
The Restoration of Early UNIX Artifacts

Warren Toomey
wtoomey@staff.bond.edu.au
School of IT, Bond University

Abstract

UNIX turns 40 this year: many happy returns! Four
decades is a vast period for the computing industry: sys-
tems from the 1970s now seem rudimentary and primi-
tive. And yet, the early versions of UNIX were epitomes
of sophisticated concepts packaged into elegant systems.
UNIX’ influence has been so powerful that it reverber-
ates down to affect us in the 21st century.

The history of the development of UNIX has been well
documented, and over the past decade or so, efforts have
been made to find and conserve the software and docu-
mentation artifacts from the earliest period of UNIX his-
tory. This paper details the work that has been done to
restore the artifacts from this time to working order and
the lessons learned from this work.

1 Introduction

In 2009, the UNIX1 operating system celebrates the 40th
anniversary of its creation. In the middle of 1969, af-
ter AT&T’s withdrawal from the Multics project, a num-
ber of researchers at AT&T’s Bell Labs began the de-
sign and development of a simpler operating system
which would be named “UNIX” [10]. Led primarily
by Ken Thompson and Dennis Ritchie, but with many
other colleagues involved, Bell Labs’ UNIX would com-
bine several leading-edge concepts (multitasking, a pro-
cess model, a hierarchical filesystem) and some new con-
cepts (I/O redirection, pipes, portable implementation in
a high-level language) to become an elegant and sophis-
ticated system. The 7th Edition of UNIX released in
1979 (and its 32-bit port called “32V”) would become
the ancestors to all of the hundreds of UNIX-derived
systems that now exist2 including AIX, Solaris, Apple’s
Darwin kernel and the various open-source BSD sys-
tems. UNIX and the C language would exert a signif-
icant influence on the computing industry in the 1980s
and 1990s, and see the creation of such vendor-neutral
standards as IEEE 1003 POSIX, ISO/IEC 9945, ANSI C
and ISO/IEC 9899.

While the history of UNIX has been well-
documented [5, 7, 8, 10], there was a time when

the actual artifacts of early UNIX development were in
great danger of being lost forever. This has been rectified
in the last decade with the collection of a significantly
large number of old UNIX systems. Software, however,
is simply a collection of zeroes and ones if it is not able
to run, and a lot of work has been done to bring these
old UNIX systems back to life.

The restoration of a software artifact to working or-
der brings with it a wealth of difficulties: documentation
is missing or incomplete, source code is missing leaving
only the binary executables, or conversely the source ex-
ists but the compilation tools to reconstruct the executa-
bles are missing. The restoration of an operating system
to working order presents its own issues, as the system
needs a suitable hardware environment in which to run,
a suitable filesystem and a set of system executables to
initialise the system and make it useful.

This paper presents four case studies in software
restoration: two early UNIX kernels, the earliest extant C
compiler, and a set of executables and source code frag-
ments from 1972. The case studies highlight the above
issues in restoration, and outline the approaches taken to
resolve the issues.

2 TUHS and the UNIX Archive

In 1995 the UNIX Heritage Society (TUHS)3 was
founded with a charter to preserve, maintain and restore
historical and non-mainstream UNIX systems. TUHS
has been successful in unearthing artifacts from many
important historical UNIX systems; this includes system
& application source code, system & application exe-
cutables, user manuals & documentation, and images of
populated filesystems.

The proliferation of UNIX variants and the longevity
of minicomputer systems such as the VAX and the
PDP-11 made TUHS’ task of collecting old UNIX sys-
tems and their documentation relatively straightforward.
Quite quickly the society had gathered such early system
as 6th and 7th Edition UNIX, 32V, System III, the BSDs,
and some early commercial variants such as Ultrix-11.

The building of an archive of early UNIX systems was
initially quite dubious, legally. Most of TUHS’ mem-

bers were covered by various UNIX source code licenses
from AT&T or USL, but not every license covered the
sum of material stored in the archive. TUHS began a pro-
cess of lobbying SCO,4 then owners of the UNIX source
code, for some license which would allow access to the
material in the archive. With the immense assistance of
Dion Johnson at SCO, in 1998 a cheap hobbyist license
was made available which gave source-code access to the
various PDP-11 UNIX systems, 32V and System III [11].
And in 2002, after much lobbying from TUHS, the PDP-
11 UNIX systems and 32V were placed under an open-
source BSD-style license.

