Check out the new USENIX Web site.

USENIX, The Advanced Computing Systems Association

2006 USENIX Annual Technical Conference Abstract

Pp. 143–156 of the Proceedings

Understanding and Addressing Blocking-Induced Network Server Latency

Yaoping Ruan, IBM T.J. Watson Research Center; Vivek Pai, Princeton University


We investigate the origin and components of network server latency under various loads and find that filesystem-related kernel queues exhibit head-of-line blocking, which leads to bursty behavior in event delivery and process scheduling. In turn, these problems degrade the existing fairness and scheduling policies in the operating system, causing requests that could have been served in memory, with low latency, to unnecessarily wait on disk-bound requests. While this batching behavior only mildly affects throughput, it severely degrades latency. This problem manifests itself in fairness and service quality degradation, a phenomenon we call service inversion.

We show a portable solution that avoids these problems without kernel or filesystem modifications, We modify two different Web servers to use this approach, and demonstrate a qualitatively different change in their latency profiles, generating more than an order of magnitude reduction in latency. The resulting systems are able to serve most requests without being tied to disk performance, and they scale better with improvements in processor speed. These results are not dependent on server software architecture, and can be profitably applied to experimental and production servers.

  • View the full text of this paper in HTML and PDF. Listen to the presentation in MP3 format.
    Click here if you have forgotten your password Until June 2007, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2006 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

Last changed: 15 Sept. 2006 ch