USENIX Association

Proceedings of the
2001 USENIX Annud
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Extending Heterogeneity to RAID level 5*

T. Cortes and J. Labarta
Departament d’Arquitectura de Computadors
Universitat Politéecnica de Catalunya
{toni, jesus}@ac.upc.es, http:/www.ac.upc.es/hpc

Abstract

RAIDs level 5 are one of the most widely used kind
of disk array, but their usage has some limitations
because all the disks in the array have to be equal.
Nowadays, assuming a homogeneous set of disks to
build an array is becoming a not very realistic as-
sumption in many environments, especially in low-
cost clusters of workstations. It is difficult to find
a disk with the same characteristics as the ones in
the array and replacing or adding new disks breaks
the homogeneity. In this paper, we propose a block-
distribution algorithm that can be used to build disk
arrays from a heterogeneous set of disks. We also
show that arrays using this algorithm are able to
serve many more disk requests per second than when
blocks are distributed assuming that all disks have
the lowest common speed, which is the solution cur-
rently being used.

1 Introduction

Heterogeneous disk arrays are becoming (or will be
in a near future) a common configuration in many
sites. Let us describe two scenarios that end up in
a heterogeneous disk array. The first one appears
whenever a component of a traditional array fails
and it has to be replaced by a new one. As disk
technology improves quite rapidly, it is quite prob-
able for the new disk to be faster and larger than
the ones already in the array [7]. A similar scenario
appears when the capacity needs of a site grow and
new disks have to be acquired to grow the size of
the array (by increasing the number of disks in the
array). In this case, it will also be difficult to buy
the same disks as the ones in the original config-
uration, and thus newer disks will be added. In

*This work has been supported by the Spanish Ministry
of Education (CICYT) under the TIC-95-0429 contract.

both cases, we will make the array a heterogeneous
one because it will be made of disks with different
characteristics. This kind of situation is especially
common in low-cost clusters of workstations, where
cost is an important issue and old components have
to be used as well as possible. According to the
study performed by Dr. Grochowski at IBM [7], disk
capacity nearly doubles every year while the price
per Mbyte is decreasing about 40% per year. This
means that the price of arrays will remain about
the same throughout the years, although the capac-
ity will be increased a lot, of course. If a given site
wants to buy a 32 disk array (assuming for exam-
ple 18GB Seagate disks at today prices), it costs
between $17000 and $26400 (depending on the in-
terface, RPM, and seek time) [18]. At this price,
changing all these disks at a time because one of
them breaks is too expensive for many institutions
and/or companies, especially if the problem can be
solved by just buying a single disk. The only excep-
tion appears when the site does not need to grow
its capacity and thus replacing the 32-disk array by
a few new ones (reducing the size of the array) is
enough. Nevertheless, this does not seem to be the
trend as disk usage grows constantly.

To handle this kind of disk array, current systems
do not take into account the differences between the
disks. All disks are treated as if they had same
capacity (the smallest one) and performance (the
slowest one). This is not the best approach because
improvements in both capacity and response time
of the heterogeneous array could be achieved if each
disk were used accordingly to its characteristics.

In this work, we present a simple solution to
this problem by proposing AdaptRaid5, a block-
distribution algorithm that improves the perfor-
mance and effective capacity of heterogeneous disk
arrays compared to current solutions. We should
note that this proposal has been especially evaluated
for scientific and general purpose workloads (under-

standing as workload the requests that reach the
disk controller, after being filtered by the-file sys-
tem cache) because the multimedia case has already
been addressed quite successfully by other research
groups [6, 17, 24]. Nevertheless, the proposed algo-
rithm also works well in a multimedia environment.

This paper is divided into 8 Sections. Section 2
presents the most relevant work in the area of het-
erogeneous disk arrays. Section 3 introduces the
reader to some important concepts that need to
be clarified before describing the algorithm, which
is explained in full detail in Section 4. Section 5
presents the methodology used to obtain the results
presented in Section 6. Section 7 presents the future
work we plan to do in this field. Finally, Sections 8
and 9 present the conclusions that can be extracted
from this work and how to get more information
about this work.

2 Related Work

Some projects have already addressed the same
problem, but they have been focused on multime-
dia systems (and especially video and audio servers).
The work done by Santos and Muntz [17] proposed
a random distribution with replications to improve
the short and long-term load balance. In a similar
line, Zimmermann proposed a data placement pol-
icy based on the creation of logical disks composed
of fractions or combinations of several physical disks
[24]. Finally, Dan and Sitaran proposed the usage
of fast disks to place "hot” data while the less im-
portant data would be located in the slow disks [6].
The main difference from our approach is that all
these projects were targeted to multimedia systems
while we want a solution for general purpose and
scientific environments. Due to their focus on mul-
timedia, they could make some assumptions such
as that very large disk blocks (1Mbyte) are used,
that reads are much more important than writes
and that the main objective is to obtain a sustained
bandwidth as opposed to achieving the best possible
response time. These assumptions are not valid in
our environment where blocks are only a few Kbytes
in size, writes are as important as reads, and sus-
tained bandwidth is not as important as the fastest
response time. We have to keep in mind that we
evaluate the accesses that reaches the disk controller
after being filtered by the file-system cache.

The only two works, as far as we know, that deal
with this problem in a non-multimedia environment
are the HP-AutoRaid [23] and a software RAID that
has been implemented in Linux [21]. In the case of
the AutoRaid, heterogeneity in the devices is not
the objective, but its architecture supports differ-
ent kind of disks. Nevertheless, in that work only
size has been taken into account and no studies to
improve performance by using the disks according
to their characteristics have been presented. In the
software RAID in Linux, any of the disks in the ar-
ray can be built by putting several disks together.
Each disk will store part of the blocks assigned to
this virtual disk. The problem with this approach is
that it is too simple because it only works if you can
find a set of disks that match the size of the others
in the array (unless you want to waste disk space).
Furthermore, it only works for RAIDs level 0, and
not for level 5.