System Released Features

1st Edition Nov 1971
multitasking, multiuser,
hierarchical filesystem

2nd Edition June 1972
support for memory man-
agement on the PDP-11/45

3rd Edition Feb 1973 pipes and C
4th Edition Nov 1973 rewritten in the C language

5th Edition June 1974
first version made available
outside Bell Labs

6th Edition May 1975
ported to multiple
platforms

7th Edition Jan 1979
large filesystem support,
the stdio library, many new
commands

32V May 1979
port of 7th Edition to the
32-bit VAX platform

Table of Early UNIX Releases

For a while, it seemed that the archaeology of UNIX
stopped somewhere around 1974. The source code and
binaries for 5th Edition UNIX existed, but not the files
for the manuals; conversely, only the 4th Edition UNIX
manuals existed, but not the source code nor any binaries
for the system. At the time, Dennis Ritchie told us that
there was very little material from before 4th Edition, just
some snippets of code listings. Then, around the mid-
90s, Paul Vixie and Keith Bostic “unearthed a DECtape
drive and made it work”, and were able to read a number
of DECtapes which had been found “under the floor of
the computer room” at Bell Labs. These tapes would turn
out to contain a bounty of early UNIX artifacts.

Two issues immediately arose with the extraction of
the tapes’ contents: what format were the tapes in, and
the interpretation of the timestamps on the files therein.
7th Edition introduced thetar(1) tape archive format; be-
fore tar(1) there wasrkd(1) used in 1st Edition to dump
an RK05 disk’s raw filesystem to nine DECtapes,tap(1)
used from 1st to 4th Edition to dump selected parts of
a filesystem to DECtape, andtp(1) used from 4th to 6th
Edition to dump selected parts of a filesystem to tape.

Fortunately, the formats fortap(1) and tp(1) are docu-
mented, and it was simple to write programs to extract
the files from both archive formats.

Timestamp interpretation is a much more difficult is-
sue to solve, as Dennis Ritchie noted in a private e-mail:

The difficulty of [timestamp] interpretation
[is due] to epoch uncertainty. Earliest Unix
used a 32-bit representation of time measured
in 60ths of one second, which implies a pe-
riod of just over 2 years if the number is taken
as unsigned. In consequence, during 1969-73,
the epoch was changed several times, usually
by back-dating existing files on disk and tape
and changing the origin.

For each DECtape unearthed and read, the epoch used
can only be determined by looking through the contents
of the tape and determining where the files should be
placed in the known history of UNIX development. We
will consider four of the artifacts unearthed in reverse
chronological order.

3 The Nsys Kernel: 1973

One of the DECtapes was labelled ‘nsys’, and Dennis
Ritchie’s initial e-mail on the tape’s contents noted:

So far as I can determine, this is the ear-
liest version of Unix that currently exists in
machine-readable form. ... What is here is
just the source of the OS itself, written in the
pre-K&R dialect of C. ... It is intended only
for PDP-11/45, and has setup and memory-
handling code that will not work on other mod-
els).

I’m not sure how much work it would take
to get this system to boot. Even compiling it
might be a bit of a challenge. ... Best wishes
with this. I’d be interested to hear whether any-
one gets the [system] to run.

Initial interpretation of the timestamps in the archive
led us to believe that the files were dated January 1973,
but after analysing the contents and their placement in the
history of UNIX, we now believe that the files are dated
August 1973, just before the release of the 4th Edition of
UNIX in November 1973.

Ritchie’s innocuous comments on “how much work
it would take to get this system to boot” seemed to be
an implicit challenge, and I began the restoration task
soon after receiving the tape’s contents. My tools were
a working 5th Edition UNIX compiler and environment
running on top of the SIMH PDP-11 simulator [2], along
with my own Apout emulator (see below).

