
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

W E B M I N : A W E B - B A S E D
S Y S T E M A D M I N I S T R AT I O N T O O L F O R U N I X

Jamie Cameron

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Abstract

This paper describes the design and implementation of
the Unix administration tool Webmin, available from
http://www.webmin.com/webmin/ . Webmin allows
moderately experienced users to manage their Unix
system through a web browser interface, instead of
editing configuration files directly. The most recent
version supports Apache, Squid, BIND, Samba and
many other servers and services. It supports multiple
operating systems and distributions, different
languages, multiple users each with different levels of
access, and SSL encryption.

The first part of the paper explains why Webmin was
developed and the initial design goals, and compares
the design to other similar tools such as Linuxconf.
Subsequent sections cover the design and
implementation of the detailed multi−user security
model, the implementation of Webmin itself, how
support for multiple operating systems is handled and
how internationalization works. Finally, two Webmin
modules are discussed in more detail and various
problems explained before the conclusion.

1 Introduction

For the inexperienced user, Unix system
administration can be daunting. Almost all services
have configuration files that must be edited manually
and often have complex formats. While these files are
usually well documented in man pages, it is often
unclear exactly how different sections and directives
fit together. Furthermore, a single misspelling or
missing punctuation character can ruin an entire
configuration file.

To make matters worse, similar services have
configuration files with different structures and
locations on different kinds of Unix systems. For
example, Solaris stores NFS exports in /etc/dfs/dfstab,
while Linux, FreeBSD and HPUX use /etc/exports −
and all four use different formats. For an inexperienced
system administrator in charge of several different

types of systems, these inconsistencies can make life
difficult.

My aim in writing a system administration tool was to
solve both these problems. It needed to provide a
friendly user interface with basic error checking, and
consistency across the many different Unix systems
and distributions. Additional goals were completeness
(all reasonable options for the service being configured
should be settable) and non−destructiveness
(comments and unknown options should be
unharmed).

This paper describes the design, implementation and
future of my system administration tool Webmin.
Section 2 explains the design of the system, section 3
the implementation, section 4 covers two modules in
detail, section 5 discusses problems encountered and
finally section 6 concludes the paper.

2 Design

2.1 System architecture

I decided early on that the easiest and best
administration user interface was one accessible
through a web browser. A web−based interface is
platform independent, easy to develop and accessible
locally or over the network. I then began writing CGI
programs in perl to be run under an Apache webserver,
but eventually developed my own webserver written
entirely in perl to remove the dependency on Apache,
which may not be available on users’ systems and
dislikes running as root.

Perl was the natural choice of implementation
language for this project, as it has strong string
processing facilities for reading and updating
configuration files, and is available on every Unix
platform that I might want my administration tool to
run on. Avoiding the need for compilation was also an
important goal, as some Unix variants do not even ship
with a compiler and there are many ways compilation
can fail due to the lack of a key library. With perl, all

Webmin
A web−based system administration tool for Unix

Jamie Cameron (jcameron@calderasystems.com)
Caldera Systems

these problems have effectively been already solved by
the perl installation process.

While the web / perl / CGI architecture is simple and
easy to develop, it is not perfect. Because almost every
Webmin screen is generated by a CGI program, the
web server must fork a new process for each page,
which can be slow on underpowered or heavily loaded
systems. This has been resolved in the most recent
versions by having the web server execute CGI
programs in−process, in a similar way to mod_perl.
Response time can also be a problem when managing
distant servers, as every form submission must be
processed by the web server. The user interface
capabilities of HTML are also inferior to what is
possible with a real user interface toolkit such as Qt or
Swing, although they can be improved somewhat
through the use of Javascript.

2.2 Alternative architectures and tools

I considered two other possible architectures before
deciding on the perl / CGI design :

• A standard X11 application, written in C or C++
and using Motif or Qt
This would have some advantages from a user−
interface point of view, as X applications have far
more controls and inputs available than web
applications. However, C is not a good language
for writing string and file manipulation code in and
remote access would only be possible if the user
was running an X server. Because remote access
was a major design goal, a browser−based solution
was preferable.

