Specializing General-Purpose Computing

A New Approach to Designing Clusters for High-Performance Technical Computing

Win Treese
SiCortex, Inc.
What the heck does that mean?

- High-performance computing often uses specialized hardware
 - Supercomputers
 - experiments with graphics processors
- General-purpose computing doesn’t optimize for technical computing
With some problems...

Supercomputers
- Expensive
- Not on the same technology curve
- Different programming environment

General-purpose computing
- Amazing technology curve
- Optimized for desktop and enterprise applications
A Challenge:
The Best of Both

- Use general-purpose hardware components
- With a standard programming environment
- And SYSTEM DESIGN for technical computing
The Roadmap

- A bit of history
- A bit about high-performance technical computing (aka “HPTC”)
- Linux clusters for HPTC
- Designing a new system for HPTC
- What we are building
A Bit of History

The SUPERCOMPUTER
But all is not well in supercomputer land...

- You have to pay a lot for them
- You have write your program differently
- You have to find some high priests to take care of them
- Supercomputer companies don’t make money
...so let’s use lots of little computers

- PCs are cheap
- Linux is free
- Commodity interconnect (Ethernet) is cheap

The (Beowulf) Cluster is born
A Small Visualization Cluster
Some characteristics of high-performance technical computing
Some typical applications

- Climate and weather models
- Geophysics
- Complex financial modeling
- Mechanical design
- Finite element analysis
- Fluid dynamics
- Life sciences analysis and simulation
- Top-secret stuff
- ...and many others
What are they like?

- Can run for weeks
- Consume all the cycles you can afford
- Not very cache-friendly
- Parallelism often demands good communications
- Large data sets (input and output)
- Many are in Fortran!
- ...but also in C, C++, Java, Perl, Python, etc.
The Market for HPTC

- HPTC is now mainstream computing!
- Over $6 billion in Linux cluster hardware sales in 2006
- Petascale computing is hot for research, but there is a real market now for teraflops
Linux Clusters
and
High-Performance Technical Computing
So clusters are great, right?

- Cheap, because they use cheap PCs
- Expandable
- Easy to get started
- Software is free
- They ride the desktop/server technology curve

- Interconnect (Ethernet) is cheap
- Emerging de facto standards
- Linux
- Message Passing Interface (MPI)
- C, Fortran, etc.
...but not perfect

- Computational efficiency is often low
- Use lots of power
- Generate lots of heat
- Many parts to fail
- ...with a desktop MTBF design

- Interconnect is slow: XXX microseconds for MPI on Ethernet
- ...or expensive: using Infiniband can increase the price of a node by 50%
And software rules!

- Software investment is the significant cost
- Replace the cluster, but keep the software

What if we redesign the system with the same programming interface?
Designing a New System
for
High-Performance Technical Computing
A Design Challenge

- 1000 nodes in this box
- ...all running Linux
- Near-microsecond MPI latency
- Air-cooled
The logic of low power

- Low power \Rightarrow less heat
- Less heat \Rightarrow parts closer together
- Parts closer together \Rightarrow shorter wires \Rightarrow easier high-performance interconnect
- Less heat \Rightarrow greater reliability
- Burn less power waiting for memory
The SC5832

- 5832 Gigaflops
- 7776 Gigabytes ECC memory
- 972 6-core 64-bit nodes
- 2916 2 GByte/s fabric links
- about 1 microsecond MPI latency
- 108 8-lane PCI-Express
- 18 KW
- 1 Cabinet
The SC648

- 648 Gigaflops
- 864 Gigabytes ECC RAM
- 108 6-core 64-bit nodes
- 324 2 GB/s fabric links
- about 1 microsecond MPI latency
- 12 8-lane PCI-Express
- 2 KW
- 1/2 standard 19” rack
Software

- It's just Linux
- gcc
- MPI
- etc.
- ...even Emacs!
- All open source
Interconnect fabric

- Log diameter
- Multiple paths
- Cost-effective
A Cluster Node Chip

- 6 CPU nodes
- L2 Coherence Engine
- DMA Engine
- Memory controllers
- PCI-Express switch
- RAM
- Fabric switch
- I/O
27-Node Module

- PCIe modules
- Interconnect fabric
- Compute nodes
- Memory
Design for reliability

- Lower parts count
- Lower power = less heat = less stress
- All RAMs have ECC
- Redundancy in interconnect
Parallel I/O

- Integrated Lustre cluster filesystem
 - Open source
 - POSIX-compliant
- Multiple uses
 - Direct-connect storage
 - External Lustre servers
 - RAM-based filesystem
What have we learned?

- Take general computing techniques
- ...with some knowledge about the applications
- Mix well

Powerful and usable computing
Specializing General-Purpose Computing

Win Treese
SiCortex, Inc.
win.treese@sicortex.com
or
treese@acm.org