
Global Memory Management for a Multi Computer System
Dejan Milojicic, Steve Hoyle, Alan Messer, Albert Munoz, Lance Russell, Tom Wylegala,

Vivekanand Vellanki,† and Stephen Childs‡

HP Labs, Georgia Tech,† and Cambridge University‡

[dejan, hoyle, messer, bmunoz, lrussell, wylegal]@hpl.hp.com vivek@cc.gatech.edu† Stephen.Childs@cl.cam.ac.uk‡

Abstract
In this paper, we discuss the design and implementation of fault-aware Global Memory Management (GMM) for a multi-kernel
architecture. Scalability of today’s systems is limited by SMP hardware, as well as by the underlying commodity operating sys-
tems (OS), such as Microsoft Windows or Linux. High availability is limited by insufficiently robust software and by hardware
failures. Improving scalability and high availability are the main motivations for a multikernel architecture, and GMM plays a key
role in achieving this. In our design, we extend the underlying OS with GMM supported by a set of software failure recovery mod-
ules in the form of device drivers. While the underlying OS manages the virtual address space and the local physical address space,
the GMM module manages the global physical address space. We describe the GMM design, prototype implementation, and the
use of GMM.

1 Introduction

GMM manages global memory in a Multi Computer
System (MCS) by allowing portions of memory to be
mapped into the virtual address spaces managed by each
local OS. An MCS allows booting and running multiple
operating systems on a single hardware architecture (see
Figure 1) with cache coherent memory sharing among
the nodes. Each node contributes its own physical mem-
ory divided in two parts. One is visible locally while the
remainder contributes to the global memory, visible to
all nodes (see Figure 2). The primary GMM benefits on
a multi computer system are improved scalability and
high availability. Scalability is improved beyond the
scalability limits of a single OS, by allowing applica-
tions to run on any OS instance and some of them on
multiple instances at a time, concurrently, while sharing
memory and other global resources. Whereas the former
require no modification, the latter require some amount
of parallelizing and use of GMM and MCS interfaces.

Availability is improved compared to a large SMP by
allowing other instances of local OSes, as well as appli-
cations on top of them, to continue running even if a sin-

gle instance of an OS fails due to a software failure.
Multi computer systems are especially well suited for
enterprise data centers where applications, such as Ora-
cle or SAP, require increased scalability and high avail-
ability.

GMM offers other benefits: first, the ability to use the
fastest form of interconnect in an MCS system; second,
the possibility of easy and fast sharing between nodes,
following an SMP programming model; third, it allows
for better resource utilization by allowing overloaded
nodes to borrow memory from underutilized nodes;
finally, it allows scaling of applications requiring mem-
ory beyond a single node (e.g. OLTP and data base).

GMM design goals consist of the following:

• scalability and high availability,
• shared memory within and among different nodes,
• a suitable environment for legacy applications

designed to use shared or distributed memory,
• sophisticated support for new applications, and

Figure 1 Multi Computer System (MCS) Architecture.
Each node (an SMP) runs a copy of the OS. Interconnect
maintains cache coherent shared memory among nodes

Interconnect

Local OS

SMP

SMPSMP

+
MCS SW

Local OS
+

MCS SW

Local OS
+

MCS SW

Local OS
+

MCS SW

SMP

Figure 2 MCS Physical Address Space Organization. Each
node contributes a portion of its memory to global pool man-
aged by GMM. Local memory is managed by the local OS.

node 0 node 1 node n view from
any node

local memory

global address
space, managed
by GMM driver

managed by
the local OS

• good performance and resource sharing across nodes.

The rest of this paper is organized in the following man-
ner. Section 2 presents GMM problems and non-prob-
lems. Section 3 presents the GMM design and Section 4
the prototype implementation. Section 5 overviews the
use of GMM. In Section 6, we describe experiments.
Section 7 presents the lessons learned. Section 8 over-
views the related work. Section 9 concludes the paper
and outlines the future work.