• A Java applet client and server
This option solves the remote access problem
(because applets run in a web browser), while still
allowing complex user interfaces to be developed.
Unfortunately, at the time Webmin was designed
Java applets were still rather unreliable, especially
large and complex programs. In addition, Java’ s
string manipulation capabilities are not much better
than C and far inferior to Perl.

When I started development in 1997, Webmin was not
the only administration tool for Unix system. Others

available were :

• Linuxconf
While today Linuxconf is a very impressive tool
with many of the same functions as Webmin, at the
time its development had only just begun. Its
internal design is different to Webmin in that
instead of writing to config files directly, it stores
an internal list of changes, which is only written
out when the Activate Changes button is clicked. It
has a modular architecture like Webmin, though
the modules are shared libraries written in C++
rather than sets of CGI programs, and it supports
multiple languages for the user interface and help
screens.

Linuxconf’ s method of batching config file changes
has some advantages, such as the ability to have
multiple related changes applied simultaneously.
The biggest disadvantage is the possibility that
changes made manually or by other tools could be
overwritten unexpectedly if Linuxconf’ s
modifications have not been applied for some time.

While it supports text, GTK and browser−based
user interfaces, most of the effort seems to have
gone into the GTK interface. This makes
Linuxconf excellent for local administration, but
not as good for remote administration through a
web browser. Other problems are the lack of
support for non−Linux systems and the inability to
handle multiple users with different levels of
permissions.

• Redhat Control Panel
This is a collection of small programs shipped with
Redhat Linux for configuring users, printers,
networking and a few other services. While it is
good for those few services, it can only run as an X
application and only supports Redhat Linux config
files.

• SAM
This is a X/Motif administration application
shipped with the HP/UX operating system. Like the
Redhat control panel, it does not support remote
access and only allows the configuration of a few
services such as NIS, users accounts and
networking.

2.3 Modules

Almost all of Webmin’ s functions are divided into
modules, each of which is a mostly independent set of
CGI programs responsible for managing some Unix
feature or service. The programs for each module are

Web Browser
Webmin
Server

CGI Program Config
Files

Webmin Architecture

stored in a separate subdirectory below the base
Webmin directory (the webserver document root), and
thus each module is accessed by a URL like
http://server:10000/module/ . Every module has some
information associated with it, such as a human−
readable description, the operating systems it supports,
and the other modules that it depends upon.

When a user first logs in to the server, he will be
presented with a list of all the installed modules to
which he has access, with each module displayed as an
icon from its directory. Each module is displayed in
one of five categories (Webmin, System, Servers,
Hardware and Others), with the module itself
determining which category it is in. This layout was
adopted after the original method of showing all
modules on one page became too large and cluttered.

The module system makes the distribution and
addition of new third−party modules simple. Third−
party modules can be distributed as Unix TAR files
(normally with a .wbm extension) for installation into
existing Webmin servers. Because each is fully self−
contained, the installation process consists of nothing
more than untarring the module file and adding it to
the access list of the current user.

At the time of writing Webmin has 38 standard
modules, capable of configuring the Apache
webserver, Unix users and groups, Samba, Squid,
Sendmail, NFS exports, disk partitions and more.
There are also 17 third−party modules for services
such as IPchains, Qmail, NetSaint and others.

2.4 User interface design

Because Webmin uses a web / CGI architecture, all
user interfaces are simply HTML pages and forms.
The major goals in designing the Webmin user
interface were :

• Consistency
I wanted all screens to have a consistent look and
feel, so that novice users could easily find their
way around. This meant using a standard color
scheme, title layout, footer and common interface
elements, such as tables of icons.

• Simplicity
To make screens easy to use (and to avoid the
problem with large forms in some browsers), I
wanted to limit the amount of information and form
inputs displayed on each screen. To achieve this,
many functions are broken down into multiple
screens although it would be possible to put all the

information on one page.

• Compatibility
Because there are so many web browser types and
versions in use, I chose to use only the lowest level
of features possible. This meant no frames,
DHTML, Javascript or Java unless the there was no
alternative (for example, the File Manager feature
is written in Java because it could not be done any
other way), or for adding non−vital features (such
as the optional file selection dialog in some
screens).

