
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



How Xlib is Implemented
(And What We’re Doing About It)

Jamey Sharp
Computer Science Department

Portland State University
Portland, OR USA 97207–0751

jamey@cs.pdx.edu
http://xcb.freedesktop.org

Abstract

The X Window System is the de facto standard graph-
ical environment for Linux and Unix hosts, and is usable
on nearly any class of computer one could find today. Its
success is partially due to its flexible, extensible design.

Unfortunately, as research proceeds on cutting-edge
window system functionality, the brittleness of the un-
derlying software is a critical impediment to progress.
Xlib, the client-side implementation of the network pro-
tocol that underlies X, is one source of these issues.
Many developers working on new features in the X pro-
tocol are discovering that Xlib requires changes to sup-
port these features, but Xlib makes those changes diffi-
cult. For more than 15 years, new features have been
added to Xlib by accretion, rather than with careful de-
sign.

We discuss the implementation of Xlib and analyze
some specific difficulties in it that cause problems in un-
derstanding and maintaining this code base. We also
present our current work on migrating the X Window
System to a more maintainable, carefully designed ar-
chitecture.

1 Introduction

At the core of the X Window System [SG86] is a net-
work protocol, allowing any number of X applications
running on far-flung machines to interact with a single
keyboard, mouse, and monitor. Nearly all applications
currently use Xlib [SGFR92], a C library dating to the
mid-1980s, to interact with the X protocol.

Software developers have collectively learned a lot
about the engineering of software in the decades since
X was created. This fact explains some, though not all,
of the difficulties that users and developers experience
when working with X. (Other issues are explained later
in this paper.) Our previous work on a new X-protocol C
Binding [MS01] and subsequently an Xlib Compatibil-
ity Layer [SM02] were efforts to apply current best prac-
tices in software engineering to the core of the client-

side implementation of the X protocol, with goals of im-
proving the usability of X in several cases:

• Resource-constrained environments, such as PDAs.
• Developers wanting to understand how X works.
• Developers implementing X protocol extensions.
• Users desiring better-performing applications.

Xlib spans more than 400 source files, contains more
than 150,000 lines of code, and compiles to a roughly
750kB shared library on Linux/i386. On a typical Linux
system, this puts Xlib among the top libraries as mea-
sured by code size.

This paper has several major parts: a tour of Xlib,
an explanation of several current efforts to improve X,
some observations on software engineering, and a brief
glimpse at the future.

2 The Architecture of Xlib
As we are not aware of a comprehensive tour of the Xlib
source, we present one here.

Xlib stores more than a kilobyte of data about each
X server connection in a structure named a Display.
This includes

• The file descriptor and other information about the
transport.

• Other file descriptors to monitor for new data.
• An assortment of values cached from the server.
• Pointers used for internal memory management.
• Function pointers to hooks.

The hooks in Xlib allow extensions and applications to
modify the way Xlib handles

• Thread synchronization.
• Conversion between wire protocol and C structures.
• XID allocation.
• Management of graphics contexts and server fonts.
• Buffer flushes.
• Connection close.

When an X client successfully establishes a connec-
tion to a server, the server sends several hundred bytes



resource db

cut buffers gc

cms

image icccm

xkb utility
xlc

xom

xim

i18n

transport region
core protocol events

protocol

Figure 1: Notional Xlib components: arrows indicate
“using” relationships

of information about the capabilities of the display. Xlib
copies some of that information into the Display; the rest
is kept in other structures pointed to by the Display.

Once connection setup is complete, requests from the
client and responses from the server are the fundamen-
tal elements of the X protocol. Requests always have
a “major opcode” identifying the kind of request, and a
length field that measures the number of four-byte words
needed to contain the entire packet. Responses come in
three forms: replies, events, and errors. Replies and er-
rors are sent in response to requests, while events are
sent spontaneously.

Only some request types call for a reply, but for any
of those requests, a reply is always sent, unless an er-
ror is sent instead. Errors can also occur for other re-
quests. Since X has a network-transparent protocol, it
may be run on high-latency connections such as dial-up
or DSL Internet links, and on these links replies take
long enough to arrive that the delay may have a notice-
able effect on application performance. In analyzing this
aspect of X performance, we speak of round-trip latency,
and look for techniques to avoid or hide it [PG03].

Xlib was originally written without much concern for
type-safety, but with great care to minimize the number
of function calls. As a result, the C preprocessor gets
heavy use when compiling Xlib. Many of the most com-
monly executed statements in Xlib are macros.

2.1 Xlib Layers
As shown in Figure 1, Xlib can be thought of as having
several distinct layers and components. An analysis of
the size of these notional components is in Section 6.2.
Unfortunately, within the code the boundaries are not
as clear as is suggested by the figure. In fact, we are
not aware of any previous efforts to describe Xlib in this
manner. However, these boundaries will be useful in our
analysis of Xlib, and correspond to the vocabulary com-
monly used in conversation among Xlib developers.

2.1.1 Transport Layer
The transport layer is responsible for conveying requests
and responses between the X client and server. This
layer is independent of the semantics of those packets.

Much of the code in this layer comes from xtrans, a
module comprising several .c and .h files. Code that
uses xtrans instantiates it in one of several variants by
defining an appropriate C preprocessor macro before in-
cluding not just Xtrans.h, but also transport.c.
Available variants are X11, XSERV, Xim, FS, Font, Ice,
TEST, and LBXPROXY: while there are occasional sub-
tle differences, these variants differ mostly in symbol
names.

