Cluster Computing in a College of Criminal Justice

Boris Bondarenko
and
Douglas E. Salane

Mathematics & Computer Science Dept.
John Jay College of Criminal Justice
The City University of New York

2004 USENIX Annual Technical Conference
Boston, MA
July 2, 2004
Outline

• Importance of cluster computing (HPC) in a college whose focus is criminal justice and public administration

• Cluster computing projects in progress and planned (research and instruction)

• Issues that arise in building and managing clusters in organizations with limited resources and staff

• Cluster, Linux, and open source developments
Institutional Background
John Jay College/CUNY

• **College**: Specialized Liberal Arts College within CUNY (13,000 students including 2000 graduate students).

• **Mission**: Advance the practice of criminal justice and public administration through research and by providing a professional workforce.
High Performance Computing at John Jay College I

• Fire standards and codes for buildings (Computational Fluid Dynamics - NIST Fire Dynamics Simulator and Smoke View)

• Latent Semantic Indexing (Principal Component Analysis – Singular Value Decomposition)

• Toxicology (molecular modeling – Gaussian)

• FBI’s National Incident-Based Reporting System (NIBRS – database analysis and data mining)
High Performance Computing at John Jay College II

• Aircraft control systems (Parallel computation of Schur Form for rapid solution of Riccati Equation)

• Research and Instruction in mathematical software (ScaLAPACK, HPL Benchmark)

• Instruction in systems areas of computing, parallel algorithms, and distributed algorithms (NASA CIPA)

• Password Cracking (Teracrack SDSC)
Cluster Computing Facilities

- **Computational Cluster (Beowulf Cluster):**
 worldnode, 12 compute nodes (24 Pentium IV XEON (1.8 and 2.4 GHz processors, 1 GB RAM, 512K L2 cache), 20 GB local disk, Gigabit Ethernet, MPICH over TCP/IP, NFS File server, Linux 2.4.20-8smp

- **Database Cluster:**
 4 nodes - remote access server, web server, Microsoft SQL and Oracle 10g

- **Distributed Computing Laboratory:**
 Computing Laboratory with 30 Linux Workstations (partnership with Science Dept.)
Cluster Design Considerations I

• **Architecture** Vendor supported blade/rack system or pile of PCs

• **Cluster Software** cluster distribution software (OSCAR - ORNL, NPAIC ROCKS - SDSC, or Scyld Beowulf) vs. self-configuration (Kickstart+ shell scripts)

• **File System** NFS; Andrew; GFS – Sistina Systems; Lustre – CFS, Inc.; PVS – ANL, GPFS - IBM
Cluster Design Considerations II

- **Interconnect** Gigabit Ethernet, Myrinet, Quadrics, InfiniBand
- **Message passing** MPICH over TCP/IP
- **Monitoring** Ganglia UC Berkeley, Supermon - LANL, direct console access
- **Testing** Netpipe – AMES Laboratory, BLACS, MPI Testers
ScaLAPACK

• Dense matrix computations in a distributed memory environment (clusters and MPP machines)

• Linear systems, least squares, eigenvalues, matrix decompositions (e.g., LU, QR, SVD)

• Reliable software with good error reporting facilities

• Not easy to use. User must write code to distribute the matrix over the process grid. User must set algorithmic parameters (e.g., block size, process array dimensions)
ScaLAPACK
A Software Library for Linear Algebra Computations on Distributed-Memory Computers
Basic Linear Algebra Communications Subroutines (BLACS)

- Setup/teardown process topologies (Array of processes most common)
- Point-to-point & broadcast send/receive of rectangular and trapezoidal matrices
- Miscellaneous routines (e.g., barrier, matrix element wise sum, max and min)
- Test routines to ensure reliable communications
Using BLACS to Detect Errors

- Broadcast testing routine: generates matrix on selected process, broadcasts it, receiving routines test for correct transmission.

- Process (0,1) reports errors, invalid element at A(12,16):

 Expected - .2417943949438026
 Received - .2417638773656776
Basic Linear Algebra Subroutines (BLAS)

- Perform scalar, matrix vector and matrix matrix operations. Block algorithms to take advantage of memory hierarchies.

- Must be optimized for a specific processor.

BLAS matrix multiply routine DGEMM

- \(C = \alpha \cdot AB + \beta \cdot C \)
 - \(\alpha \) and \(\beta \) are scalars, \(A, B \) and \(C \) are matrices

- Critical for performance of many ScaLAPACK routines and HPL (e.g. HPL benchmark on Livermore MCR Cluster raised from 5.69 to 7.63 TFLOPS)

- Best results on Pentium IV: KGoTo BLAS (special coding to minimize cache and TLB misses)
Performance of DGEMM
(SMP 1.8 Mhz P4, SSE2, 512k L2 cache)
HPL Benchmark Results (from Top 500)

<table>
<thead>
<tr>
<th>R</th>
<th>Site</th>
<th>CPUs</th>
<th>R_{max}</th>
<th>R_{peak}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Japan</td>
<td>5,120</td>
<td>35,860</td>
<td>40,960</td>
</tr>
<tr>
<td>12</td>
<td>LLNL</td>
<td>2,304</td>
<td>7,634</td>
<td>11,060</td>
</tr>
<tr>
<td>67</td>
<td>NASA GSFC</td>
<td>1392</td>
<td>2,164</td>
<td>2,784</td>
</tr>
<tr>
<td>499</td>
<td>E*Trade Financial</td>
<td>290</td>
<td>634</td>
<td>1,392</td>
</tr>
<tr>
<td></td>
<td>John Jay</td>
<td>24, 2.4 & 1.8Ghz X</td>
<td>47</td>
<td>98</td>
</tr>
</tbody>
</table>

R – rank in Top 500 Super Computers list
R_{max} – Linpack Benchmark (GFLOPS)
R_{peak} – Theoretical Highest Performance (GFLOPS)
FBI National Incident Based Reporting System (NIBRS)

• Develop an Oracle database version of NIBRS and make it available to criminal justice research community

• Support online analysis and data mining through a web portal

• Provide mechanism for automatic updates

• Employ cluster/grid computing to provide high throughput and availability
NIBRS

• Data warehouse: Oracle 10G database on Linux Red Hat AS 3 Server

• 13 segments (flat files), 6 Main segments (administrative/incident, offense, property, victim, offender, arrestee), largest 3.2 million records, 100 to 200 bytes per record, 39 reference tables

• 2000/2001 data 1.29 Gbyte, expect about 10 Gbyte for 1995 to present
Cluster Developments

• Single System Image (cluster monitoring, OS version skew, single process space)

• Commodity low latency interconnect technology that provides unified I/O (Remote Direct Memory Access, InfiniBand?)

• Nodes that consume less power

• Cluster applications that provide error checking
Collaborators

- **NIBRS** Peter Shenkin, Raul Cabrera, Atiqual Mondal, and Samra Vlasnovec; Math and Computer Science Dept.

- **Parallel Schur Decomposition** Mythilli Mantharam, Math and Computer Science Dept.

- **Fire and Smoke Simulation** Glenn Corbet, Fire Science Dept.

- **Molecular Modeling** Ann Marie Sapse and Robert Rothchild, Science Dept.
Contact Information

• Douglas E. Salane
 NASA CIPA Cluster Computing Project
 dsalane@jjay.cuny.edu
 web.math.jjay.cuny.edu

• Bibliography available
Credits

• NASA Curriculum Partnership Improvement Award

• Graduate Research and Technology Initiative of CUNY (01,02,03)

• Open Source and freely available software (Linux, GNU compilers and languages, Apache, PHP, Oracle Academic License)