Other projects have also dealt with a heterogeneous
set, of disks, but their objective was to propose new
architectures using different disks for different tasks.
Along this line we could mention the DCD archi-
tecture [10]. In our work, we do not try to decide
which is the best hardware and then buy it, we want
to deal with already existing devices whichever they
are.

The work done by Holland and Gibson in 1992 [9]
and by Lee and Katz in 1993 [12] is also related
to this project, although not from the heterogene-
ity point of view. In both studies, ways to handle
stripes with smaller striping units than disks in the
array are presented. This idea is also used in our
work, as will be seen throughout the paper.

Finally, our research group has also proposed a solu-
tion to the same problem for disk arrays level 0 [5].
Although it is a much simpler algorithm, because
there are no parity problems, many of the ideas pre-
sented here have evolved from that first proposal.

3 Preliminary Issues

3.1 Disk Arrays and Parallelism

Disk arrays were especially designed to group sev-
eral disks into a single address space and to of-
fer high bandwidth by exploiting data access par-

allelism. Understanding how this parallelism im-
proves the performance of an array is very important
to understanding the design and results presented in
this paper.

A first kind of parallelism is achieved within a single
request. In this case, all disks work together to fulfill
a single request and thus the time spent transferring
data from the magnetic surface is divided by the
number of disks.

A second kind of parallelism occurs when several
requests do not use all disks in the array and can be
served in parallel. This kind of parallelism makes
sense when requests are small compared to the size
of the stripe. If requests are large, they will use
all disks and the parallelism between requests will
decrease significantly.

3.2 Small-Write Problem

One of the most important performance problems
in a RAIDS is the small-write problem. In this kind
of array, writing data implies that the parity infor-
mation has to be updated. For this reason, it is
recommended to write full stripes as the parity can
be computed only using the blocks to be written. If
a write operation does not write all the blocks in a
stripe, some blocks have to be read from the array to
recompute the new parity. This means that a write
also implies a read, which penalizes the performance
of the operation.

In this work, we consider the read-write-modify ap-
proach as opposed to the regenerate-write [3] be-
cause it offers more parallelism between requests.
The first one (read-write-modify) consists of read-
ing the same blocks that are being written and the
parity block. Then, the parity block is XORed with
the old blocks (just read) and with the new blocks
(just to be written) obtaining the new parity block.
The other possibility (regenerate-write) is to read
the blocks that are not being modified and thus the
new parity blocks can be computed because we have
all the blocks in the stripe.

4 AdaptRaid5

4.1 Block-Distribution Algorithm

The best way to understand this algorithm is to
describe its evolution starting from the most intu-
itive, but problematic, version. Then, we discuss
the problems we have detected and the solutions we
have proposed. To conclude, we present the final
version, which should produce a high-performance
and high-capacity heterogeneous RAIDS5.

Intuitive idea

As we have already mentioned, replacing an old disk
by a new one or adding new disks to an old array are
two common scenarios. In both cases, new disks are
usually larger and faster than the old ones [7]. For
this reason, we start by assuming that faster disks
are also larger, although we will drop this assump-
tion at the end of this section.

The intuitive idea is to place more data blocks in the
larger disks than in smaller ones. This makes sense
when larger disks are also faster, and thus they can
serve more blocks per unit of time. Following this
idea, we propose to use all D disks (as in a regular
RAIDS5) for as many stripes as blocks can fit in the
smallest disk. Once the smallest disk is full, we use
the rest of the disks as if we had a disk array with
D-1 disks. This distribution continues until all disks
are full with data.

A side effect of this distribution is that the sys-
tem may have stripes with different lengths. For
instance, if the array has D disks where F of them
are fast, the array will have stripes with D-1 blocks
(plus the parity block), but it will also have stripes
with F-1 blocks (plus the parity block). This was
not a problem in RAIDs level 0 [5], nevertheless, the
effect it may have on a RAID 5 will be discussed
later in this paper.

Finally, the parity block for each stripe is placed in
the same position it would have been in a regular
array with as many disks as blocks in the stripe.

In Figure 1, we present the distribution of blocks in a
five-disk array where disks have different capacities.
Each block has been labeled with the block number
in the array followed by the stripe in which it is

Disk

0 1 2 3 4
- - - - - -
0 lo-0 1-0 2-0 3-0 Po| |
F — — — — 4
1) |4 5-1 6-1 P1 7-1] |1
F — — — — 4
g 2 |82 9-2 P2 10-2 !
5 5F - - - ————
3 13 P3 12-3] [13-3 [
F — — — S
41 [pa 14-4 15-4 16-4 [
F — — — S
5 |17-5| [18-5] [19-5 PS5 [
[P |

Figure 1: Distribution of data and parity blocks ac-
cording to the intuitive version.

located (i.e. 8-2 represents data block 8, which is in
the strip number 2). Parity blocks are just labeled
with a P and the stripe to which they belong. We
have to notice that the last block of the largest disk
is not used. This happens because stripes must be
at least two blocks long, otherwise there is no room
to store the parity block for the stripe.