Xlib uses two variants of xtrans, X11Trans and Xim-
Trans, meaning that all of the code in xtrans is linked
into Xlib twice. The first variant is used in the transport
layer, while the second is used by X input methods. We
focus on the first of these here.

Nothing in the extension libraries and applications
that we have tested uses X11Trans directly. Within Xlib,
calls to X11Trans are confined to four source files: Xlib-
Int.c, OpenDis.c, ConnDis.c, and ClDisplay.c. As a re-
sult, rewriting Xlib to eliminate references to X11Trans
is a relatively straightforward task.

2.1.2 Protocol Layer
On a Cray supercomputer, memory is not addressable in
single-byte increments: in fact, it is addressable only in
64-bit increments. In X requests and responses, how-
ever, 32-bit values are aligned to 32-bit boundaries, 16-
bit values to 16-bit boundaries, and so on. On a Cray,
then, accessing individual components of a request or
response is inefficient.

Xlib is designed to unpack the wire protocol data from
responses into structures that may be efficiently accessed
by the host, and to similarly pack data into requests.
Many parts of the protocol are represented by a pair
of structures in Xlib, namely the wire protocol struc-
ture and the host structure. By convention, the names of
wire structures are of the form xIDReq for requests and
xIDReply for replies, with various IDs, and in general
components of these structures correspond only to argu-
ments to functions. The core event wire type is xEvent
and corresponds to host structures named XIDEvent.
The core error wire type is xError, and corresponds to
XErrorEvent.

For all of the wire protocol structures, C preprocessor
symbols with names like sz xEvent are defined equal
to the number of bytes that the structure occupies on the
wire. Request structures also have their opcode (major if
core, minor if extension) in #defines. Structures have
fixed-length parts, but no variable-length representation.

When Xlib accesses a Display, perhaps to construct
a request or process a response, it must protect the Dis-
play against simultaneous accesses by other threads. The
LockDisplay and UnlockDisplay macros are provided
for this purpose. All access to a Display must be brack-
eted by a LockDisplay and UnlockDisplay pair.



To deliver a request to the server, Xlib must allocate
both a sequence number and a block of memory to con-
struct the request in. Both of these allocations are han-
dled by the GetReq macro or its variants: GetResReq,
GetEmptyReq, and GetReqExtra. Any variable-length
parts of the request are then delivered with the Data
macro, its variants Data16 and Data32, or the XSend
function. The Data macro will copy into the output
buffer if there is enough room, or call XSend with its ar-
guments otherwise. The XSend function uses the writev
system call to write both the buffer and the extra data in
one system call, without further copying. Finally, if a
reply is expected from the server, XReply is called to
wait for the round-trip to complete so the library can re-
turn the data to the caller.

The Display must be locked during this process for
two reasons:

1. The block of memory is allocated directly from the
output buffer of the Display, and then written to by
subsequent instructions.

2. The “current sequence number” is stored in the Dis-
play. It is updated by GetReq, but then if a reply is
expected, that number must remain constant until
XReply is called.

Xlib offers a feature called synchronous mode. The X
manual page says,

Since Xlib normally buffers requests to the
server, errors do not necessarily get reported
immediately after they occur. This option
turns off the buffering so that the application
can be debugged. It should never be used with
a working program.

Inside of Xlib, this is implemented with a function
pointer (synchandler) stored in the Display structure and
called at the end of every protocol stub. (The function
pointer is occasionally used for other purposes, and at
those times the original pointer is saved in the saved-
synchandler pointer.) The SyncHandle macro hides the
details of that function call.

In the core X protocol, any drawing request requires a
graphics context (GC) identifier as one of its parameters.
GCs encapsulate a good deal of state that often should
persist between drawing requests, and so are both con-
venient and bandwidth-efficient. A small challenge lies
in creating a convenient C-language interface for setting
the many properties of a GC, and Xlib provides a col-
lection of functions allowing the application to set one
property at a time. Of course, it would be inefficient to
generate a request every time any of these functions is
called, so Xlib only constructs a request modifying the
GC when some other request that uses that GC is about
to be constructed, and then only if the properties of the

GC are truly different on the client than on the server.
The FlushGC macro hides these details.

It is frequently convenient to have a standardized set
of strings for inter-client communications, but prefer-
able to compress the representation of the strings. The
X server maintains a list of “atoms”, which are numbers
that are uniquely mapped to strings for the lifetime of the
X server process. Applications may use the InternAtom
request to get (or create, if necessary and desired) the
atom associated with a string, and the GetAtomName re-
quest to get the string for a particular atom. Since most
applications participate in a significant number of inter-
client communications using a number of atoms, Xlib
caches part of the mapping held by the server. The size
of the cache is currently hard-coded to be 64 atoms.

2.1.3 Utilities Layer
From the point of view of the X protocol, any code not
providing transport or stubs for requests and responses
is utility code. Some functions contain both protocol
and utility functionality. XPutImage is an example of
this. In addition to delivering image data to the X server,
XPutImage splits the image if it exceeds the maximum
request length; byte-swaps individual pixels; and does
other conversions as needed.

