapsed time for the
LDAP server to accept a connection from the news
server and process its LDAP search requests for the spe-
cial newsgroup entry, return the data to the news server,
and close the network connection.

“NNRPD reject/log” times are from the news server log
which show the total elapsed time for thefilter nnrpd.pl
“hook” to make its posting failure determination and
write out its log lines.

The differences in log file writing times are affected by
the throughput of the associated network and the speed
of the associated servers, which is to be expected. The
different environments, slower test, faster production,
also represent a difference in the relative “size” of the
servers (i.e., small versus medium). The amount offil-
ter nnrpd.pl logging appears to be the largest delay fac-
tor in this process, all other things being equal. It should
be noted thatfilter nnrpd.plcan operate without gener-
ating any log entries, but for administrative purposes, ten
or so lines were normally logged.

Overall, while increasing news server system time for
log writing, Perl “hook” processing, and external service
(LDAP) processing, the amount of additional time for
the LDAP-enhanced INN services is reasonable. Turn
off all filter nnrpd.pllogging and the additional time can
be further reduced, making it neglible.

9 Implementing a PC-to-other host File
Relay

The main goal of this facility is to provide an easy way
for a PC user to submit jobs to a remote host and obtain
output from a remote host, without the PC user having

to connect or logon to that remote host. All of the file
transfer exchanges appear to be local to the PC user. This
eliminated the need for the PC user to stop what they are
doing, initiate an FTP process to the remote host, and
then issue one or more commands to send or receive a
file. Occasionally, a login or telnet session would also
be required to obtain the desired output. All they need
to do now is to copy a file from or to two network drives
(remote Samba server “shares”), and everything else is
done automatically.

While this particular facility was developed for use with
an IBM mainframe and NetBIOS/Windows PCs, it can
be equally used for other hosts where a remote job could
be executed and file transference is accomplished by
FTP (or some other suitable function). Implementing
NetaTalk[21], the UNIX-based AppleTalk file system,
this file relay is also available to Macintosh hosts. Again,
while the remote host details will be specific to a main-
frame in this project report, the process is not limited to
such a host. The same is true for the user side. In the
remainder of this section, the terms “PC user” and “PC
host” are interchangeable with other user-based scenar-
ios using different types of computers.

The key mechanisms used for this file relay are FTP and
user workstation file copy. The remote host is expected
to be an IP host which provides an FTP server to allow
files to be sent to it. In the case of the IBM mainframe,
a special FTP command (SITE) was used to direct the
incoming file to the “job queue” of the remote host. To
obtain remote host output, the user would add several
FTP commands to their “job” which executed on the re-
mote host. This would send the output data to the Samba
server. To obtain a local copy of the output data, the user
simply copies the file from their Samba server “output
share” to a local folder.

It should be noted that the LDAP service was chosen to
store the user’s remote host FTP/login password, but the
same data can be supplied in the user’s job file. In gen-
eral, however, it is simpler to ask an LDAP server for a
data entry than to parse a job file, looking for the same
data even if a fixed scheme is applied and expected in
locating said data. The LDAP mechanism also allows
more data to be stored for the given user, such as a “no-
tify” field intended to be used to send a notification to the
user in certain situations. Again, this same information
could be incorporated into the job file to be submitted,
which then must be parsed and properly extracted. The
LDAP mechanism helps to reduce the multiple possibili-
ties of user data entry errors, though it certainly does not
eliminate all possible user errors.

Figure 6 and Figure 7 illustrate the before and after af-
fects of providing this service.

In Figure 6, the user must manually go to the remote host
to submit a job or retrieve job output. This may or may
not require a telnet session to find the job output infor-
mation. The user must be familiar with the FTP process
including all special commands such as the SITE com-
mand required in our situation. They must also be famil-
iar with finding their output data files and how to move
them to where they want them, most likely using an FTP
session. For some users this process may be counterin-
tuitive and time consuming.