Reducing the small-write problem

As we mentioned in Section 3.2, the file system or
controller should organize writes in order to avoid
small writes as much as possible [1, 8, 20]. On the
other hand, our array has stripes with different sizes
and thus if the file system or controller optimizes
writes for a given stripe size, it will not be appro-
priate for stripes with a different size. For instance,
if the file system tries to write chunks of 3 blocks
(plus the parity one) in a 4-disk stripe, a full stripe
will be written. However, if the same chunk is writ-
ten into a 3-disk stripe, it will perform one full write
for two of the data blocks and a small write for the
other data block. This means that the performance
of a write operation will greatly depend on the stripe
it is written to.

The solution to this problem can be approached
from two different levels: file system or device. In
the first case, the file system has to know that there
are different stripe sizes in order to optimize writes
accordingly. In the second case, which is the one we
propose, the array hides the problem from the file
system that assumes a fixed stripe size.

The array can hide the problem of having different
stripe sizes by making sure that the number of data
blocks in each stripe is a divisor of the number of

Disk
0 1 2 3 4

R - - - .

0 lo-0 1-0 2-0 3-0 Po| |

F - - - - 4

1) |4 5-1 6-1 P1 7-1] |1

F - - - - 4

g 2 |82 9-2 P2 !
5 5F - - - ————
3 |w0-3 P3 11-3 [

F - - - —_——

41 |pa 12-4| [13-4 [

F - - - —_——

5 145 |15-5 PS5 [

[— P |

Figure 2: Distribution of data and parity blocks
when the stripe size is taken into account.

data blocks in the largest stripe, which we assume
is what is being used by the file system. This condi-
tion guarantees that full stripes, from the file system
point of view, are divided into a set of full stripes,
and thus the number of small writes is not increased.

In Figure 2, we present the new distribution for the
example in Figure 1. We should notice that the last
four blocks in disk 3 become unused. As we have
mentioned, the number of data blocks in a stripe
has to be a divisor of the data blocks in the largest
one. In this example, the largest stripe has 4 data
blocks, and thus a stripe with three data blocks is
not a valid one. For this reason, stripe number 2
becomes a three-block stripe and all the space in
disk 3 that comes after P1 remains unused.

Increasing the effective capacity

The distribution for solving the small write problem
above has created a capacity problem in that some
blocks must go unused to keep the smaller stripe
sizes divisible into the maximum stripe size. For
example, the dark blocks in Figure 2 cause the uti-
lization of disk 3 to be only 33%. Thus, the next
step is to reclaim our ability to utilize those extra
blocks.

We will describe this optimization in two steps.
First, we will find a way to use all the available disks
without worrying about the capacity. And second,
we will use this distribution to increase the effective
capacity.

The first problem, then, is how to map stripes that
are N-blocks long in a set of D disks (D > N) using
all the disks. One way to do this mapping is to

Disk

0 1 2 3 4
- - - - -

0 |00 1-0 2-0 3-0 PO |
— — — — 4

1) |aa 5-1 6-1 P1 71| |
4

[

N

l 8-2 P2 9-2
— — — S
— — — S

P4 12-4 13-4 I

— — — S
14-5 - 15-5 P5 |
— — — P |

Stripe

w

I

o
r—T—T—T—T—T—"

Figure 3: Distribution of stripes, which are 3-blocks
long, among four disks.

Figure 4: Distribution of stripes, which are 3-blocks
long, among four disks filling all empty blocks.

start each stripe in a different disk. For instance,
if stripe ¢ starts in disk d, then stripe i+1 should
start on disk d-1. Figure 3 shows an example where
stripes that are 3-blocks long (2 data plus 1 parity)
are distributed among four disks. Please notice that
this only happens for stripes 2 to 5.

The previous step uses all disks, but the number of
unused blocks is not reduced at all. To fill these
unused blocks we can use a Tetris-like algorithm.
We can push all blocks so that all empty spaces are
filled. Figure 4 presents the previous example once
the pushing has been done. We can observe now,
that all the blocks in the disk are used regardless of
the size of the stripe (2 additional data blocks plus
one parity block can be accommodated). With this
algorithm, we can have stripes with different sizes
while all the blocks in all disks are used to store
either data or parity information.

Disk
0 1 2 3 4
0-0 1-0 2-0 3-0 PO

4-1 5-1 6-1 7-1
P4 11-3 13-4 7.7

14-5 12-4 15-5 P5

0.6 16 2.6 3.6

4.7 &7 6.7
10.9 8.8 9.8
P 10 11.9 (3.1Q

1417 12.10 5.1 P11

Figure 5: Example of pattern repetition.

Reducing the variance in parallelism

If we apply the algorithm as we have presented it
so far, we observe that longer stripes are placed in
the lower portion of the address space of the array
while the shorter ones appear in the higher portion
of the address space. This means that requests that
fall in the lower part of the address space can use
more disks (longer stripes) while the requests that
fall in the higher part of the address space only use
a small subset of the disks (shorter stripes).

This can be a problem if our file system tries to place
all the blocks of a file together, which is a common
practice [13, 14, 19]. This means that a given file
may have most of its blocks in the lower part of the
address space (long stripes) while another file may
have all its blocks in the higher part of the address
space (short stripes). Although the global access
in the system will be an average, the first file will
have a faster access time (more parallelism) while
the second one will have a slower access time (less
parallelism). For this reason, evenly distributing the
location of long and short stripes all over the array
will reduce the variance between the accesses in the
different portions of the disk array, which we believe
is how the storage system should behave.