2.2 Xlib Modules and Interfaces
Since Xlib contains a wide variety of distinct interfaces
and functionality, here is a list of the major components.

locking: Thread synchronization primitives, serving
to protect the Display structure.

transport: Low-level communication with one or
more X servers, encapsulating support for a variety of re-
liable stream protocols and handling buffering and con-
nection setup.

core protocol: Stubs for all requests in the core X pro-
tocol.

cut buffers: Utility functions for manipulating selec-
tions, also known as cut buffers.

gc: Graphics context cache, allowing applications to
change the many properties of a graphics context while
only generating requests when the graphics context is
used.

image: An assortment of utility functions for op-
erating on client-side image buffers, including loading
bitmaps from files.

events: Xlib provides a variety of event queue search
functions, matching on criteria such as whether an event
is related to a specific window.

icccm: The Inter-Client Communications Conven-
tions Manual [Ros] standardizes such things as commu-
nicating window titles to window managers. Xlib pro-
vides utility functions for the operations documented in
the manual.



region: The region data structure describes arbitrary
sets of pixels. It has been re-implemented several times
in different parts of the X Window System because it has
broad utility; but in Xlib it is not useful for much more
than setting arbitrary graphics context clipping regions.

resource db: Xt [AS90], the original X Toolkit,
gets application preferences from the “resource manager
database”, which is stored as a property on the root win-
dow of the first screen of each server. Xlib provides the
low-level support for this mechanism, although it is not
generally used in new applications or toolkits.

xom: The X Output Methods provide support for dis-
playing text encoded using ISO 2022, also known as
ECMA-35. This standard, which predates Unicode, pro-
vides escape sequences for switching between character
sets.

cms: A “color management system” (CMS) provides
mechanisms for transforming colors between differing
color spaces, including device-dependent spaces. With
a CMS, users may calibrate scanners, printers, and mon-
itors so that colors appear identical. Xcms [Ber95] can
only use monitor calibration data.

xkb: The X Keyboard Extension generalizes the key-
board model of the core protocol. Xlib contains code for
interacting with this extension if supported on the server
and compatibility code for applications and servers un-
aware of XKB.

xlc: The X Locale implementation maps strings be-
tween a variety of encodings and formats. Supported
formats include C strings, wide character strings, and
UTF-8, among others.

xim: The X Input Methods allow a user to input text
using alphabets not physically present on his or her key-
board. Japanese text, for instance, can be input by typ-
ing the phonetic pronunciation of a word and searching
for a character with that pronunciation and the intended
meaning.

3 Some Xlib Issues
Given skill at reading software written in C and a little
understanding of the X protocol, almost any individual
Xlib source file may be understood without too much
effort. Difficulty in comprehending the whole is due pri-
marily to bulk of Xlib. The broad scope of Xlib, together
with the engineering needed to make it work on comput-
ers of the 1980s, led to a large implementation, and this
implementation has grown dramatically with time. Also,
since all of the source of Xlib was written by hand, re-
vising design decisions that affect any significant part of
the code is an exceedingly difficult task.

As a brief example, xtrans (covered in Section 2.1.1)
is included in Xlib in two forms: X11Trans and Xim-
Trans. These two forms produce nearly identical com-
piled code, so they are essentially redundant. They are

compiled into Xlib using a technique strongly discour-
aged in C programming: the C preprocessor is used to
include source from a .c file into another, nearly empty,
.c file. It takes a good deal of time for even an experi-
enced programmer to understand this particular compo-
nent.

3.1 Inflexible Implementation
Xlib provides two supported ways of accessing infor-
mation stored in the Display structure: functions and
macros. This means that offsets in the Display structure
must remain constant to maintain binary compatibility
with any code using these macros. Unfortunately, the
specification [SGN88, P12] says:

The macros are used for C programming, and
their corresponding function equivalents are
for other language bindings.

Because of this advice, X applications, which are pre-
dominantly written in C and C++, generally use the
macro variants of the accessors. They leave Xlib devel-
opers little flexibility to revise design decisions. For bi-
nary compatibility, neither the macros nor the data struc-
tures that they access can ever be changed.

This problem is aggravated by the fact that Xlib has
traditionally installed the “private” header file Xlibint.h
alongside the public header files intended to be used
by applications and libraries. It was made available for
the sole purpose of providing extension libraries access
to functions, macros, and data structures convenient for
processing X protocol messages. However, toolkit and
application writers have taken advantage of the direct
data structure access, and now some code depends on
vagaries of Xlib implementation.

3.2 Unpredictable Requests
Immediately after connection setup, Xlib automatically
generates several requests regardless of whether the ap-
plication needs those steps taken. The steps are

• Setting up support for requests larger than 256kB.
• Creating a default graphics context for each screen.
• Retrieving the resource database.
• Initializing the XKEYBOARD extension.

If the server supports both the BIG-REQUESTS and
XKEYBOARD extensions, then this process will block
application startup for the duration of five round-trips
to the server. On modern configurations, the resource
database can be easily 30 times as large as the data re-
turned by the server during connection setup.

This is only one example of the larger problem that
Xlib generates X protocol requests that are not obviously
related to the needs of the application. Another example
is that it is impossible to use the public API of Xlib to



send a GetWindowAttributes request without simultane-
ously sending a GetGeometry request. Between this sort
of opportunistic request generation and the assortment of
caches implemented in Xlib, an application cannot effec-
tively predict what protocol requests Xlib will produce
on its behalf. That, in turn, suggests that these features
would have been more useful as an extra layer built on
top of functions providing direct control over protocol
generation.