2 GMM Problems and Non-Problems

In the course of the GMM design we have identified
problems that we considered important to address:

• Recoverability. Software failures on any node (e.g
operating system failures) should not cause failure or
rebooting of the whole system. GMM needs to recover
its data from the failed node if it is still accessible. The
memory occupied by a failed node needs to be freed
up and inconsistent state needs to be made consistent
(e.g. if a thread on a failed node died in the middle of
updating data structures on another node). In order to
be able to recover from the failure, the applications
need to adhere to the recommended recoverable pro-
gramming model (e.g. register for node crash events,
replicate, checkpoint, etc.).

• Memory scalability. GMM is required to support
access to more memory than is supported by a single
OS, since there are n nodes each contributing to the
physical memory of the whole MCS system. There-
fore, limitation of 4GB of virtual address space size
for ia32 is not acceptable [15, 16].

• Local and remote sharing. GMM must support
memory sharing between threads on same and on dif-
ferent nodes, at both user (applications) and kernel
(between MCS system components only) levels. This
may require changes/extensions to the local OS APIs.

• Usability and deployment. The GMM recoverable
programming model should not require significant
changes to the existing applications. This is not such a
strong requirement for MCS system components.

• Minimal (if any) changes to the underlying operat-
ing system. We used only extensions in the form of
device drivers for prototype implementation. We also
identified minimal changes to OS required for more
sophisticated support (see Section 4.4 for details).

• Globalization of resources and security. Globally
shared memory needs to be accessible for use from
any node and it needs to be protected from misuse.

Based on experience from past systems and by adhering
to Lampson’s principles [18], we identified these prob-
lems that we decided to avoid solving:

• Software distributed shared memory (DSM). In
MCS, consistency is supported by hardware. Other
DSM systems supported recovery as a part of their
consistency model (e.g. [5, 17]). In the case of GMM,
recoverability is considered as a separate issue.

• Local to remote memory latency ratio. Our assump-
tion is that the remote to local ratio will be 2 or 3 to 1
and as such it does not justify implications on the
design. Early NUMA architectures had over 10-15 to
1 ratio and they paid a lot of attention to data locality.
However, GMM recoverability still imposes some
location-awareness, e.g. for replication purposes.

• There is no single system image aspect. GMM does
not strive for single system image support, such as in
the case of Locus [25] or OSF/1 AD [31], or for a
transparent extension of the local interfaces, such as in
the case of Mach [2]. It is acceptable to use GMM by
writing according to specific GMM interfaces.

• Transparent fault tolerance is not a goal. GMM
should be recoverable, but it is acceptable that certain
users of GMM fail if they do not adhere to recoverable
programming model. GMM guarantees to a recover
from a single node OS failure (blue screen) which is
the most common failure on NT. Gray claims that
most failures are due to software [14]. In this phase,
we have not addressed hardware faults.

3 Design

3.1 MCS Overview

GMM is designed to use the MCS system and recovery
components. The recovery components implement a
recovery framework to keep track of the current state of
the nodes in the system. In the presence of failures, they
detect and signal the faults to MCS components. The
MCS system components provide support for global
locking and fast communication (see Figure 3). Inter-
Node Communication supports fast point-to-point, mul-
ticast, and broadcast communication of short messages,
as an alternative communication model to shared mem-
ory. It is used for example for communication to nodes
which may not yet have managed global memory. Also,
it is a way of containing memory failures which is not
possible if global memory is used.

The system knows how to recover global locks taken by
failed nodes. Membership services provides support for
the notion of a collective system. It relies on global

locking and inter-node communication. It supports the
software interface to actions which cause loss of mem-
bership, typically fault handling. The changes present in
the system (both hardware and software) are reflected
by global predicate-based Event Services. They notify
registered components using callbacks of the type of
event that has occurred. Each component is responsible
for registering with Event Services its interest in impor-
tant events. On each occurrence, each component is
responsible for reacting to the event, which typically
requires recovering the consistency of data structures.

In this way, the MCS system components act as an addi-
tional recovery service to allow aware applications and
MCS system components to recover. To best ensure
recovery, these components are written to expect fail-
ures in their operation. In order to further reduce the
probability of failure of the recovery service itself, the
complexity of these components is minimized.

Using this substrate, GMM implements management of
the nodes’ combined global shared memory. GMM ref-
erences regions it allocates by unique identifiers, Global
IDs (GIDs). The GIDs are obtained through the Global
Name Service (GNS) which also uses the MCS system
components. This Global Name Service provides the
namespace for sharing objects in an MCS system.