To make this distribution, we introduce the concept
of a pattern of stripes. The algorithm assumes, for
a moment, that disks are smaller than they actu-
ally are (but with the same proportions in size) and
distributes the blocks in this smaller array. This
distribution becomes the pattern that is repeated

until all disks are full. The resulting distribution
has the same number of stripes as the previous ver-
sion of the algorithm. Furthermore, each disk also
has the same number of blocks as in the previous
version. The only difference is that short and long
stripes are distributed all over the array, which was
our objective. An example of this pattern repetition
can be seen in Figure 5.

With this solution, we can see the pictures presented
so far (Figures 1, 2, or 4) as patterns that can be
repeated in disks thousands of times larger than the
ones presented.

It is also important to notice that the concept of
patterns will simplify the algorithm to find a block
as will be described later (Section 4.2).

Limiting the size of the pattern

Finally, we want to solve a very focused problem
that will only appear in special cases, but that may
be important in some cases. Nevertheless, the solu-
tion is very simple and has no negative side effects
in the rest of cases, making it appropriate to be im-
plemented.

In a regular disk array, all stripes are aligned to a
multiple of the number of data blocks in the stripe.
We may have systems, or applications, that try to
align their full-stripe requests to the beginning of a
stripe to avoid making extra read operations. For
example, if we have a distribution where the pattern
is the one in Figure 4, accessing 4 blocks starting
from block 16 should be a full stripe. However, it is
not with our new block-distribution algorithm.

Before presenting the solution, we need to define the
concept of reference stripe. A reference stripe is the
stripe that the system or application assumes to be
a full stripe. For instance, in the previous example
the reference stripe has 4 data blocks and 1 parity
block.

The solution to this problem is quite simple. The
algorithm only has to make sure that the number of
data blocks in a pattern is a multiple of the num-
ber of blocks in the reference stripe. This condition
guarantees that all repetitions of the pattern start
at the beginning of a file system full stripe. The re-
sult of applying this last step in the example can be
seen in Figure 5.

Generalizing the solution

So far, our algorithm has been based on an assump-
tion that the size of disks and their performance
grow at the same pace, but this is not usually the
case [7]. For this reason, we want to generalize the
algorithm in order to make it usable in any environ-
ment.

If we examine the algorithm we can see that there
are two main ideas that can be parameterized. The
first one is the number of blocks we place in each
disk. So far, we assumed that all blocks in a disk
are to be used. Now, we want to add a parameter to
the algorithm that defines the proportion of blocks
that are placed in each disk. The utilization fac-
tor (UF), which is defined on a per-disk basis, is a
number between 0 and 1 that defines the relation-
ship between the number of blocks placed in each
disk. The disk with the most blocks always has a
UF of 1 and the rest of disks have a UF related to
the number of blocks they use compared to the most
loaded one. For instance, if a disk has a UF of 0.5,
it means that it stores half the number of blocks as
compared to the most loaded one. This parameter
allows the system administrator to decide the load
of the disks. We can set values that reflect the size
of the disks, or we can find values that reflect the
performance of the disk instead of the capacity.

The second parameter is the number of stripes in
the pattern (SIP). The number of stripes in the
pattern indicates how well distributed are the dif-
ferent kinds of stripes along the array. Nevertheless,
we should keep in mind that smaller disks will par-
ticipate in less than SIP stripes.

Figure 5 presents a graphic example of how blocks
are distributed in the first two repetitions of the
pattern if we use the following parameters: UFy =
UF, =UF, =UF; =1, UF; = 04 and SIP =
6. Please note that there are no empty blocks in
the picture because we assume much larger disks
and the empty blocks would be placed at the end.
Remember that the picture only shows the first two
repetitions of the pattern.

Fast but small disks: a special case

The current algorithm can be used with any kind of
disks. Nevertheless, it does not make much sense if
the fastest disk is also significantly smaller. In this

case, a better use for these disks would be to keep
“hot data” as proposed by Dan and Sitaran [6].

4.2 Computing the Location of a Block

Besides all the aspects already mentioned about per-
formance of disk accesses, we also need to make sure
that finding the physical location of a given block
can be done efficiently.

This is done in a very simple way. When the sys-
tem boots, the distribution of blocks in a pattern is
computed and kept in three tables. The first one
(location) contains the disk and position within
that disk of any block in the pattern. The sec-
ond one (parity) keeps the location of the par-
ity block for each stripe. Finally, the third table
(Blks_per_disk_in pattern) stores the number of
blocks each disk has in a pattern. These tables
should not be too large. In our experiments the
position table has 152 entries, the parity one only
has 19 entries, and the Blks_per_disk_in pattern
has 9 entries. These sizes can be assumed by any
RAID controller or file system. The formulas to
compute the location of a given block (B) follow:

disk(B) = location[B%Blks_in_a_pattern|.disk
pos(B) = location[B% Blks_in_a_pattern].pos +
(B/Blks_in_a_pattern) = Blks_per_disk_in_pattern[disk(B)]
As these operations are very simple, the algorithm
to locate blocks is very fast. To check this time, we
profiled the simulator and we found that the time
spent in deciding the location of blocks was less than
81pus in average per request!, which is insignificant
compared to the time of a disk access.

5 Methodology

5.1 Simulation and Environment Issues

In order to perform this work, we have used
HRaid [4], which is a storage-system simulator?.
The simulator has been validated using the HP-92
suit of traces [15, 16] and also comparing the results
of many tests to the ones obtained by D. Kotz’s
simulator [11], which is also a validated simulator.