3.3 Threading
One aspect of Xlib that is not at all straightforward is
the support for multi-threaded applications. It is perhaps
partly due to the complexity of this aspect that the only
application we could find to test Xlib in a multi-threaded
setting is ico, a sample program from the reference im-
plementation. Whatever the reasons, the thread support
in Xlib is poorly tested (though we have yet to be able
to demonstrate any actual faults), almost never used, and
very difficult to understand in depth.

This is unfortunate. Threads provide a powerful way
to organize computation and I/O with a minimum of pro-
grammer effort. Major X applications like Mozilla use
threads to great effect, yet are careful to make all Xlib
calls from a single thread. Users see this as their applica-
tions freezing occasionally, for example while rendering
a new web page in a browser.

This section provides a sample of confusing thread
synchronization situations in Xlib, with explanations of
how those situations work. This is by no means an ex-
haustive list, however.

3.3.1 XLockDisplay
Nearly every function in Xlib invokes the LockDisplay
and UnlockDisplay macros. Between LockDisplay and
UnlockDisplay, the function is permitted to make any
changes to the state of the Display structure. This lock
is implemented using a mutex.

In addition, the documented interface to Xlib includes
XLockDisplay and XUnlockDisplay. The documenta-
tion says that XLockDisplay may be called multiple
times from the same thread without deadlock, and XUn-
lockDisplay must be called an equal number of times
before the display is actually unlocked. The UNIX98
standard calls this a recursive mutex; it is also known as
a counting mutex.

However, XLockDisplay and XUnlockDisplay are not
implemented using a recursive mutex. Instead, they
use condition variables together with a non-recursive
(“fast”) mutex. Pseudo-code for this algorithm is pro-
vided in Figure 2.

A fair amount of experience at working with concur-
rent software is required to understand this algorithm.
While it does seem to satisfy its specification, a clearer

_XInitDisplayLock
level = 0

LockDisplay
lock mutex
while level > 0 && thread != self

wait on condition variable

UnlockDisplay
unlock mutex

XLockDisplay
LockDisplay
++level
thread = self
UnlockDisplay

XUnlockDisplay
LockDisplay
--level
if level == 0

wake up all waiting threads
UnlockDisplay

Figure 2: Xlib thread-synchronization primitives

equivalent is desirable. It would be preferable to use a
standard mutex to implement this counting mutex, and
in fact we devised and tested an algorithm to do that.

Unfortunately, our algorithm still was not perfect un-
der the metric of clarity. That algorithm had enough
problems to fall back to an even simpler plan: just use re-
cursive mutexes. The UNIX98 standard offers them, and
using them reduces all four of the synchronization prim-
itives in Xlib to single-line calls to pthread mutex lock
or pthread mutex unlock.

3.3.2 GetReq and XReply
Anyone reading Xlib sources could be forgiven for
thinking that the constraints are very strict on functions
that may be called in between calls to the GetReq fam-
ily of macros and to the XReply function. After all,
XReply discovers the sequence number that it is waiting

for by checking the value in dpy->request, which
was set by GetReq, so clearly nothing should be allowed
to touch that value during that interval.

Now note that several functions call Data (Xlibint.h)
between GetReq (Xlibint.h) and XReply (XlibInt.c);
Data may call XSend (XlibInt.c); XSend may call
XWaitForWritable (XlibInt.c); and XWaitForWritable

may release the display lock while calling select. It
should seem disturbing that the display lock might be re-
leased during this period where dpy->request must
not be touched.



#include <X11/Xlib.h>
#include <pthread.h>

static char atom_name[32768];

void *event_loop(void *arg)
{
Display *dpy = arg;
XEvent evt;
while(1)

XNextEvent(dpy, &evt);
}

void main(void)
{
Display *dpy;
pthread_t event_thread;
Atom atom;
int i = sizeof(atom_name) - 1;
atom_name[i--] = ’\0’;
while(i >= 0)

atom_name[i--] = ’1’;
XInitThreads();
dpy = XOpenDisplay(0);
pthread_create(&event_thread, 0,

event_loop, dpy);
atom = XInternAtom(dpy, atom_name,

False);
}

Figure 3: Does this program work? (Yes.)

This situation is very difficult to reason about: The
chain of calls is long, the functions are complex and far
apart in the source, and the circumstances under which
the display lock might be released are complicated.

Consider Figure 3. In this example we send a request,
InternAtom, which will send back a reply; and we en-
sure that the atom name sent in the request is larger than
the output buffer in Xlib (which defaults to 16kB). That
will cause XSend to be called before XReply in XIn-
ternAtom. However, prior to sending this request, we
ensure that XNextEvent is waiting in another thread to
read any responses that become available on the wire.

What if the event thread reads from the connection
while XSend is trying to deliver the InternAtom re-
quest? Could XNextEvent read the reply accidentally?
If so, it would not know what to do with it.

The trick is that the reply cannot come back until the
entire request has been written, and XSend was care-
fully written so that it would return with the lock held
and without reading as soon as it finishes writing its sin-
gle request. Therefore, no other thread has an opportu-

nity to read the reply.
This leaves open the question of whether there is some

other fault in this part of Xlib. For instance, perhaps
GetReq could be invoked from another thread while
XWaitForWritable has the display unlocked, and per-

haps the sequence number stream would be corrupted as
a result. We continue to inspect the source of Xlib for
cases like this.

4 Starting Over: XCB
We wanted a simpler, smaller base for X develop-
ment than Xlib, so we wrote XCB. As we explained in
[MS01],

XCB is intended to be a simple and di-
rect binding of X protocol transactions to C
language function calls, with the minimum
amount of machinery necessary to achieve this
aim.