2.5 Security

Because Webmin runs through a web server, the first
level of security is a standard HTTP login prompt
displayed when the user attempts to access the server.
To prevent brute−force attacks, Webmin can be
configured to delay an increasing amount of time
before responding to each incorrect login. This will not
defend against sniffing the network for the password of
a valid user, which is why Webmin is also capable of
running in SSL mode if the OpenSSL library has been
installed on the system it is running on.

A key feature of Webmin is support for multiple users,
each with different levels of access. The initial design
only supported granting each user either total access to
a module, or no access at all. This turned out to be
inadequate however, as many modules could be used
in ways to gain root access and thus total control of the
system − for example, a Webmin user granted access
to all cron jobs could just create a job run as root and
thus take over the system.

The solution to this problem was the creation of an
additional more fine−grained level of security. This
allowed the granting to users only certain functions of
each module, rather than total control. For example, it
is possible to give a Webmin user the right to edit cron
jobs only for selected Unix users, or the right only to

manage certain Apache virtual servers. This feature
can be very useful if a master administrator wants to
delegate some tasks to other admins, without giving
them access to the entire system.

3 Implementation

3.1 Introduction

Webmin is implemented as a large number of perl CGI
programs, arranged into subdirectories called modules.
Each module handles the configuration of some Unix
service, such as Apache, NFS exports or cron. Each
module has one or more libraries of common
functions, included by each CGI program with the
require command. Typically, these functions deal with
the actual configuration files, converting them to and
from data structures used by the actual programs. That
way, there is a layer of abstraction between most of the
CGI programs and the system − although this
abstraction is not enforced, and is bypassed in some
cases.

By abstracting the user interface away from the actual
configuration files, not only is much repeated code
avoided, but also the possibility is opened up for
modules to call each other. For example, the module
fdisk (Partitions on Local Disks) has a library fdisk−
lib.pl that contains functions for discovering the disks
and partitions on Linux systems. These functions are
called by the raid (Linux RAID) module to find disks
available for inclusion into a RAID array, by the lilo
(Linux Bootup Configuration) module to display
bootable partitions, and by the mount (Disks and
Filesystems) module to display mountable partitions.

Webmin has its own web server called miniserv that
comes as part of the distribution. Unlike a general−
purpose webserver such as Apache, it has very few
features and only supports the retrieval of files and the
execution of CGI programs. Because it is written in
Perl like the rest of the Webmin programs, it has the
ability to run CGIs in−process without the need to fork
and exec a new Perl interpreter, in a similar manner to
the mod_perl Apache module. This provides a
substantial speed increase on slow or low memory
systems.

3.2 Common functions

In addition to the function library in each module,
there is a file named web−lib.pl in the top−level

Webmin directory that contains functions used by all
modules. Every CGI program must require this library,
either directly or by via its module library. In addition,
every CGI program must call the function init_config
to read in the module configuration file, perform
security checks and set several global variables.
Typically, this function is called by the module’ s
function library just after including web−lib.pl.

web−lib.pl includes many different functions, which
can be roughly broken down into the following
categories :

• Standard user interface functions for generating
headers and footer, icon tables, user and file
dialogs and so on. These help provide a consistent
look across all Webmin screens.

• File manipulation functions for inserting, replacing
and deleting lines in configuration files.

• Network functions, for downloading files via FTP
and HTTP.

• Functions for making ’ foreign’ function calls.
These are calls from CGI programs in one module
to functions in another module’ s library, done in
such a way that the called function has its
environment set up just as if it was being called by
one of its own CGI programs.

• Webmin−specific functions for getting information
about other modules, access control, the Webmin
version and so on.

• Assorted convenience functions, including CGI
functions for reading form inputs into perl
variables.