! Times taken in a SGI2000
2http://www.ac.upc.es/homes/toni/software.html

All tests presented in this paper were performed
simulating an array with a combination of slow and
fast disks. The model used for these disks is the one
proposed by Ruemmler and Wilkes [16]. The pa-
rameters used for the slow disks were taken from the
Seagate Barracuda 4LP [18] and to emulate the fast
disk we used the parameters of a Cheetah 4LP [18],
which is also a Seagate disk. A list with some im-
portant characteristics for each disk (controller and
drive) are presented in Table 1. Finally, the size
used for the striping unit is 128Kbytes. This size has
been computed using the ideas presented by Chen
et al. [2]. Although the formulas presented in that
paper were for homogeneous disk arrays, we have
assumed they would be adequate for heterogeneous
ones.

Table 1: Disk characteristics.

Fast Disk Slow Disk
Size
Disk size 4.339 Gb 2.061 Gb
Cache size 512Kbytes 128Kbytes
Sector size 512Bytes 512Bytes
Cache model
Read/Write fence 64Kbytes 64Kbytes
Prefetching YES YES
Immediate report YES YES
Overheads
New-command 1100ps 1100pus
Track switch 800us 800us
Bandwidth
RPM 10033 7200
Seek model
Limit (in cylinders) 600 600
Sort: a+b*sqrt(d) ps a = 1.55 a=3.0
b = 0.155134 b = 0.232702
Long: a+b*(d) ps a = 4.2458 a=7.2814
b = 0.001740 b = 0.002364

These disks and the hosts were connected through a
Gigabit network (10us latency and 1Gbits/s band-
width). We simulated the contention of the network,
but no protocol overhead was simulated.

We also have to keep in mind that in the simulations
we only took the network and disks (controller and
drive) into account. The possible overhead of the re-
questing hosts was not simulated because it greatly
depends on the implementation of the file system.
The only issue we simulated from the file system
was that it can only handle 10 requests at a time.
The rest of requests wait in a queue until one of the
previous requests has been served.

Finally, we have to mention that when using the
synthetic traces presented in the next section, we
made 10 runs for each one of them (all with dif-
ferent seed to generate the access pattern) and re-
port the average value. In these runs we always
obtained very similar results and the difference was
never larger than 2%.

5.2 Workload issues

In order to get the first results, we have studied the
behavior of the system on a set of synthetic work-
loads based on the following parameters:

e Kind of request: whether requests were reads
or writes.

e Request size: the size of all the requests in
the load.

e Request alignment: the position of the re-
quests is always chosen randomly, but the start
of the request can be either aligned to a block
in the first disk (to avoid small writes) or not.

Table 2 presents the characteristics of the synthetic
workloads used.

Table 2: Synthetic-workload characteristics.

Request Aligned Operation

Size Type

W8 8Kbytes No Writes
W256 245Kbytes No Writes
W1024 1024Kbytes Yes Writes
W2048 2048Kbytes Yes Writes
R8 8Kbytes No Reads
R2048 2048Kbytes Yes Reads

On the other hand, we also wanted to obtain results
for a real system, and thus we used a portion of
the traces gathered by the Storage System Group
at the HP Laboratories (Palo Alto) in 1999 [22].
These traces represent a detailed characterization
of every low-level disk access generated in the sys-
tem over a 6 month period. This system contained a
file server and some workstations used by the people
in the Storage System Group to perform their work
(compilations, edition, databases, simulations, etc.).
As the size of the traces was too large (6 months)
we will only present the results obtained during the

busiest hour of February 14th. The tested portion
has 159208 reads and 115044 writes and the aver-
age request size is around 12 Kbytes. With these
traces, as with most traces, dependencies such as
that a given operation has to follow another one are
not recorded. However, this does not invalidate the
results presented because the general load they rep-
resent continues to be real.

5.3 Configurations Studied

All the experiments presented in this paper have
been done using disk arrays with 9 disks. This num-
ber of disks is large enough to see the possible advan-
tage and limitations of the proposal. Furthermore,
it is small enough to make things easy to under-
stand.

Another important issue is the way small writes are
handled. All the arrays we have evaluated used the
read-write-modify algorithm, which means that the
blocks read in a small write are the same ones as the
blocks written [3]. This option has been used be-
cause it increases the parallelism between requests.

For simplicity, the configurations used always have
all fast disks in the first positions and the slow ones
in the last position of the array.

Finally, we have chosen a single SIP of 19 for all
experiments, also for simplicity reasons. Regard-
ing the utilization factors we have used a UF of 1
for the fast disks and .46 for the slow disks. These
values have been decided experimentally and a sen-
sitivity analysis for this parameter is presented in
Section 6.6. We know that better values could be
used for some of the experiments, but this is not
the important issue as we want to prove the good-
ness of the idea and not to propose the best possible
parameters.

5.4 Reference Systems

We have compared AdaptRaid5 with the following
two base configurations:

e RAIDS5: This is the traditional RAID5 algo-
rithm and it uses all the disks (fast and slow).
It is important to notice that this leads to fast
disks being treated as if they were slow ones

® OnlyFast
@ RAID5
0 AdaptRaid5

w
o

N
o

=
o

Total capacity (in GBytes)

o

0123456738
Number of fast disks

Figure 6: Effective capacity for the studied config-
urations.

and that only a portion of their capacity is ef-
fectively used.

e OnlyFast: This is also a traditional RAIDS,
but only using fast disks. The number of fast
disks will be the same as the number of fast
disks in the heterogeneous configuration. This
comparison will give us the idea of whether it
is better to throw the old disks away instead of
using them.

6 Experimental Results

6.1 Capacity Evaluation

We present a graph (Figure 6) of the effective ca-
pacity based only on data blocks as we vary the
number of fast disks out of the total of 9 disks for
each distribution algorithm used. We can see that
AdaptRaid5 is the one that obtains the largest ca-
pacity. This happens because it knows how to take
advantage of the capacity of all disks in the array.
Furthermore, we can see that the extra number of
parity blocks used by our proposal does not affect
the effective capacity significantly.