As a result, the XCB interface consists of little more
than functions that send requests to the X server and a
bit of machinery to handle the responses. This makes
its interface much smaller than that of Xlib. The most
noticeable benefits of this limited interface are that XCB
has much less code than Xlib and a much simpler imple-
mentation. When built with reasonable compiler opti-
mizations, XCB is 26kB compared with 750kB for Xlib.

Layers and components are organized in XCB in a
manner similar to that presented for Xlib in Figure 1.
In contrast with Xlib, however, the boundaries are more
rigidly enforced, and in fact XCB offers only a minimal
utilities layer. Most utility functionality is expected to
be provided by separate libraries.

4.1 X Protocol Description Language
The C programming language is not ideal for the task of
describing the X protocol. Patterns emerge in the code
that cannot be eliminated using C language constructs,
and logically related definitions are forced to be split be-
tween header and source files. These issues make main-
tenance difficult and cause problems for those attempt-
ing to understand the functioning of any particular pro-
tocol request.

We created a domain-specific language to describe
the essence of the protocol. The immediate benefits are
these: all information about a request can be found in
one convenient bundle, and the implementation is easy
to change without changing hundreds of protocol stubs
by hand. Over the longer term, these protocol descrip-
tions have further value because they may be reused in a
number of ways, including but not limited to automati-
cally producing

• Bindings for other languages.



• Protocol documentation.
• A text representation for use in debuggers like xs-

cope and xev.
• Server-side protocol bindings.

This re-usability has been important in our work, and we
discuss it in more detail in section 5.2.2.

4.2 Constructing Requests
In the initial development of XCB, we followed the lead
of Xlib on a number of implementation choices. For
the most part, these choices were harmless, but one ex-
ample is instructive. Like Xlib, XCB needs to allocate
blocks of memory for request construction. Like the
GetReq family of Xlib macros, we initially allocated
these blocks directly out of the output buffer. Every-
one involved at that time thought this was a perfectly
reasonable choice, if for no other reason than that it
avoids copying data from some other block into the out-
put buffer.

Eventually, however, we came to feel that this inter-
face was excessively constraining on the implementation
of the transport layer. It assumed that memory allocated
for requests did not need to be deallocated, and it re-
quired that the output buffer be protected against con-
current access for the entire duration of request construc-
tion.

We decided instead to allocate request buffers on the
stack. This had one immediate advantage: every pro-
tocol stub for XCB requires only one function call to
deliver a request to the X server, unifying the function-
ality of GetReq, Data/ XSend, and XReply. That func-
tion is called XCBSendRequest, and it hides the details
of computing the length field of requests, including re-
quests larger than 256kB.

In the end, replacing the GetReq model with XCB-
SendRequest simplifies the interface between protocol
stubs and the transport layer of XCB and reduces the
duration that locks are held and the number of function
calls in many protocol stubs. This change even reduces
the size of the compiled code by a small margin. A sim-
ilar approach would have produced very good results for
Xlib as well, at the cost of an extra function call for many
protocol stubs, which in the past would have been con-
sidered prohibitive. Unfortunately, since Xlib protocol
stubs are entirely hand-coded and use macros like Get-
Req that have all of the problems of inflexible imple-
mentation discussed in Section 3.1, changing the design
of this part of Xlib at this point would require massive
effort.

5 Porting Xlib to XCB
Given the many benefits of XCB, we would like to see
applications and libraries use XCB as their low-level in-
terface to the X server. However, nearly every X appli-

cation in existence uses Xlib, whether through one of
the many toolkits or directly. Quite a few of these ap-
plications, and some of the toolkits, are closed-source;
in some cases the source has been lost. As for the open
source X applications, there are too many to count, let
alone port.

Clearly, some means of transitioning Xlib applica-
tions to XCB is needed. It should be fully binary com-
patible with existing Xlib-based libraries and applica-
tions while allowing XCB to manage the connection to
the X server. In [SM02], we described such a library,
and called it XCL: the “Xlib Compatibility Layer”.

XCL was intended to be a drop-in, source compat-
ible replacement for Xlib, adding an extra interface to
allow access to the underlying XCB connection. As it
turned out, binary compatibility was easy to achieve as
well. The intent was that applications would be able to
take advantage of some of the benefits of XCB without
any modifications, and then use more features of XCB as
portions of the source were ported. As a practical matter,
this would mean that applications and libraries that use
Xlib may be mixed with those that use XCB.

5.1 Some XCL Issues
The first attempted implementation strategy for XCL
was to start from scratch, adding support for more of
the Xlib interface as applications that actually needed it
were discovered. This effort was not expected to result
in a full re-implementation of the Xlib interface, which
is much too large to create with a reasonable amount of
effort. In fact, that issue was a show-stopper. Every part
of the Xlib interface is probably used by some applica-
tion, somewhere, and unless an XCB-based version of
Xlib supports every one of those applications, the tradi-
tional Xlib must continue to be maintained in parallel.
The duplicate effort inherent in such a plan led to the
eventual dismissal of the XCL implementation strategy.

5.2 Some Lessons from Current Work
We are now on our second try, and are approaching the
problem from the opposite side. Beginning with the full
freedesktop.org implementation of Xlib, we are strip-
ping out and re-writing small parts. This led within a few
days to a prototype XCB-based library that supported
the full Xlib interface, as well as having limited support
for the extra XCL API. The tradeoff is that it is not opti-
mal in code size, clarity, or other measures.