In Figure 7 the user has established two network drives
available to them from the Samba server, which appear
as folders on their local system. They can then copy
files in to and out of these network drives as easily as
they would with any other local folders. This provides
a well understood mechanism for the user once they un-
derstand which files go into or can be found in which
remote folder. They also are free to use whatever local
tools they desire to do the file transference required.

The job to be run is copied into the remote submit folder
on the Samba server. An automatic process added to the
Samba server, using Expect, then sends the job file to
the remote host for execution via FTP. Two log files are
maintained: one in the user’s submit folder which shows
the submission process result, and one in the server’s log
directory which shows a count of all jobs submitted per
user.

A special “job step” can be used to transfer output data
to the user’s remote output folder on the Samba server.
This can be added to a job file placed in the submit
folder, or can be a job that the user has permanently
stored on the remote job execution host. Upon execu-
tion of this special job step, the remote host deposits the
specified output file into the user’s output folder. The
user can then copy the output file to their PC.

Using this process, the user never has to logon or connect
to the remote host.

10 Brief Comments On LDAP ACLs (Ac-
cess Control Lists)

Netscape Directory Server, UMich LDAP-3.3, and
OpenLDAP all use a scheme to control access to parts
of the LDAP database by specifying one or more inter-
nal database attributes, or external real-world attributes.
Netscape has renamed ACL to ACI, but the mechanism
is basically the same. The biggest difference between
Netscape’s ACI and LDAP ACL is where the actual
control list resides. With Netscape’s Directory Server,
the ACIs are entries within the LDAP database, usu-
ally at the root of the database tree to be controlled.

execution host

folder

folder

folder folder

folder

folder queue

queue

queue queue

queue

queue

FTP FTP
telnet telnet

user
workstation

remote job

Figure 6: User to remote host via FTP and telnet
User does all of the work

queuefolder

folder

folder

folder

folder

folder

folder

folder

folder

folder

folder

folder

queue

queue

queue

queue

queue

remote job
execution host

Samba
server

user
workstation

Figure 7: User to Samba server
Samba server does all of the work

With UMich/OpenLDAP, the ACLs are usually stored
in an external file which is included in the LDAP server
startup file.

The basic LDAP ACL definition[7, Section 5.3] is
shown below. Netscape’s ACI has additional attributes.

<access directive> ::= access to <what>
[by <who> <access>] +

<what> ::= * | [dn=<regex>]
[filter=<ldapfilter>]
[attrs=<attrlist>]

<who> ::= * | self | dn=<regex> |
addr=<regex> |
domain=<regex> |
dnattr=<dn attribute>

<access> ::= [self]none | [self]compare |
[self]search | [self]read |
[self]write

Samples of ACLs used in the facilities of this report,
with some specifics replaced by generic qualifiers, are

shown in Figure 8.

access to filter="cn=<newsgroup name>"
attr=certifiedHost,certifiedAuthor

by self write
by dnattr=owner write
by dn="cn=Manager,ou=People,

o=<our domain>,c=US" write
by dn="cn=<News Server IP hostname>,

ou=Network Hosts,o=<our domain>,
c=US" read

by addr=<News Server IP address> read
by * none

access to attr=MVSpasswd
by self write
by dn="cn=Manager,ou=People,

o=<our domain>,c=US" write
by addr=<Samba server IP address> read
by * none

Figure 8: Sample Project ACLs

The first ACL restricts all access to thecertifiedHostand
certifiedAuthorLDAP attributes defined in the LDAP
entry for the special newsgroup whose DN begins with

the Common Name value of<newsgroup name>.
Write, and read, access are granted to the person iden-
tified by theownerattribute, which is a “pointer” to an-
other LDAP entry (DN). The person associated with the
(directory server) Manager DN is given the same access
permission.

Access for these privileges requires LDAP password au-
thentication, where the password is stored in the LDAP
entry of the authenticating user. The news server us-
ing the LDAP database is allowed to read the restricted
attributes by either authenticating as the news server
LDAP entry DN, or by its IP address matching the value
in the by addrspecification. All other access attempts
for the two specified attributes is denied.