Restoration work of this kind generally involves con-
sulting existing documentation (in this case, the 4th Edi-
tion Programmers Manual and John Lions’ Commentary
on 6th Edition UNIX [6]), interpreting the few avail-
able source code comments,5 single-stepping the ma-
chine code in the simulator, and intuiting what correc-
tions need to be made based on the system’s behaviour.

As predicted by Ritchie, the compilation was a bit of a
challenge due to the changes in the C language between
1973 and 1974: sub-structures defined within a structure
were delimited by parentheses in ‘nsys’, but by curly
braces in 5th Edition. However, the main issue was an
incompatibility of the filesystem layout between ‘nsys’
and 5th Edition: thefilsys structure in 5th Edition has
an extra field,s_ronly, and theinodestructure in 5th
Edition also has an extra field,i_lastr.

One last stumbling block was found which prevented
the ‘nsys’ kernel from booting via the 5th Edition’s boot-
strap code. While the 5th Edition kernel starts execution
at location 0, the ‘nsys’ kernel starts execution at loca-
tion 2. With a small amount of code transposition, the
‘nsys’ kernel was able to boot on top of a 5th Edition
filesystem and behave normally.

There is one last comment to make about the ‘nsys’
kernel. Although the 4th Edition of UNIX (dated
November 1973) has thepipe(2)system call, and an in-
ternal Bell Labs meeting in January 19736 notes the ex-
istence of pipes, the ‘nsys’ kernel haspipe(2) listed but
not implemented in the system call table. 3rd Edition
UNIX was the last version written in PDP-11 assembly
language. During 1973, while the assembly version was
still being developed, the system was also rewritten in the
new C language. After discussions with Ritchie, it seems
most likely that pipes were implemented in the assembly
version of UNIX first, and added to the C version after
most of the core functionality had been reimplemented.

4 1st and 2nd Edition Binaries: 1972

Two of the DECtapes read by Bostic, Vixie and Ritchie
were labelled ‘s1’ and ‘s2’. Ritchie’s initial notes were:

s1: I haven’t cracked this yet.

s2 (tap format): This is not source, but a dump
of (parts of)/bin, /etc, /usr/lib, and
bits of a few other directories.

The contents of the ‘s2’ tape, being intap(1) format
with timestamps in 60ths of a second, were easy enough
to extract but not to date. Most of the files were exe-
cutables in early UNIX ‘a.out’ format with a mixture of
0405 and 0407 signatures.7 This, along with the names
and contents of the executables, indicate that the tape was

written at a time around the 2nd Edition of UNIX: files
are dated from January 1972 through to February 1973.

Having a set of early UNIX executables is nice, but
having them execute is much nicer. There were already
a number of PDP-11 emulators available to run executa-
bles, but there was a significant catch: with no 1st or 2nd
Edition UNIX kernel, the executables would run up to
their first system call, and then “fall off the edge of the
world” and crash.

Fortunately, there was a solution. As part of my over-
all early UNIX restoration work, I had written a user-
level emulator for UNIX a.out binaries called ‘Apout’.8

Like the Wine emulator for Windows, Apout simulates
user-mode PDP-11 instructions, but system calls invoked
by the TRAP instruction are caught by Apout and emu-
lated by calling equivalent native-mode system calls.

Apout had already been written to run a.out executa-
bles from 5th, 6th and 7th Edition UNIX, 2.9BSD and
2.11BSD. Dennis Ritchie had luckily scanned in his pa-
per copy of the 1st Edition Programmers Manual, and I
obtained a paper copy of the 2nd Edition Programmers
Manual from Norman Wilson. With these in hand, the
work to add 1st and 2nd Edition executable support was
possible, but not trivial. The PDP-11/20 used by 1st
Edition UNIX required an add-on module known as the
KE11A Extended Arithmetic Element to perform opera-
tions such as multiply or divide. The KE11A needed to
be emulated, and I was able to borrow some code writ-
ten for SIMH to use in Apout. There were other issues
to solve, not the least being discrepancies between the
UNIX Programmers Manual and the expected behaviour
of the system calls being used by the executables (for ex-
ample, seeks on ordinary files were in bytes, but seeks on
device files were in 512-byte blocks). Eventually, a faith-
ful emulation of the 1st and 2nd Edition UNIX executing
environment was made, allowing executables such as the
early shell,ls, cp, mv, rm and friends to run again:

chdir /
ls -l
total 32
236 sdrwr- 1024 May 23 14:24:12 bin
568 sdrwr- 512 May 18 06:40:28 dev
297 sdrwr- 512 May 16 03:07:56 etc
299 sdrwr- 512 May 19 07:33:00 tmp
301 sdrwr- 512 May 5 23:10:38 usr
chdir /bin
ls -l
total 215
374 sxr-r- 2310 Jan 25 17:20:48 ar
375 lxr-r- 7582 Jun 29 17:45:20 as
377 sxr-r- 2860 Mar 6 12:23:38 cal
378 sxr-r- 134 Jan 16 17:53:34 cat
385 sxr-r- 160 Jan 16 17:53:36 cp

. . .

For those unfamiliar with the output from 1st Edition
UNIX ls(1), the first column shows the file’s i-node num-

ber. Thes/l character in the next column indicates if the
file is ‘small’ or ‘large’ (4096 bytes or more), thed/x
indicates if the entry is a directory or executable (there
being only one executable bit per file), and the tworw en-
tries show the file’s read/write status for owner and other
(there being no groups yet).

The ‘s1’ DECtape (noted by Ritchie as “not cracked
yet”) proved to be much more intriguing and at the
same time extremely frustrating. A block-level analy-
sis showed source code in both C and PDP-11 assembly,
none of which appeared to be for the UNIX kernel. There
was no apparent archive structure, nor any i-nodes. All
of the DECtape appeared to be used, and this led me to
conclude that ‘s1’ was one of the middle DECtapes in
the set of nine used whenrkd(1)dumped an RK05 disk’s
contents block-by-block out to tape. With the first tape
containing the disk’s i-nodes missing, the ‘s1’ tape was
merely a collection of 512-byte blocks.

In places, some source files were stored in contiguous
blocks, and the few comments inside allowed me to re-
cover the source for such early programs asls(1), cat(1)
andcp(1). But for the most part, the arbitrary placement
of blocks and lack of comments stymied further file re-
covery. Setting things aside for a while, I worked on
other projects including a tool to compare multiple code
trees in C and other languages.9 It took nearly two years
to realise that I could use this tool to match the fragments
from the ‘s1’ tape to source files in other early UNIX
systems such as the 5th Edition. Independently and con-
currently, Doug Merritt also worked on identifying the
source fragments from the ‘s1’ tape, and we used each
other’s work to cross-compare and validate the results.
In the end, the ‘s1’ tape contained source code for the
assembleras, the Basic interpreterbas, the debugger
db, the form letter generatorform, the linkerld, and
system utilities such asar, cat, chmod, chown, cmp, cp,
date, df, getty, glob, goto, if, init, login andls.

5 Early C Compilers: 1972

Two other DECtapes recovered by Ritchie contain source
code for two of the earliest versions of the original C
compiler:10

The first [tape] is labeled ‘last1120c’, the
second ‘prestruct-c’. The first is a saved
copy of the compiler preserved just as we
were abandoning the PDP-11/20; the second
is a copy of the compiler just before I started
changing it to use structures itself. ...

The earlier compiler does not know about
structures at all: the string “struct” does not
appear anywhere. The [later] compiler does
implement structures in a way that begins to

approach their current meaning. ... Aside
from their small size, perhaps the most strik-
ing thing about these programs is their prim-
itive construction, particularly the many con-
stants strewn throughout.

With a lot of handwork, there is probably
enough material to construct a working ver-
sion of the last1120c compiler, where “works”
means “turns source into PDP-11 assembler”.