GMM and other MCS components coexist with the host
operating system as device drivers which use host OS
services and provide a user API through a device driver
and an access library in user-space (see Figure 4).

3.2 Physical Memory Management

Management of the global space is provided by GMM
running on each node in the system. In order to commu-
nicate, these instances share data structures in global
memory, protected by global locks. The root of the data
structures is the Master Table which maps from GIDs to

particular allocations of memory, called Sections. Each
node has space for a Master Table, but only two copies
are used at a time (primary and replica).

Each node then has Section, Sharer and Free memory
tables which describe the allocations from global mem-
ory in its managed portion of global memory. The Sec-
tion table describes each region of memory allocated
and indicates nodes sharing that Section. The Sharer
table then describes which processes (from which
nodes) are using memory on this node. Finally, the Free
memory list is the usual data structure to hold unallo-
cated memory managed by this node (see Figure 5).

By maintaining two copies of the master table (which
are updated on each access) the GMM data structures
can always be found upon a single node failure. Other
enhancements to these data structures have also been
made to ensure the data in the tables can be recovered
on a failure (see Section 3.4).

Figure 3 GMM and its Relationship to other Components
(recovery, GNS, global locks, etc.).

Inter-Node Communication

Global Locks

Event Services

Membership Services

Global Naming
Service

Global Memory
Management

system

recovery

dependencies

Figure 4 GMM Organization and APIs. GMM is imple-
mented as a device driver, using the kernel driver interfaces. It
exports user and internal APIs for the other MCS components.

NT OS

GMM

k
e
rn

e
l

d
ri

v
e
r

A
P

Is

User APIs (through UAPI Driver)

Global Name
Service

NT Device Drivers

Event

Membership

Locks

Inter-Node Communication

User API Library

Figure 5 Physical memory management data structures in
MCS consist of the master table (unique for MCS, but repli-
cated), section table, sharer, and free list (per node).

Node 1

Master Table

Section Table

Sharer Table

Physical Address Spaces

Node 2

Section Table

Sharer Table

Node 3

Section Table

Sharer Table

Free List Free List Free List

Master Table
replica

3.3 Sharing

Applications and MCS system components use GMM to
share regions of global memory among themselves.
GIDs, obtained from the Global Name Service, provide
the naming for these sections. Once identified, these
GIDs are passed to GMM either to allocate or share an
existing region of global memory. If allocation is
requested, then physical memory is reserved using the
above structures and mapped into the caller’s virtual
address space. If a caller opens an existing GID, the
desired region is simply mapped into its address space
(see Figure 6).

Mapping cannot be performed by using direct control
over the virtual memory hardware since the host OS is
already using this hardware. For coexistence with the
host operating system, it is necessary to be able to use
the host OS to map the physical memory into the
address space of a particular process. This has the
advantage of providing automatic memory protection on
a per process basis as long as the host OS supports it.

In the current prototype, global memory is not paged
due to limitations of the NT kernel. However, with the
ability to add an external page fault handler to the oper-
ating system for the global memory, a page system
could be implemented. Such a paging system could then
take advantage of vacant memory on other nodes to
improve performance as a fast backing store before
placing copies on stable storage for reliability [11].

3.4 Recovery

The recoverability objective of the GMM design is that
surviving nodes be able to recover from the failure of
any single operating system on any node in the system.

Such failures are detected by a software heartbeat per
node monitored by other instances of the membership
service in a ring. The failure is signaled using the Event
Service to any interested system component. This event
causes GMM on each node to recover its data structures
to a consistent state by performing the following tasks:

• for remote memory used by the failed node, the failed
node is removed from the sharer list of this memory,

• for remote memory that is being allocated/released by
the failed node, the operation is completed or aborted,

• if the failed node contained master or replica, a new
master/replica is allocated on a surviving node, and

• the free list is updated, if memory is no longer shared.

If the failure also caused loss of the node’s resources,
e.g. shared memory, then a separate event is issued
which causes GMM to:

• remove access to those lost sections and bring its data
structures into consistency.

• flush the node’s caches.