6.2 Full-Write Performance

The performance obtained by a RAID5 when a full
stripe is written is one of the important results for

1 OnlyFast
B Raid5
0 AdaptRaid5

50
40
30
20
10

0

Requests per second

01234567829
Number of fast disks

Figure 7: Writing 1024Kbytes blocks (W1024).

OnlyFast
o Raid5
0 AdaptRaid5

\S] w
o o

Requests per second
S
1

O_
01234567829
Number of fast disks

Figure 8: Writing 2048Kbytes blocks (W2048).

this kind of array. For this reason, we start eval-
uating the case where a write operation does not
imply a previous read. To study this performance,
we have measured the number of requests per second
each of the evaluated systems can handle when re-
quests are 1024Kbytes and 2048Kbytes long (work-
loads W1024 and W2048 described in Section 5.2).
Although these may seem to be very large requests
for the target environment, it is the only way to
test full writes. Controllers or file systems may use
logging and achieve such request sizes in non multi-
media environments. Figures 7 and 8 present these
results.

If we concentrate our attention on each of the sys-
tems individually, we can see that RAID5 does not
change its performance when more of the disks are
fast. This happens because this algorithm does not
know how to use the better performance of newer

disks.

The second system, OnlyFast, has a very inconsis-
tent behavior. It can achieve high performance un-
der some configurations and a very bad one under
others. The reason behind this behavior is the in-
crease in the number of small writes. As we have
mentioned in Section 4.1, if the number of data disks
used is not a divisor of number data blocks in a
stripe, a full-stripe write operation ends up perform-
ing a small write. This scenario occurs when the
system has 4, 6, 7 and 8 disks. In the rest of the
configurations, the performance obtained by Only-
Fast is quite good and proportional to the number
of fast disks. We should notice that this system has
not been evaluated for 0 or 1 fast disks because we
need at least 2 disks to build a RAIDS.

The last evaluated system is our proposal (Adap-
tRaid5). We can observe that the performance of
this system increases at a similar pace as the num-
ber of fast disks used, which was our objective.

If we compare the behavior of traditional RAID5
with our proposal, we can see that AdaptRaid5 al-
ways achieves a much better performance. This
happens because AdaptRaid5 knows how to take
advantage of fast disks while RAID5 does not. The
only exception to this rule appears when only 0 or 1
fast disks are used. In this case, AdaptRaid5 cannot
use the fast disks in any special way.

The comparison between AdaptRaid5 and OnlyFast
also shows that our proposal is a better one. On the
one hand, AdaptRaid5 is much more consistent than
OnlyFast and it does not present a bad performance
in any of the configurations. On the other hand, our
system always obtains a better performance than
OnlyFast. AdaptRaid5 is faster because it takes ad-
vantage of the parallelism within a request (it has
more disks), which is very important when only a
few fast disks are available or when requests are
large. Furthermore, when OnlyFast starts to take
advantage of the parallelism (when more fast disks
are used), AdaptRaid5 starts to use the slow disks
less frequently, which out-weighs the improvements
of OnlyFast.

6.3 Small-Write Performance

The other possibility for a write operation is to per-
form a small write. In this case, some blocks have

8 OnlyFast
B Raid5
0 AdaptRaid5

200
150
100
50
0

01234567829
Number of fast disks

Requests per second

Figure 9: Writing 8Kbytes blocks (W8).

8 OnlyFast
B Raid5
0 AdaptRaid5

200
150
100
50
0

01234567829
Number of fast disks

Requests per second

Figure 10: Writing 256Kbytes blocks (W256).

to be read in order to compute the parity of the
stripe. This situation is different from the previous
one, besides introducing the issue of the extra reads,
because requests do not use all disks and this in-
creases the parallelism between requests. This extra
parallelism can be important in configurations with
few fast disks because this parallelism will not be
exploited by AdaptRaid5 and OnlyFast when only
fasts disks are used, while it will be exploited by
RAID5 that always uses all disks.

To do this evaluation we have measured the number
of requests per second achieved by each evaluated
system when 8Kbytes and 256Kbytes requests are
done (workloads W8 and W256 described in Sec-
tion 5.2) (Figures 9 and 10).

In this case, AdaptRaid5 is also better than RAIDS,
for the same reason as before. It knows how to use

8 OnlyFast
B Raid5
0 AdaptRaid5

D
Q
o

Requests per second
8 &
o o

0
01234567829

Number of fast disks

Figure 11: Reading 8Kbytes blocks (RS).

the fast disks. Furthermore, we can also see that the
extra parallelism RAID5 can exploit is not enough
compared to the benefit of only using fast disks for
many of the requests.

When we compare AdaptRaid5 with OnlyFast, we
observe that our proposal has a better performance
than OnlyFast. This happens because AdaptRaid5
can use more disks and it can take advantage of the
parallelism between requests.

6.4 Read Performance

Once the write performance has been evaluated,
we need to measure the performance obtained by
read operations. This evaluation has been done
measuring the number of requests per second ob-
tained by the system when requesting read opera-
tions 8Kbytes, and 2048Kbytes long (workloads R8
and R2048 described in Section 5.2). These results
are presented in Figures 11 and 12.

In the first case (Figure 11), where requests are
8Kbytes, we observe a very similar behavior as in
the previous cases. The only difference is that the
performance of RAID5 and OnlyFast gets closer to
AdaptRaid5 than in previous experiments. This
happens because on these read operations, only one
disk is used per request and more parallelism be-
tween requests can be achieved by OnlyFast and the
probability of using a slow disk decreases in RAIDS.

