Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
USENIX 2005 Annual Technical Conference, General Track — Abstract

Pp. 223–236 of the Proceedings

A Portable Kernel Abstraction for Low-Overhead Ephemeral Mapping Management

Khaled Elmeleegy, Anupam Chanda, and Alan L. Cox, Rice University; Willy Zwaenepoel, EPFL


Modern operating systems create ephemeral virtual-to-physical mappings for a variety of purposes, ranging from the implementation of interprocess communication to the implementation of process tracing and debugging. With succeeding generations of processors the cost of creating ephemeral mappings is increasing, particularly when an ephemeral mapping is shared by multiple processors.

To reduce the cost of ephemeral mapping management within an operating system kernel, we introduce the sf_buf ephemeral mapping interface. We demonstrate how in several kernel subsystems—including pipes, memory disks, sockets, execve(), ptrace(), and the vnode pager—the current implementation can be replaced by calls to the sf_buf interface.

We describe the implementation of the sf_buf interface on the 32-bit i386 architecture and the 64-bit amd64 architecture. This implementation reduces the cost of ephemeral mapping management by reusing wherever possible existing virtual-to-physical address mappings. We evaluate the sf_buf interface for the pipe, memory disk and networking subsystems. Our results show that these subsystems perform significantly better when using the sf_buf interface. On a multiprocessor platform interprocessor interrupts are greatly reduced in number or eliminated altogether.

  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until April 2006, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2005 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 2 Mar. 2005 aw
Technical Program
USENIX '05 Home