In the version of Xlib at freedesktop.org, the directory
layout of the source is notably different than the tradi-
tional style. Developers at freedesktop.org have con-
verted the build system from Imake to autoconf, au-
tomake, and libtool, and at the same time adopted a lay-
out familiar to anyone working with modern open source
software. Public headers may be found in include/,



while internal headers and all source code are in src/.
In addition, while all core X software has traditionally
been maintained together in a single source tree larger
than 600MB, at freedesktop.org it has been split into
many smaller modules and several CVS repositories.
Xlib is in the X11 module in the xlibs repository.

5.2.1 Transport Layer
Our current work on Xlib began with a focus on the
transport layer.

Because of the mismatch between the internal archi-
tectures of Xlib and XCB, we provide a minimal set of
hooks in XCB so that Xlib may make use of the transport
layer of XCB in place of xtrans. (This interface remains
a work in progress; we hope to find a clean design that
could be useful to callers besides Xlib, but such a design
is not yet apparent.) These hooks enable XCB to replace
xtrans in a manner transparent to everything other than
four Xlib transport-layer source files.

5.2.2 Protocol Layer
Replacing the transport layer with XCB provides notable
improvements in code size and clarity, as we report in
section 6.2. Yet replacing the protocol layer with XCB
offers much more significant gains, at the cost of quite a
bit of additional development effort. Fortunately, a sig-
nificant part of this extra effort is already done: The old
XCL work amounted to little more than glue code be-
tween the core protocol interfaces of Xlib and XCB.

Many functions in the protocol layer serve exactly the
same purpose as their counterparts in XCB. In XCL, we
built part of the infrastructure needed to automatically
generate the code for these functions. That infrastructure
combined information from several sources to produce
its stubs:

• The descriptions of the protocol from XCB.
• A machine-readable description of the Xlib inter-

face.
• A little bit of hard-coded knowledge about how to

convert between data types used by XCB and Xlib.

This illustrates one benefit of encoding knowledge, like
the structure of the X protocol, in a domain-specific lan-
guage. If done well, that knowledge is reusable in a va-
riety of projects.

Other functions require careful inspection when port-
ing them to XCB, and are not expected to benefit from
automatic code generation.

6 Results
We have tested our version of Xlib on real workloads,
including:

• Mozilla, with the Xt-based plug-in Adobe Acrobat
Reader.

• Many standard KDE and Gnome applications.
• A variety of window and display managers.

We also ran part of the X Test Suite, which is a com-
prehensive test suite of Xlib and the X server, created
from the well-documented specifications for both.

The three metrics of interest in comparing traditional
Xlib with an XCB-based Xlib are

• Correctness: has the behavior of the code changed?
• Code size: do any changes in code size justify the

effort required to achieve them?
• Performance: what effect has the work had on

speed?

6.1 Correctness
For our real workloads, we initially found quite a few
bugs both in our version of Xlib and in XCB. However,
a rapid series of small fixes resulted in the ability to run
a complete desktop environment using XCB. This soft-
ware is still in the debugging phase, but that phase is
mostly done and proceeding well.

6.1.1 Observed Causes of Bugs
To transform Xlib into a library built around XCB, the
semantics of Xlib must first be well understood, so that
those semantics may be maintained. For reasons typi-
fied by the examples in Section 3, that task alone is non-
trivial. Most bugs in the new version of Xlib result from
failures to understand the intended semantics of func-
tions that we have replaced. Naturally, the remaining
bugs are due to a failure to correctly re-implement the
original semantics.

6.1.2 X Test Suite
The X Test Suite reported that there were some defects
in error handling. Unfortunately, when tests that failed
were re-run individually, they succeeded. It remains un-
clear where the bug lies, but failure to use the test suite
in the manner for which it was designed seems like the
most probable suspect.

6.2 Code Size
For each source file, the number of lines of code (LOC)
were measured by running the file through the C prepro-
cessor, eliminating blank lines and lines from .h files,
and counting the remaining lines. This approach was
taken because preprocessor conditionals have a signif-
icant effect on the number of lines compiled into Xlib,
and because it accounts nicely for the inclusion of xtrans.
The number of bytes of compiled code due to each
source file was computed by examining object files in-
tended for a statically linked library, which do not have
the extra code generated for position-independent code
(PIC). (The overhead of PIC was deemed uninterest-



Xlib XCB
Component LOC % ∆ LOC bytes % ∆ bytes LOC bytes
locking 125 0.20 -166 1109 0.14 -1348 n/a
transport 2100 3.35 -2261 17886 2.24 -21264 1005 11250
core protocol 6003 9.57 -560 58839 7.36 -3683 2619 19665
extensions no change 1442 15080
Total 62702 100.00 -2987 799678 100.00 -26295 5066 45995

Table 2: Code size for Xlib with XCB

Component LOC % bytes %
locking 291 0.44 2457 0.30
transport 4361 6.64 39150 4.74
core protocol 6563 9.99 62522 7.57
cut buffers 99 0.15 599 0.07
gc 370 0.56 2494 0.30
image 1027 1.56 9550 1.16
events 1112 1.69 6762 0.82
icccm 1160 1.77 8847 1.07
region 1290 1.96 9504 1.15
resource db 2554 3.89 65719 7.96
xom 2891 4.40 24938 3.02
cms 6478 9.86 62188 7.53
xkb 10824 16.48 104430 12.64
xlc 12323 18.76 312602 37.85
xim 13615 20.73 106578 12.90
Other 731 1.11 7633 0.92
Total 65689 100.00 825973 100.00

Table 1: Code size for traditional Xlib

ing for this analysis.) These object files were built for
Linux/x86 without optimization. The Unix size com-
mand was run on each of these object files, and the
value from the “dec” column was taken, which includes
code, string literals, and any other data. Finally, each
source/object file pair was assigned to a component to
produce summary results per component.