The second ACL in Figure 8 restricts access to theMVS-
passwdattribute defined in any LDAP entry. The pre-
vious ACL was limited to a single LDAP entry. Here
the user (self) identified by their entry’s DN and the
LDAP administrator both have write and read access.
The Samba server which uses theMVSpasswddata is
allowed only read access, and its IP address must match
that as given in theby addrspecification. All other ac-
cess attempts are denied.

After the owner of any restricted LDAP entry becomes
familiar and comfortable with the process, the LDAP ad-
ministrator may or may not be removed from the spe-
cific ACL. It is usually included initially to get the new
service operating, and to provide a fall back in case the
owner has problems updating their restricted data.

11 Conclusions and Comments

While many uses of LDAP data and servers today re-
late solely to electronic mail addresses, one of the inher-
ent benefits of using LDAP is the ability to easily relate
many other informational items with any given LDAP
entry. This can greatly expand the knowledge base as-
sociated with a person, group, service, network entity,
organization, or other type of object. This is not to say,
however, that LDAP is a ready replacement for all uses
or forms of other databases.

One major difference between Sendmail’s LDAP client
capability and themail500 LDAP client program is
that Sendmail only accepts one returned e-mail address
whereasmail500 accepts all returned e-mail addresses.
This is not a weakness in Sendmail’s LDAP client, but
rather a difference in philosophy which can be put to
good use. If a note to a mailing list could generate
many e-mail addresses, then allowing an external pro-
gram such asmail500 to do all of the work in assem-
bling those addresses from an LDAP database relieves

Sendmail of work that it doesn’t really need to do, free-
ing it to do the work it is more expected to do – deliver
mail. On the other hand, a single user LDAP lookup fits
in quite well with Sendmail since it can, and sometimes
does, the same kind of process in other user databases
created for Sendmail specifically. It should be noted that
the specific uses of LDAP in this report are not the only
way that the desired affects could have been achieved.

In general, data stored in an LDAP server that is meant to
be user consumable is in clear text – not encrypted. In-
ternal server information may or may not be encrypted,
but the user does not see and usually cannot access such
data. Also, most general LDAP connections today are
insecure, not only for connection or update authentica-
tion, but also for data transmission. Additionally, there
may be possibilities of IP hostname or address spoofing.
These can be serious concerns for some sites or individ-
uals.

In the case of the file relay facility, some possible meth-
ods to increase security are:

� encrypting user’s remote host login password in the
LDAP database,

� encrypting data transferred between the LDAP
server and the submission client,

� using a Kerberos-enabled FTP client in conjunction
with a Kerberos-enabled FTP server.

However, in the end, the file relay service is depen-
dent on trust and accountability no matter what secu-
rity mechanisms are used since its job submission client
must deal with a remote host userid and password, or
equivalent, to perform its function.

The facilities in this report were not implemented with
the intent of providing secure applications. They are
meant to show the feasibility of certain LDAP-enhanced
applications, and to provide a test bed for exploring such
LDAP add-ons.

Version 3 of the LDAP protocol specifies a secure
BIND capbility through the use of Simple Authenti-
cation and Security Layer (SASL), RFC 2222. Sev-
eral INTERNET-DRAFT documents propose the use of
Transport Layer Security, RFC 2246, as a means of pro-
tecting data transmitted between an LDAP client and
server. It may be possible to create “secure tunnels” or
“wrappers” using OpenSSH, OpenSSL, SSLeay, and/or
stunnel[22] for LDAP clients or servers without se-
curity capabilities.

Perhaps in the future, LDAP clients and servers will have
the requisite hooks built-in or coding added to provide

security at all levels of interaction. In the meantime,
network, password, and data security is left up to the im-
plementor and/or administrator. Different layers of secu-
rity and some security mechanisms are discussed in[17,
Chapter 11]. Actual implementation, however, is still up
to the site.

