Check out the new USENIX Web site.
USENIX, The Advanced Computing Systems Association

2007 USENIX Annual Technical Conference

Pp. 101114 of the Proceedings

MapJAX: Data Structure Abstractions for Asynchronous Web Applications

Daniel S. Myers, Jennifer N. Carlisle, James A. Cowling, and Barbara H. Liskov, MIT CSAIL

Abstract

The current approach to developing rich, interactive web applications relies on asynchronous RPCs (Remote Procedure Calls) to fetch new data to be displayed by the client. We argue that for the majority of web applications, this RPC-based model is not the correct abstraction: it forces programmers to use an awkward continuation-passing style of programming and to expend too much effort manually transferring data. We propose a new programming model, MapJAX, to remedy these problems. MapJAX provides the abstraction of data structures shared between the browser and the server, based on the familiar primitives of objects, locks, and threads. MapJAX also provides additional features (parallel for loops and prefetching) that help developers minimize response times in their applications. MapJAX thus allows developers to focus on what they do best-writing compelling applications-rather than worrying about systems issues of data transfer and callback management.

We describe the design and implementation of the MapJAX framework and show its use in three prototypical web applications: a mapping application, an email client, and a search-autocomplete application. We evaluate the performance of these applications under realistic Internet latency and bandwidth constraints and find that the unoptimized MapJAX versions perform comparably to the standard AJAX versions, while MapJAX performance optimizations can dramatically improve performance, by close to a factor of 2 relative to non-MapJAX code in some cases.

  • View the full text of this paper in HTML and PDF. Listen to the presentation and Q & A in MP3 format.
    Click here if you have forgotten your password Until June 2008, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, 2007 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.
To become a USENIX member, please see our Membership Information.

Last changed: 29 August 2007 ac