3.3 Platform Independence

In order for Webmin to work on the many different
Unix variants and Linux distributions, it needs to know
exactly which operating system and version the user is
running. This information is determined at install time,
either by asking the user or automatic detection from
the /etc/issue file or the output of uname. Once the
operating system is known, the appropriate
configuration for the OS is selected from each module
and used to find and parse system config files.
Activate configuration files are stored in the
/etc/webmin directory, with each module having its
own subdirectory for its configuration file and any
other temporary files that it might create.

For example, the location of the Apache httpd.conf file
differs between every Linux distribution, and even
between different versions of the same distribution.
Webmin can deal with this though, as it knows where
httpd.conf is located on all the different operating
systems and distributions that it supports. Possible
alternatives would be to ask the user where every
config files is (not very user friendly) or to find the
config files automatically by searching the entire
filesystem (not always possible, as many config files
do not exist initially).

Because some operating system behavior is too
complex to encode in the simple Webmin config files,
some modules have separate Perl libraries for each OS.
For example, in the Disk Quotas module each OS
library implements the same set of functions, but in a
different way to handle the different ways quotas work
on each operating system.

3.4 Internationalization

In order to support different languages, all the text
strings from most Webmin modules are no longer
hard−coded into the programs, but are instead stored in
separate language files. Each module has one file per
supported language, the one to use being selected by
the user’ s current choice of language. When a program
needs to display some text or message, it uses a
message code that is looked up in the appropriate
language file and converted to the actual text is the
correct language.

Because some words like Save, Create and Default are
used by many modules, there is a master set of
language files that contain these messages for the use
of all modules. These master files also store messages
used by the main Webmin menu and some programs
that are used by all modules.

The online help system also supports multiple
languages, with each help page stored in all the
supported languages. When a help page is requested,
the file for the current language is read and displayed.
A similar selection process is also used for displaying
the module configuration page in the correct language.

With all translation in Webmin, if a message or page is
not available in the user’ s currently selected language
then the default language (currently English) will be
used instead. This means that partial translations can
be contributed and are still useful, and that the addition
of new messages will not require the immediate update
of all language files.

3.5 Security Implementation

Because Webmin runs through a web server, the first
level of security is simply HTTP authentication
enforced by the web server using usernames and
passwords from a standard Apache−style users file.
Because the server also enforces checks against brute−
force attacks and because the authentication protocol is
relatively simple, there is little chance of an attacker
breaching this level of security.

The second security level is enforced by module CGI
programs themselves, all of which check the HTTP
username against the list of allowed users for the
module. This checking is done by the common
init_config function which every program directly or
indirectly calls. Because of this, any program that does
not check whether the current user is allowed to access
it could theoretically be a security hole. A better
alternative would be to have this level enforced by the
webserver, although that would complicate running
Webmin under other webservers such as Apache, as
any change to the list of modules a user has access to
would require changing the Apache configuration as
well.

The third security level of fine−grained module access
control is also enforced by the CGI programs, but the
complexity and variability of this access control means
that there is no common function that the programs
can call. Instead, each program checks a list of actions
allowed by the current user and displays an error
message if the action the user requested is unavailable.
This means that the potential for accidentally creating
a security hole is much greater, but I see no other
alternative.

The Webmin webserver can also use the OpenSSL and
Net::SSLeay libraries to encrypt communication
between the server and browser with SSL. Thanks to
these libraries, the implementation of SSL is relatively
simple − the only difficulty is the provision of an SSL
certificate, which normally must be come from a
trusted source like Verisign, and associated with the
hostname of the server. Because Webmin’s certificate
is not valid, there is no defense against man in the
middle attacks that trick the user into thinking he is
accessing his Webmin server when he really is not.

4 Module Discussions

4.1 Apache Webserver

The Apache Webserver module is one of the most
complex, due to the massive number of configuration
file directives supported by Apache. My objective was
to support all common Apache versions, and as many
different directives as possible. This was made more
complex by the large number of Apache modules, an
unknown combination of which could be compiled
into each user’ s Apache installation, and each of which
could add several new directives.

Fortunately, it is possible to query an Apache
installation for version number, compiled in modules
and dynamically loaded modules. This information
combined with the Webmin module’ s built−in
knowledge of the availability of each directive in each
Apache release makes it possible to edit the Apache
config files correctly. However, keeping up with the
changes in each Apache release can be difficult.