In the second case (Figure 12), the requests are
much larger and this has two effects. If we observe

1 OnlyFast
B Raid5
0 AdaptRaid5

w
o

N
o

Requests per second
S
1

0_
01234567829
Number of fast disks

Figure 12: Reading 2048Kbytes blocks (R2048).

RAID5 performance, it remains unmodified when
more fast disks are added. This is because all disks
are used in the request and thus, slow disks are al-
ways included. If we focus on OnlyFast, we can see
that it outperforms AdaptRaid5 when more than
6 fast disks are used. This happens because when
these many fast disks are used, OnlyFast has enough
parallelism within a request to obtain a good per-
formance. On the other hand, AdaptRaid5 has to
handle slow disks in many of the requests slowing
down its performance. This means that if enough
fast disks are used and only large reads are to be
done, AdaptRaid5 is not the best solution.

6.5 Real-Workload Performance

The last experiment consists of running the trace
file from HP described in Section 5.2. These results
are presented in Figure 13. In this graph, we present
the performance gains (in %) obtained by our dis-
tribution algorithm when compared to RAID5 and
OnlyFast. The graph is divided in two parts. The
left part shows the gain for read operations and the
right part presents the results for write operations.

As expected, our algorithm is significantly faster
than the other ones tested. The reasons are the
same ones we have been discussing so far. The only
exception is when 8 fast disks are used. In this case,
OnlyFast is faster as it can achieve enough paral-
lelism between requests and no slow disks are ever
used. Nevertheless, maintaining only one slow disk
does not seem to be very reasonable, and in this
case we would recommend to discard the old disk

m AdaptRaid5 vs. RAID5
+ AdaptRaid5 vs. OnlyFast

+
60 — +
1 Reads Writes
~ 40 +
S "
c [
5 .+ .l
O 20+ " g u
* n
J] +m ! | |
[T T + ll +..
+

1 3 6 8 1 3 6 8
Number of fast disks

Figure 13: Performance gain of AdaptRaid5 over
the rest of configurations in a real workload.

(unless the capacity is needed.)

6.6 Sensitivity Analysis of the UF Pa-
rameter

In all the experiments run so far, we have used UF
values that maximize the utilization of the disks
as far as capacity is concerned. Now, we want to
see how sensitive is the performance of the array to
the different values of UF. For this reason, we have
tested the HP99 workload varying the UF factors
on different array configurations. The different ar-
ray configurations have 9 disks, but the number of
fast disks used varies. These different configurations
are represented by the different curves presented in
Figures 14 and 15. The combinations of UF values
used range, on the one hand, from UF}y,s = 1 and
UFs10w = .1 to both UF}.s5t = UFy00 = 1. These
tests have been marked in Figures 14 and 15 us-
ing the name S = .X, which represents the value
of UFjyoy because UFyqs: remains 1 all the time.
On the other hand, we have also tried a couple of
configurations where the slow disks have higher UF
values. In these two tests, UFon = 1 and UF}q4
takes .9 and .8 as values. These experiments are
marked using the name F' = .X, which represents
the value of UFy,s because UFlyo, remains 1 all
the time

Figure 14 presents the average read times obtained
in these experiments. The first thing we can observe

Averageread time (us)

300000
200000 —e— 2 Fast
—a8— 4 Fast
] —— 6 Fast
] A/‘\‘/.__/ —&— 8Fast
100000
0
o M 0 N O O N
S S
UF values

Figure 14: Variation in the average READ time
when changing the UF factors for different disk con-
figurations.

is that, in general, the more the slow disks are used,
the longer it takes to perform read operations. The
exception to this rule appears when only a few fast
disks are used. In this case, the higher speed of
fast disks cannot outweigh the parallelism obtained
by the larger number of slow ones and the best read
access time is achieved when slow disks are used half
the time the fast ones.

It is also important to notice, that the curves are
not perfect because there are other parameters that
also have their effect in the performance. Changing
the UF values also changes the placement of data
and parity blocks, which also has an effect in per-
formance.

Figure 15 presents the results of the same experi-
ments, but for the average write time. In this figure
we can observe the same behavior as with read op-
erations.

Summarizing, the election of UF values is especially
important if the number of fast disks is small and
the higher performance of the fast disks cannot out-
weigh the parallelism of the large number of slow
disks. Otherwise, using the fast disks as much as
possible seems to be the way to go. Nevertheless,
this election should also take capacity into account
because different UF values achieve arrays with dif-
ferent capacities.

Averagewritetime (us)

1000000 —
800000 —
600000 — —e— 2 Fast
| —8— 4 Fast
—e— 6 Fast
400000 —a— 8 Fadt
0
S ™M 1 N~ O o N
| | | | | 1l 1l
L L

Figure 15: Variation in the average WRITE time
when changing the UF factors for different disk con-
figurations.

7 Future Work

In the future, we plan to concentrate our work on
these issues:

e Find the best block size for this kind of algo-
rithm as was done for regular disk arrays by
Chen [2].

e Implement the algorithm in the Linux kernel.

e Study mechanisms to allow adding/replacing
disks while the array is on-line.

8 Conclusions

In this paper, we have presented AdaptRaid5, a
block-distribution policy that takes full advantage
of heterogeneous disk arrays.

This algorithm achieves a significant performance
compared to the policies currently being used. We
have proven this by using both synthetic and real
loads.

Furthermore, we have also shown that arrays using
AdaptRaid5 are able to serve many more disk re-
quests per second than when blocks are distributed
assuming that all disks have the lowest common
speed, which is the solution currently being used.