The biggest recovery challenge comes when an OS
crashes during memory allocation. This could result in
some of the GMM tables being partially updated or
locked but not released. As an example, consider a fail-
ure when the node allocating memory fails after identi-
fying a portion of physical memory for use. Since this
portion of physical memory is no longer present in the
free list, this portion of memory would be unavailable
for allocation and hence would be lost.

To overcome this problem, global memory allocation is
implemented as a two-phase nested transaction. In the
first phase, all the required resources are reserved. After
reserving, the necessary data structures are updated.
Finally, these resources are acquired. In the case of an
inability to acquire a particular resource, the reserved
resources are released. During global memory alloca-
tion, the following resources are needed:

• A Master Table entry to map the GID associated with
this portion of global memory to the identity of the
node and the section of the physical memory. This is
maintained on the primary and replica for reliability.

• A new descriptor in the Section Table on the node
hosting the physical memory to map the section with
the physical address. The section descriptor maintains
an entry into the sharer descriptor table.

• A new descriptor in the Sharer Table to include the
identity of the caller node in the sharer list.

• Physical memory from the Free List to associate as
this portion of global memory.

Figure 6 Memory Sharing in MCS: Applications or MCS
kernel components may map the physical global memory into
their virtual address spaces and share it with other nodes.

Physical Address

Distributed on all nodesNode 1 Node 2

OS

applications

Virtual Address Virtual Address

0

64GB

0

4GB

2GB 4GB

2GB
OS

applications 0

4GB

2GB
OS

applications 0

Spaces SpacesSpace

By implementing a two-phase transaction system, new
entries to each table are marked as temporary until all
the resources can be acquired and all the updates can be
made. Only then are the new entries in each table com-
mitted. During recovery, all resources that had been
reserved by the failed node and not committed are
reclaimed. Recovery completes only after all uncommit-
ted resources reserved by the failed node are reclaimed.

Once system components have recovered, applications
too can respond to system failure events signaled by the
recovery components and use this to increase the avail-
ability of their service. Of course, application failures
themselves are still the responsibility of the application
to detect and handle itself.

3.5 Locking

To ensure consistency using locking, especially in the
context of node failures and recovery, the MCS platform
was designed to support hardware spinlock primitives.
This design allowed the lock subsystem to be com-
pletely recoverable from single node or memory sub-
system failures. If a node hosting a spinlock failed, it
was designed to redirect (in hardware) the lock to a new
node and was set to return an error code of further
access. Clients using the locks and receiving this error
code, would cooperate to recover the state of the lock.

Consider the case that surviving GMM code was hold-
ing a lock at the time of the crash. In this case, when
exiting the critical section it would receive an error code
and could reset the lock state and recover synchroniza-
tion. If, however, GMM code execution was lost with
the lock held, further acquisition would be prevented
from accessing the critical section until the recovery
code recovered the data structure and reclaimed the lock
by resetting it.

Unfortunately no implementation of this hardware lock-
ing support was available on any existing platform. So
an emulation of the desired semantics was implemented
using NT’s spinlocks. This emulation provides for error
code reporting when the locks are lost and allows lock
resetting by the recovery process.

3.6 I/O

I/O may occur during single node or memory failure.
Local I/O operations have the same recovery semantics
as a traditional NT system, but problems arise when I/O
is made to remote systems through global memory.
Existing I/O operations to failed memory are taken care
by the platform hardware. While client access to the
data requires careful use of locking for mutual exclusion

and checking for device error codes to avoid consuming
erroneous data.

3.7 Application Recovery

Application recovery is the sole responsibility of the
application. Applications choosing not to support any
form of recovery can either continue regardless (hoping
no ill effects will result), respond to signals by the sys-
tem, or leave restart/recovery to a third party (such as an
application monitor).

Applications are signalled a failure event either before
or after the system has fully recovered depending on the
type of event. If an OS crash caused data inconsistency
or hardware was lost, the system recovers first and then
signals the application to make itself consistent. How-
ever, if resources are manually removed (e.g. shutting
down a node for an upgrade) then, after initially inform-
ing the system components, the application is signalled
first. It is then allowed some time to recover before the
system components fully recover from the lost
resources. This allows the application to copy existing
data and reposition resources before the system attempts
to forcibly revoke lost resource allocations. It also
improves performance of recovery by eliminating
unnecessary recovery of resources the application will
release itself.