In Table 1, the number of lines of code and compiled
bytes are given for traditional Xlib in two forms: raw,
and as a percentage of the total for that library. The re-
vised version of Xlib, together with XCB, is covered in
Table 2. In that table, the number of lines of code and
compiled bytes are given in raw and percentage form as
before, plus the change (∆) relative to traditional Xlib.
Additionally, lines of code and compiled bytes are given
for XCB in raw form. Xlib components unaffected by
this work were omitted from Table 2.

XCB provides a substantial improvement in code size
to the transport layer of Xlib, and in the future is ex-
pected to do the same for the protocol layer and exten-
sion implementations that have been built on top of Xlib.
Yet these improvements comes at relatively little cost
in human programmer time: much of the code is au-
tomatically generated from straightforward declarative

descriptions. Our current work has added less than 700
lines of new hand-written code to Xlib, while making
thousands of existing lines irrelevant.

The core protocol layer of XCB was automatically
generated from 1,700 lines of protocol description. The
current 55 automatically generated Xlib stubs that dele-
gate to XCB average 7 lines each, for a total of 442 lines.
Generation of more stubs is planned.

Similar benefits await client-side extension imple-
mentations. Current extension implementations span the
protocol and utilities layer for the same reasons that the
core protocol implementation does. As a result, some
portions of these extensions will be good candidates
for automatic code generation by the same techniques
that we have used in Xlib, and other portions will gain
smaller benefits through hand-porting.

XCB itself probably also has opportunities for reduc-
tion in code size. We can experiment with different im-
plementations easily, because nearly 80% of the code
in XCB is generated automatically. By happy accident,
the introduction of XCBSendRequest – made to improve
modularity and code clarity – also reduced code size by
a small yet noticeable margin. However, the XCB code
base is so small already that we have put in only cursory
effort to find further savings there.

6.3 Performance

User-visible performance with Xlib is expected to be
largely unchanged by the transition to XCB. Rewriting
Xlib to use XCB has little effect on those portions of
Xlib intended to improve performance, such as the var-
ious caches. Patterns of communication between the
client and the server should be identical in most cases
to traditional Xlib. Xlib cannot use the latency hiding
features of XCB to re-order requests and still remain
within the constraints of the documented Xlib interface.
Some slight performance improvements might be antic-
ipated due to better cache utilization and reduced lock
contention, but this is not expected to be significant. In-
formal testing supports the hypothesis that the difference
between traditional Xlib and XCB-based Xlib is not ap-
parent to end-users.



7 Related Work
At freedesktop.org, others are currently doing experi-
mental work toward redesigning the utility layer of Xlib.
This layer is a prime target for code size improvements,
because it

• Is more than 80% of Xlib.
• Is more clearly separable into components.
• Overlaps most with common toolkit functionality.
• Contains the least frequently used code in Xlib.

Current efforts focus on the xim, xom, xlc, cms, and
xkb components. Together, xim/xom/xlc make up about
44% of the lines of source in Xlib, and about 54% of the
compiled size. The cms component contributes roughly
10%, and xkb contributes 15%, to the size of Xlib. The
present build system allows Xlib to be built without each
of these components, producing a build of Xlib that is
about 75% smaller.

According to Jim Gettys [Get03], color management
was broken in the XFree86 [xfr] implementation of Xlib
for about half a year, and nobody noticed. Apparently
that code goes unused.

Unfortunately, some applications and libraries that are
in common use do depend on some of this functionality.
For instance, Gdk 2.0 uses the xlc component to set win-
dow titles. For this reason, entirely removing that code
from Xlib is not currently feasible. Fortunately, the char-
acter set translation tables that occupy a significant por-
tion of xlc are no longer necessary, as more general li-
braries such as GNU libiconv provide the same services.
One project presently awaiting developers is to remove
these tables from Xlib and replace them with whatever
implementation of iconv is available.

8 Software Engineering Observations
A number of observations may be made about software
engineering in general, illustrated by the examples of
Xlib and XCB. These observations have been made of-
ten in code style guides and software engineering pub-
lications, yet code continues to be written that exhibits
these problems.

Remember that software is written for two audiences.
While a computer must be able to execute the software,
it is also necessary that humans be able to read, under-
stand, and modify that software. Much of software engi-
neering comes down to dividing software into manage-
able chunks, pieces that a human can keep entirely in his
or her head long enough to work with them.

Functions should be kept simple, possibly by dividing
complicated tasks into several simple functions. Func-
tions that interact strongly should be kept close to-
gether, preferably in a single source file. Interactions can
and should be weakened where possible through care-
ful modular design, giving callers few opportunities to

make mistakes. All of these principles are violated, for
example, by the design of GetReq, Data, and XReply,
as explained in Section 3.3.2.

When multiple functions have similar code, a new pa-
rameterized function should be created that is the union
of the similar blocks. For example, Xlib protocol stubs
always call XSend/Data, XReply, both, or neither af-
ter GetReq. A single parameterized function, similar to
XCBSendRequest, would have been better; some rea-
sons were given in Section 4.2.