Finally, we have to keep in mind that this algorithm
has been evaluated for an array built from disks at-
tached to a SAN, but it would also work in other
array configurations.

9 Availability

Other papers and reports about heterogeneous disk
arrays

® people.ac.upc.es/toni/papers.html

Simulator information and downloading

® people.ac.upc.es/toni/software.html

A simplified version of the algorithm in pseudo code

® people.ac.upc.es/toni/AdaptRaid/pcAR5.html

Acknowledgments

We thank the Storage System Group at HP Labo-
ratories (Palo Alto), and especially to John Wilkes,
for letting us use their 1999 disk traces and for their
interesting comments. We are also grateful to all
the anonymous referees whose comments helped us
to improve the quality of this paper. Finally, we
thank Carla Ellis, who has been our shepherd and
has shown us many ways to improve the quality of
this work.

References

[1] ANDERSON, T. E., DAHLIN, M. D., NEEFE,
J. M., PATTERSON, D. A., RosSELLI, D. S.,
AND WaNG, R. Y. Serverless network file
systems. In Proceedings of the 15th Sympo-
sium on Operating Systems Principles (Decem-
ber 1995), pp. 109-126.

2]

[10]

[11]

[12]

CHEN, P., AND LEE, E. K. Striping in a RAID
level 5 disk array. In Proceedings of the 1995
ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (May
1995), pp. 136-145.

CHEN, P. M., LEE, E. K., GiBsoN, G. A.,
KaTz, R. H., AND PATTERSON, D. A. RAID:
High-performance and reliable secondary stor-
age. ACM Computing Surveys 26, 2 (1994),
145-185.

CORTES, T., AND LABARTA, J. HRaid: A flex-
ible storage-system simulator. In Proceedings
of the International Conference on Parallel and
Distributed Processing Techniques and Applica-
tions (June 1999), CSREA Press, pp. 772-778.

CoORTES, T., AND LABARTA, J. A case for
heterogenenous disk arrays. In Proceedings of
the IEEE International Conference on Cluster
Computing (Cluster’2000) (November 2000),
pp- 319-325.

DAN, A., AND SITARAM, D. An online video
placement policy based on bandwidth to space
ratio (bsr). In Proceedings of the SIGMOD
(1995), pp. 376-385.

GrocHOWSKI, E., AND HovT, R. F. Future
trends in hard disk drives. IEFEE Transactions
on Magnetics 32, 3 (May 1996).

HAaRrRTMAN, J., AND OUSTERHOUT, J. K. The
zebra striped network file system. Transactions
on Computer System 13, 3 (1995), 274-310.

HoLrAND, M., AND GIBSON, G. A. Parity
declustering for continuous operation in redun-
dant disk arrays. In Proceedings of the 5th Con-
ference on Architectural Support for Program-
ming Languages and Operating Systems (Oc-
touber 1992), pp. 23-35.

Hu, Y., AND YANG, Q. A new hierarchi-
cal disk architecture. IEEE Micro (Novem-
ber/December 1998), 64-75.

Korz, D., ToH, S. B., AND RADHAKRISH-
NAN, S. A detailed simulation model of the
HP-97560 disk drive. Tech. Rep. PCS-TR94-
220, Department of Computer Science, Dart-
mouth College, July 1994.

Lee, E. K., anD Karz, R. H. The per-
formance of parity placements in disk arrays.
IEEE Transactions on Computers 42, 6 (June
1993), 651-664.

[13] McKusick, M., Joy, W., LEFFLER, S., AND
FABRY, R. A fast file system for unix. ACM
Transactions on Computer Systems 2, 3 (Au-
gust 1984), 181-197.

[14] McVoy, L., AND KLEIMAN, S. Extent-like
performance from a unix file system. In Pro-
ceedings of the Summer Technical Conference
(June 1990), USENIX Association, pp. 137—
144.

[15] RUEMMLER, C., AND WILKES, J. Unix disk
access patterns. In Proceedings of the Winter
USENIX Conference (January 1993), pp. 405—
420.

[16] RUEMMLER, C., AND WILKES, J. An intro-
ducction to disk drive modeling. IEEE COM-
PUTER (March 1994), 17-28.

[17] SaNTOSs, J. R., AND MUNTZ, R. Performance
analysis of the rio multimedia storage system
with heterogenenous disk configurations. ACM
Multimedia (1998), 303-308.

[18] SEAGATE. Segate web page.
http://www.seagete.com, January 2000.

[19] SmiTH, K. A., AND SELTZER, M. A compari-
son of ffs disk allocation policies. In Proceedings

of the Annual Technical Conference (January
1996), USENIX Association.

[20] STODOLSKY, D., GIBSON, G., AND HOLLAND,
M. Parity logging overcoming the small write
problem in redundant disk arrays. In Proceed-
ings of the 21th Annual International Sympo-
sium on Computer Architecture (1993), pp. 64—
75.

[21] VEPSTAS, L. Software-raid howto.
http://www.linux.org/help/ldp/howto/Software-
RAID-HOWTO.html, 1998.

[22] WILKES, J. Personal communication, Septe-
meber 1999.

[23] WILKES, J., GOLDING, R., STAELIN, C., AND
SULLIVAN, T. The HP AutoRAID hierarchical
storage system. In Proceedings of the 15th Op-
erating System Review (December 1995), ACM
Press, pp- 96-108.

[24] ZIMMERMANN, R. Continuous media place-
ment and scheduling in heterogeneous disk stor-
age systems. PhD thesis, University of South-
ern California, December 1998.

