RCB: A Simple and Practical Framework for Real-time Collaborative Browsing

Chuan Yue, Zi Chu, and Haining Wang
The College of William and Mary
End-user Real-time Communication
Document Sharing and Collaboration

Google Docs

Microsoft Office Live

Adobe Buzzword

Zimbra
Web Browsing: Heavily Isolated
Collaborative Browsing (Co-browsing)
Simple Co-browsing via URL sharing

• E.g., instant messenger tools/browser extensions
• Limited collaboration
 – Can at most view webpages
• Narrow scope of webpages
 – Cannot access session-protected or dynamic webpages
Complex Co-browsing via Screen Sharing

- E.g., screen or application sharing software
- High demands on network bandwidth and security
 - Grant the control of a whole screen or application
Specific Co-browsing Solutions

- **Platform-based**
 - CWB
 - PageShare
 - ProSpace

- **Proxy-based**
 - UsaProxy
 - CoWeb
 - PROOF

- **Server-based**
 - CWB
 - PageShare

Depend on site-specific collaborative platforms.
Our RCB Solution

- Pure browser-based solution
- Simple and Practical
- Almost everywhere, various webpages
- Fine-grained, high-quality
Outline

• Introduction
• **Framework Design**
• Implementation
• Evaluation
Architecture of the RCB Framework

Host Browser

Webpage
- head
- body

RCB-Agent

Cache

Participant Browser

Webpage
- head
- body

Ajax-Snippet

Ajax: Asynchronous JavaScript and XML

Web Servers
A Typical RCB Co-browsing Session

1. Start the agent
2. Establish connection
3. Visit a webpage
4. Clone and modify
5. Synchronize document
6. Replace HTML elements
7. Download object (non-cache)
8. Download object (cache)
9. Synchronize changes/actions

Repeat steps 3 ~ 9!
Three Design Decisions

- Direct communication model
- HTTP-based service model
- Poll-based synchronization model
Co-browsing Topologies and Policies

- Multiple participants, free join/leave, awareness
- RCB-Agent enforces high-level policies
Security Design

• Similar to visiting a trusted HTTP website
• Protect RCB-Agent by authenticating requests
 – HMAC (keyed-Hash Message Authentication Code)
Implementation Overview

• RCB-Agent
 – Firefox Extension
 – Pure JavaScript
 – Possible for other browsers

• Ajax-Snippet
 – JavaScript objects/functions
 – Support different browsers
RCB-Agent Request Processing

• Implement a server socket object
 – Asynchronously accept new TCP connections
 – Asynchronously process HTTP requests

• Three types of HTTP requests

Request
 - New connection
 - Ajax polling ("POST")
 - Object (cache mode)
 - Data merging
 - Response generation
RCB-Agent Response Content Generation

1. Clone
2. Change object URL (Relative → Absolute)
3. Change object URL (Absolute → Agent)
4. Rewrite event handler
5. Generate response

<HTML>
 <html>
 <head></head>
 <body>
 <![CDATA[
 ...<script>
 ...onclick="...
]]>
 </body>
 </html>
</HTML>

XML
Ajax-Snippet

- Request Sending
 - XMLHttpRequest
 - “POST”, asynchronous

- Response Processing
 - Clean up and set head
 - Clean up and set other
Evaluation of RCB

• Performance Evaluation
 – The real-time performance of RCB
 – LAN environment and WAN environment

• Usability Evaluation
 – Whether RCB is helpful and easy to use
 – Using Google Maps and shopping online
Performance Evaluation

Host

RCB-Agent

Response Generation
Max: 0.4 second

384Kbps

Participant

Ajax-Snippet

Transmission
LAN: < 0.4 second
WAN: < 10 seconds

20 homepages
1.8 GHz PCs

Content Update
Max: 0.3 second
Coordinating a Meeting Spot via Google Maps

- Bob hosts
- Alice joins
- Bob may
 - Search, zoom in/out, drag, switch views
- Alice sees same pages

Rich content, communication intensive webpages
Online Co-shopping at Amazon.com

- Bob hosts
- Alice joins
- Bob or Alice may
 - Type in, search, click, fill/submit form

Dynamic/session-protected webpages, various interactions
Usability Evaluation

- Twenty students come from nine degree programs
- Ten pairs perform the two scenarios in a session
- Observation and questionnaire results

![Bar chart showing the following percentages: 92.5% for Usefulness, 90.0% for Ease-of-use (Host), 92.5% for Ease-of-use (Participant), and 85.0% for Potential Usage. The chart includes an option for Agree or Strongly Agree.]

92.5% 90.0% 92.5% 85.0%
Summary

- Pure browser-based co-browsing solution
- Simple and Practical
- Implemented as a Firefox extension
- Efficient, high-quality, helpful and easy to use

Thank You!

cyue@cs.wm.edu
http://www.cs.wm.edu/~cyue
Backup Slides
Security Design

- Similar to visiting a trusted HTTP website
- Protect RCB-Agent by authenticating requests
 - HMAC (keyed-Hash Message Authentication Code)
XML Format Response Content

```xml
<?xml version='1.0' encoding='utf-8'?>
<newContent>
  <docTime>documentTimestamp</docTime>
  <docContent>
    <docHead>
      <hChild1><![CDATA[escape(hData1)]]></hChild1>
      <hChild2><![CDATA[escape(hData2)]]></hChild2>
    </docHead>
    <docBody> <![CDATA[escape(bData)]]> </docBody>
  </docContent>
  <userActions>userActionData</userActions>
</newContent>
```