Functionality like the macros in the C preprocessor
should be avoided in modern code. Some reasons for
this were given in Section 3.1. Even automatic gener-
ation of code, a technique with significant benefits in-
cluding those described in Sections 4.1 and 5.2.2, has
hazards of this sort and should be used with the caution
that the generated code should not have redundant simi-
lar blocks if the underlying language provides a reason-
able mechanism for abstracting them.

Any time a significant chunk of software performs
an independent task, that chunk should be an indepen-
dent module, perhaps encapsulated in its own library.
As libraries like XCB and libiconv demonstrate, Xlib
contains many components that would have value as
stand-alone libraries. Each module and library in a
system should be focused on a single reasonably-sized
task; have a minimal, orthogonal, and well-defined inter-
face; and be implemented in a readable and maintainable
manner.

9 The Future of Xlib

Given the benefits of XCB, new X toolkits and applica-
tions are anticipated that will use pure XCB rather than
Xlib. Legacy Xlib code is expected to slowly migrate
to mixed Xlib/XCB and eventually pure XCB. Devel-
opment of Xlib is expected to slow. Even though the
work described in this paper is not ready for widespread
release as of this writing, there are already signs that de-
velopers are, indeed, moving their focus to XCB.

Xlib development will certainly not cease for some
time yet, and is expected to focus on reducing the instal-
lation footprint of Xlib. A small number of new features
continue to be planned, however. Since the reference im-
plementation of Xlib is open source, Xlib is sure to be
supported and maintained until it has no more users.

10 Conclusion

We have identified some significant areas of inefficient
and confusing design and implementation in Xlib, and
presented our efforts to repair this core element of the
X Window System. Combined with the efforts of oth-
ers, we believe that the installation footprint of Xlib may
be reduced significantly, while the clarity, maintainabil-



ity, and extensibility of the X client library stack are im-
proved tremendously.

Guiding our efforts are current best practices from the
software engineering and formal methods communities,
and our work may be taken as a case study in the practi-
cal value of these techniques. For that matter, this work
would be completely infeasible if the reference X Win-
dow System implementation were not open source, and
illustrates one of the many benefits of an open develop-
ment model.

This is an ongoing process. The X Window System
has shown an unlimited capacity for extension and inno-
vation. The general techniques of careful modular de-
sign, domain specific languages, and others are broadly
applicable. We hope we have provoked interest in soft-
ware engineering in general, and development of the X
Window System in particular.

Availability
XCB and the version of Xlib described here are both
hosted by freedesktop.org. XCB is available from
http://xcb.freedesktop.org. Xlib source is
at http://freedesktop.org/Software/X11,
and can be compiled to use XCB by specifying the
--with-xcb configure option.

Acknowledgements
This paper was shepherded by Carl Worth, and his pa-
tience and insight have been greatly appreciated.

Many thanks to Keith Packard for helping us compre-
hend Xlib and the X Window System. We would not
have gotten this far without him.

Contributions by Professor Bart Massey have been in-
valuable as well, providing much-needed guidance and
insight for the design and implementation of XCB, as
well as mentoring while writing reports on our progress.

Thanks also go to Jim Gettys for his continued support
of our efforts.

Finally, Sheridan Mahoney and Mick Thomure pro-
vided valuable feedback on drafts of this paper.

References
[AS90] Paul J. Asente and Ralph R. Swick. X

Window System Toolkit: The Complete Pro-
grammer’s Guide and Specification. Digital
Press, Bedford, MA, 1990.

[Ber95] David T. Berry. Integrating a color manage-
ment system with a Unix and X11 environ-
ment. The X Resource, 13(1):179–180, Jan-
uary 1995.

[Get03] Jim Gettys. Size of Xlib..., Octo-
ber 2003. Web Document. URL
http://pdx.freedesktop.org/

pipermail/xlibs/2003-October/
000001.html accessed April 8,
2004 04:30 UTC.

[MS01] Bart Massey and Jamey Sharp. XCB: An X
protocol C binding. In Proceedings of the
2001 XFree86 Technical Conference, Oak-
land, CA, November 2001. USENIX.

[PG03] Keith Packard and Jim Gettys. X Win-
dow System network performance. In
FREENIX Track, 2003 Usenix Annual Tech-
nical Conference, San Antonio, TX, June
2003. USENIX.

[Ros] David Rosenthal. Inter-Client Communica-
tion Conventions Manual. In [SGFR92].

[SG86] Robert W. Scheifler and Jim Gettys. The
X Window System. ACM Transactions on
Graphics, 5(2):79–109, April 1986.

[SGFR92] Robert W. Scheifler, James Gettys, Jim
Flowers, and David Rosenthal. X Window
System: The Complete Reference to Xlib, X
Protocol, ICCCM, and XLFD. Digital Press,
third edition, 1992.

[SGN88] Robert W. Scheifler, James Gettys, and Ron
Newman. X Window System: C Library and
Protocol Reference. Digital Press, 1988.

[SM02] Jamey Sharp and Bart Massey. XCL:
An Xlib compatibility layer for XCB. In
FREENIX Track, 2002 Usenix Annual Tech-
nical Conference, Monterey, CA, June 2002.
USENIX.

[xfr] The XFree86 project. Web document.
URL http://www.xfree86.org ac-
cessed April 8, 2004 04:30 UTC.