Availability

Additional comments about minor problems and obser-
vations about implementing each of these facilities along
with coding samples will be made available by request
via e-mail. Also see the Usenix Web page in the author
section.

Acknowledgements

I would like to thank Rob Kolstad for his valuable edito-
rial assistance with this report. I would also like to thank
Chris Demetriou for his valuable assistance in getting
this report into its final form.

References

[1] Timothy A. Howes and Mark C. Smith,
Programming Directory-Enabled Applications
with Lightweight Directory Access Protocol.
Macmillan Technical Publishing, Indianapolis,
Indiana, 1997.

[2] Timothy A. Howes,The Lightweight Directory
Access Protocol: X.500 Lite.Center for
Information Technology Integration, University of
Michigan, Ann Arbor, Michigan, 1995.

[3] Bryan Costales with Eric Allman,Sendmail.
O’Reilly & Associates, Inc.,
http://www.oreilly.com/, second edition 1997.

[4] Sendmail: src/README. Sendmail Consortium,
http://www.sendmail.org/, V8.[89].x.

[5] Booker Bense,Using LDAP with
sendmail.8.[89].x.
http://www.stanford.edu/�bbense/Inst.html/,
January 2000.

[6] UMich LDAP-3.3.University of Michigan,
http://www.umich.edu/�dirsvcs/ldap/, 1996.

[7] The SLAPD and SLURPD Administrator’s Guide,
Release 3.3.University of Michigan,
http://www.umich.edu/�dirsvcs/ldap/, 1996.

[8] INN-2.1: README.perl.hook.Internet Software
Consortium, http://www.isc.org/, 1998.

[9] INN-2.1: samples/filternnrpd.pl.Internet
Software Consortium, http://www.isc.org/, 1998.

[10] INN-2.1: man(nnrp.access).Internet Software
Consortium, http://www.isc.org/, 1998.

[11] Frank Richter,Web500GW.
http://www.tu-chemnitz.de/�fri/web500gw/,
V2.1b3, 1998.

[12] LDAP-3.3: mail500/README.University of
Michigan, http://www.umich.edu/�dirsvcs/ldap/,
1993.

[13] Don Libes,Exploring Expect.O’Reilly &
Associates, Inc., 1st edition, 1994. [also,
http://expect.nist.gov/]

[14] John D. Blair,Samba - Integrating UNIX and
Windows.Specialized Systems Consultants, Inc.,
Seattle, Washington, 1998.

[15] OpenLDAP-1.2.7.OpenLDAP Foundation,
http://www.openldap.org/, September 1999.

[16] Tim Howes and Mark Smith,An LDAP URL
Format.RFC 1959, June 1996.

[17] Timothy A. Howes, Mark C. Smith and Gordon S.
Good,Understanding and Deploying LDAP
Directory Services.Macmillan Technical
Publishing, Indianapolis, Indiana, 1999.

[18] Kartik Subbarao.ldaptool.html
http://developer.netscape.com/viewsource/
subbaraoldap/subbaraoldap.html/,
September 1999.

[19] Ian Collier.REXX-IMC-1.7.
http://users.comlab.ox.ac.uk/iancollier/
Rexx/rexximc.html/, February, 1999.

[20] Clayton Donley, Netscape Corporation,perldap.
http://www.mozilla.org/directory/, 1999.

[21] Adrian Sun,netatalk-1.4b2+asun-2.1.3,
ftp://ftp.cobaltnet.com/pub/users/asun/release/,
[also: http://www.umich.edu/�rsug/netatalk/],
February 1999.

[22] Michal Trojnara<mtrojnar@ddc.daewoo.com.pl>,
Adam Hernik<adas@infocentrum.com>, Pawel
Krawczyk<kravietz@ceti.com.pl>, stunnel-3.4a.
http://opensores.thebunker.net/pub/mirrors/stunnel/,
December 1998.