Interpreting the timestamps on the tapes gives a date
of July 1972 for the ‘last1120c’ compiler and a date of
December 1972 for the ‘prestruct-c’ compiler. Again,
Ritchie’s note that “there is probably enough material
to construct a working version of the last1120c com-
piler” was taken as an implicit challenge to bring these
compilers back to life. But there was a “chicken and
egg” problem here: both compilers are in such a prim-
itive dialect of C that no extant working compilers would
be able to parse their source code. Good fortune was,
however, on my side. Not only did the ‘s2’ tape con-
tain early UNIX system executables, but hidden away
in /usr/lib were executables namedc0 andc1: the
two passes of an early C compiler. It seemed likely that
these executables running on the Apout emulator would
be able to recompile the ‘last1120c’ compiler, and so it
turned out to be. And, using the newly-compiled exe-
cutablesc0 andc1 built from ‘last1120c’, the compiler
was able to recompile itself.

The ‘prestruct-c’ compiler presented a much harder
problem: some of the source code was missing, particu-
larly the hand-coded tables used to convert the compiler’s
internal intermediate form into final assembly code. This
seemed at first an insurmountable problem, but after ex-
ploring several dead ends a solution was found. The
hand-coded tables from the ‘last1120c’ compiler were
borrowed and, with a small number of changes, the
hybrid source code was able to be compiled by the
‘last1120c’ compiler, and then to compile itself.

6 1st Edition UNIX Kernel: 1971

Alas, with the above DECtapes fully explored, there
seemed to be no earlier UNIX artifacts except Ritchie’s
fragmentary code listings on paper. Then in 2006, Al
Kossow from the Computer History Museum unearthed
and scanned in a document by T. R. Bashkow entitled
“Study of UNIX”, dated September 1972 [1]; this covers
“the structure, functional components and internal oper-
ation of the system”. Included along with the study was
what appeared to be a complete listing of an assembly
version of the UNIX kernel. A second document un-
earthed contained the handwritten notes made in prepa-
ration of Bashkow’s study; dates within this document

indicate that the analysis of the UNIX kernel began in
January 1972, implying that the kernel being studied was
the 1st Edition UNIX kernel.

The idea of restoring the listing of the 1st Edition ker-
nel to working order seemed impossible: there was no
filesystem on which to store the files, no suitable assem-
bler, no bootstrap code, and no certainty that the user
mode binaries on the ‘s2’ tape were compatible with the
kernel in the listing; for a while the listing was set aside.
Then early in 2008 new enthusiasm for the project was
found, and a team of people11 began the restoration work.

The team began by scanning and OCR’ing the kernel
listing, creating a separate text document for each page.
Each document was manually cross-checked for errors,
then combined and rearranged to recreate the original
assembly files. The next task was to find a suitable as-
sembler for these files. We found after some trial and
error that the 7th Edition assembler could be made to ac-
cept the 1st Edition kernel files, but we had to make a few
changes to the input files and postprocess the output from
the assembler. This raised the issue: how much change
can be made to an original artifact when restoring it to
working order? We chose to keep the original files intact
and create (and annotate) a set of “patch” files which are
used to modify the originals for the working restoration.
Thus, the original artifact is preserved, and the changes
required to bring it back to life are also documented.

The kernel listing and the 1st Edition Programmers
Manual indicated that the system required a PDP-11/20
with 24 Kbytes of core, RF-11 and RK03 disks, up to
8 teletypes on a DC-11 interface, and a TC-11 DECtape
device. The SIMH PDP-11 simulator was configured to
provide this environment. With the kernel assembled into
an executable binary, we next had to recreate the boot se-
quence. Luckily, we were able to side-step this issue by
commanding the SIMH simulator to load the executable
directly into the system’s memory, initialise some regis-
ters and start execution at the correct first instruction.

With fingers crossed, the 1st Edition UNIX kernel was
started for the first time for several decades, but after
only a few dozen instructions it died. We had forgotten
that this early system required the KE11A co-processor.
Restoration halted while KE11A support was added to
SIMH using the PDP-11/20 processor manual [3]. On
the next attempt the kernel ran into an infinite loop, and
after studying the code we guessed that the loop on the
paper listing was missing a decrement instruction. With
this fixed the kernel was able to run in “cold UNIX”
mode, which had the task of writing a minimal filesys-
tem onto the RF-11 device along with a number of device
files, theinit program and a minimal command shell.