Once the supported modules are known, a Perl library
for each Apache module is read in, each of which
contains a function for editing and updating each
module directive. Each directive in each module is
assigned a category (such as Log Files or Access
Control), so that when the user visits the Log Files
submenu inputs for all the directives in all modules
related to that category are displayed. This
categorization system allows the large number of
directives to be broken down logically instead of all
being displayed on one huge page.

Because Apache supports subsections such as
<VirtualHost> or <Directory>, the user interface is
further categorized to allow the editing of directives in
those sections, which are also broken down into
categories. This way even a large Apache
configuration with many virtual servers can be easy
managed, and all supported directives can be editing in
all sections.

Because there are some Apache directives (such as
those in the mod_rewrite module) that are too complex
for Webmin to manage, the module also provides
support for manually editing parts of the config files.
Comments and unsupported directives such as these
are not effected by the other pages in the module.

4.2 Users and Groups

The Users and Groups module is designed to allowed
the creation, modification and deletion of Unix users
and groups by directly editing the /etc/passwd,
/etc/group and /etc/shadow files. This is complicated
slightly by the difference in format and existence of
those files on different operating systems − for
example, some Linux distributions do not have an
/etc/shadow file at all, while some BSD−derived
systems use the file /etc/master.passwd as their main
source of user account information.

This functionality already exists in many other
administration tools however. What makes Webmin
unique in this area is the ability to update other parts of
the system when a user is created or modified. For
example, you can configure the Samba module to have
a user added to Samba’s encrypted password file
whenever a Unix user is added, something that
normally must be done manually. Similarly, the
administrator can setup default quotas to be assigned
when new users are created.

5 Problems

After several years of development and use, I have
identified several design and implementation problems
in Webmin :

• Second and third level security
This is still dependent on checking by individual
CGI programs, and thus security breaching are
more likely than they should be. While the second
level is relatively secure and can be improved,
there is no easy way to improve the fine−grained
third level of access control. Only careful coding
and close examination of the code by others can
help solve this problem.

• Coding style
The development of Webmin began when I was
unfamiliar with Perl 5 features such as packages
and modules, and unfortunately the initial coding
style has continued through to this day. A good
implementation would have made each module a
separate Perl module, allowing modules to call
each other using standard Perl syntax instead of the
ugly foreign_ functions. The best long−term
solution is to recode all the Webmin modules as
proper Perl modules, so that function calls between
them can be made with Perl’ s module::function
syntax.

• Internationalization
Because multi−language support was not part of
the original design, several older modules still have
strings hard−coded into their programs.
Internationalization of these modules requires
nothing more than time and tedious work, as there
is no reliable way this process could be automated.

• Keeping up with new releases
Because new releases of servers such as Samba,
Apache and Squid often have new configuration
directives or change the meanings of existing ones,
Webmin must keep up with the latest version of
these programs. In addition, new releases of
operating systems and Linux distributions which
add new features and change the locations of
config files much also be kept track of. This is an
unavoidable task, but relatively easy if I download
each new release of the supported servers and
install each new version of operating systems and
distributions to which Webmin has been ported.
Fortunately, programs such as VMware make the
testing of new PC−based operating systems
relatively easy.

• Documentation and help
Most modules still lack online help, and there is no
overall manual or instructions on how to use
Webmin. While most screens are relatively self−
explanatory to experienced system administrators,
beginners would benefit from a simple set of
instructions on what DNS domains are and how to
set them up, how to create Unix accounts and so
on.

6 Conclusion

From its initial releases that contained only a few
modules, Webmin has met its design goals and
developed to support many commonly used Unix
services, becoming a useful and powerful
administration tool. This paper has covered the design
and implementation of Webmin, and should provide
information for others planning to develop similar
tools or contribute to Webmin.

7 Availability

Webmin is distributed under a BSD−like license, and
thus is freely available. It can be downloaded from
http://www.webmin.com/webmin/ in .tar.gz , RPM and
Solaris package format. Several third−party modules
contributed by others can also be downloaded from the
same URL.