The filesystem’s format was hand-checked using the
format description from the Programmers Manual and
determined to be valid, so we pressed on to try booting

the kernel in “warm UNIX” mode. After another cou-
ple of kernel source errors were fixed, the 1st Edition
UNIX kernel was able to run theinit program, output a
login prompt and invoke a shell on successfulroot lo-
gin. This was a rather limited success: the early UNIX
shell had no metacharacter support (no* expansion), and
echowas not a built-in. So, with onlyinit andshon the
filesystem, nothing could be done at the shell prompt.
We had several executables from the ‘s2’ tape, but the
1st Edition kernel only supported those with the 0405
header; we took the decision to modify the kernel source
to add support for the 0407 executables. Then, with the
existing RF-11 filesystem and the Programmers Manual,
a standalone program was written to create and populate
a filesystem image with the ‘s2’ executables. Now the
kernel could be booted to a usable system with nearly
all of the documented 1st Edition system tools, editors,
document processing tools and programming languages.

We now had the system running in single-user mode,
but the kernel listing showed that it normally ran in multi-
user mode: there was only one process in memory at
any time; all other processes were kept on swap. Our
attempts to configure the system for multi-user mode
simply resulted in the system ‘hanging’ at boot time.
Again, a hardware configuration deficiency was found:
the SIMH simulator had no support for the DC-11 se-
rial interface device. Using the 1972 PDP-11 peripherals
handbook [4] we added DC-11 support to SIMH, and fi-
nally brought 1st Edition UNIX up into multi-user mode.
The restoration of the kernel was complete.

While the C language did not exist for the 1st Edition
of UNIX, there was a C compiler in existence by the time
of the 2nd Edition [9]. We had the ‘last1120c’ C com-
piler source code and working executables, but to run
them the restored kernel & filesystem needed to be mod-
ified to provide a 16 Kbyte process address space and 16
Kbyte swap areas on the disk. With these modifications
the restored system was able to run the C compiler, and
the C compiler was able to recompile itself.

7 Lessons Learned

From successfully completing the restoration of the
above UNIX software artifacts, we have learned several
lessons about the craft of software restoration:

Restoration is only possible with adequate docu-
mentation. This not only includes user manuals, but
manuals for system calls, libraries, file and storage struc-
tures, documentation on how to configure and boot sys-
tems, and technically solid hardware manuals.

Comments and documentation are often mislead-
ing. Though documentation is required, it is not always
accurate or complete. A restorer must treat all docu-
mentation as dubious, and look for independent sources

which corroborate each other.
Restoration is only possible with a working envi-

ronment. All software requires an environment in which
to execute. User mode executables require a CPU to run
instructions, some memory, and access to a set of system
calls: this is what emulators like Wine and Apout pro-
vide. Operating systems require a suitable hardware en-
vironment, real or simulated. If the correct environment
cannot be recreated, restoration cannot proceed.

Restoration from source requires a working compi-
lation environment. Source code is tantalizingly close
to being executable, but without a compiler or assembler
that can recognise the source and produce the executable,
the source code is just a collection of bits.

Any restoration will affect the purity of the origi-
nal artifact. It is next to impossible to recreate the en-
vironment required to run a software artifact older than a
decade, as the hardware and supporting software often no
longer exist. It is therefore usually necessary to modify
both the software artifact and the recreated environment
so that they are compatible. When this occurs, it is im-
perative to preserve the purity of the original artifact, and
copy & “patch” it to perform a working restoration.

Simulated hardware is infinitely easier to obtain,
configure and diagnose than real hardware. Tools
like SIMH can be configured to simulate a vast combi-
nation of different CPUs, memory sizes and peripherals.
They can be easily single-stepped, and register & mem-
ory dumps can be taken at any point. This allows the di-
agnosis of errant software behaviour much more quickly
than with real hardware.

Never underestimate the ‘packrat’ nature of com-
puter enthusiasts. Artifacts that appear to be lost are
often safely tucked away in a box in someone’s base-
ment. The art is to find the individual who has that box.
The formation of a loose group of interested enthusiasts,
TUHS, has helped immensely to unearth many hidden
treasures. And professional organisations such as the
Computer History Museum are vital if the computing in-
dustry wants to preserve a detailed record of its past.

In conclusion, the restoration of some of the earliest
software artifacts from the development of UNIX has
been time-consuming, frustrating but most importantly
extremely rewarding. It is now more important than ever
to begin to preserve computing history, not as a collec-
tion of “stuffed exhibits”, but to keep old systems run-
ning as was intended by their designers.

8 Acknowledgments

None of the work described in this paper would have
been possible without the generosity of the members of
the UNIX Heritage Society, who donated software, docu-

mentation, anecdotes & memories, provided suggestions
& insights, and gave time to lobby the powers that be to
place the early UNIX systems under an open source li-
cense. Dennis Ritchie in particular has not only provided
artifacts, memories and advice, but has also encouraged
and mentored the restoration process: to him I owe a pro-
found thanks. Finally, we are all indebted to Ken Thomp-
son, Dennis Ritchie, the researchers at Bell Labs and the
cast of thousands who made UNIX into such a powerful,
sophisticated and pleasant system to use.

References

[1] BASHKOW, T. A Study of the UNIX Operating System, Sep
1972. http://www.bitsavers.org/pdf/bellLabs/unix/
PreliminaryUnixImplementationDocument_Jun72.pdf.

[2] BURNETT, M., AND SUPNIK, R. Preserving Computing’s Past:
Restoration and Simulation.Digital Technical Journal(1996),
23–38.

[3] DEC. PDP-11/20 Processor Handbook, 1971.
http://www.bitsavers.org/pdf/dec/pdp11/
handbooks/PDP1120_Handbook_1972.pdf.

[4] DEC. PDP-11 Peripherals Handbook, 1972.
http://www.bitsavers.org/pdf/dec/pdp11/
handbooks/PDP11_PeripheralsHbk_1972.pdf.

[5] L IBES, D., AND RESSLER, S. Life with UNIX. Prentice Hall,
1989.

[6] L IONS, J.A Commentary on UNIX 6th Edition with Source Code.
Peer-to-Peer Communications, 1996.

[7] M AHONEY, M. The UNIX Oral History Project, 1989.
http://www.princeton.edu/~mike/expotape.htm.

[8] RITCHIE, D. M. The Evolution of the UNIX Time-Sharing Sys-
tem. BSTJ 63, 8(1984), 1577–1594.

[9] RITCHIE, D. M. The Development of the C Language. InPro-
ceedings of the Second History of Programming Languages Con-
ference(Apr 1993).

[10] SALUS, P. H. A Quarter Century of UNIX. Addison Wesley,
1994.

[11] TOOMEY, W. Saving UNIX from /dev/null. InProceedings of
the AUUG Open Source Conference(1999).

Notes
1UNIX is a registered trademark of The Open Group.
2See the excellent UNIX family tree by Éric Lévénez at

http://www.levenez.com/unix/
3See http://www.tuhs.org
4Old SCO, as against the SCO Group (TSG).
5Early UNIX source code has very spartan commenting.
6See page 4 of http://bitsavers.org/pdf/bellLabs/unix/

Unix_Users_Talk_Notes_Jan73.pdf
71st Edition UNIX used an 0405 a.out signature. 2nd Edition UNIX

changed to an 0407 signature, indicating a slightly different format.
8See http://www.tuhs.org/Archive/PDP-11/Emulators/Apout/
9See http://minnie.tuhs.org/Programs/Ctcompare/

10See http://cm.bell-labs.com/cm/cs/who/dmr/primevalC.html
11The team was led by Tim Newsham & Warren Toomey, along with

Johan Beiser, Tim Bradshaw, Brantley Coile, Christian David, Alex
Garbutt, Hellwig Geisse, Cyrille Lefevre, Ralph Logan, James Marke-
vitch, Doug Merritt and Brad Parker.