4 Prototype Implementation

In order to experiment with our approach, a prototype
implementation has been created under Windows NT
4.0 Enterprise Edition. The underlying machine is a 4
node multi computer with an SCI interconnect provid-
ing hardware coherent shared memory. Each node is a
4-way Pentium II 200Mhz machine with a Gigabyte of
memory contributing 256Mb to local memory for the
host OS and 768Mb to the global memory pool. NT is
informed using the /maxmem command in the NT
Loader to manage only the lower 256MB region.

4.1 Integration with NT

GMM and other MCS components coexist with the host
operating system, running in kernel-mode implemented
using the NT Device Driver Kit (DDK) [30].

Each MCS component is written as a separate device
driver to provide a modular system design, each export-
ing an internal API to the other components. A control
device driver synchronizes the initialization of the
device drivers and the MCS system software.

At boot time, the MCS software on a single node (the
primary, defined as the alive node with the lowest id)

coordinates the boot, allowing each additional node to
enter the system one at a time. As each node joins, this
event is communicated to other nodes using the fast
inter-node communication. This allows the system to
build the membership of the system and communicate
any events to members. Once these are initialized, the
global memory manager initializes. GMM and other
MCS components are designed to allow rejoin of failed
nodes, even though the current development platform
does not allow for this (limitation of the firmware).

GMM starts by initializing empty versions of its tables
and then it contacts the current primary node in order to
reference the master tables. At this time, GMM has reg-
istered itself for OS failures with Event Services. If this
node discovers as it joins the system that there is no rep-
lica, it copies the master table and informs all other cur-
rent nodes that it wishes to be the replica. Only one node
enters at a time, so there are no race conditions.

Although various MCS components (GMM, GNS, etc.)
are implemented as kernel device drivers, they actually
function as shared library components in the kernel. A
separate MCS component, called the UAPI driver, is
registered with the operating system as a driver. It
receives requests from user space in the form of ioctls
(I/O controls), which it translates into procedure calls to
the appropriate MCS components. An MCS DLL
(Dynamic Link Library) manages all of the ioctl com-
munication with the driver, presenting user space appli-
cations with an explicit procedural interface.

The UAPI driver also provides generic MCS bookkeep-
ing services. It keeps track of all user space processes
that call MCS APIs, notifying MCS components when a
process exits so that accurate reference counts can be
kept, data structures can be properly cleaned up, and
system resources can be recycled and reused.

The UAPI driver also maintains process indexed map-
pings for all MCS kernel objects (global shared memory
segments, global mutexes, and global events) created or
opened by any user process. This relieves the individual
MCS components from validating and translating the
GIDs. For example, a user process provides a GID when
it calls the API provided to map a global memory seg-
ment into its address space. In responding to this call,
MCS must first find a corresponding data record and
verify that the given process has access to the corre-
sponding memory segment. Both of these tasks are done
by the UAPI driver before calling GMM.

4.2 GMM APIs

The primary goal of the GMM user space APIs is to pro-
vide a convenient interface allowing processes on dif-
ferent nodes to access the same memory resources.
Included is a strong foundation for different processes to
use and maintain identical virtual address mappings to
shared memory, regardless of where the processes run.

Maintaining the same virtual address mappings to
shared memory is significant because it allows applica-
tions to use direct memory references to or within
shared data structures. This in turn allows the virtual
address for any memory location to serve as an object
identifier as well as a memory access handle. A linked
list with the links implemented as direct memory refer-
ences is a typical example. Using virtual addresses in a
dual role (for identifiers as well as access handles) is
prevalent in Windows NT programming.

Applications need to be organized as multiple processes
to take maximum advantage of the availability and
recoverability features. The MCS system software is
designed to confine the effect of OS failures to a single
node. Recoverable applications are expected to do the
same. When a node goes down, there must be applica-
tion processes already running on other nodes in order
to recover.

Being able to maintain virtual address mappings to
shared data structures through recovery operations in
response to faults is an important part of the support
provided. Consider a recoverable application maintain-
ing two copies of global shared data in such a way that
at any given point in time, one copy or the other is
always in a consistent state. Typically, there will be a
primary copy that is directly accessed during normal
operations, and a secondary copy that is updated only on
transaction boundaries of coarser granularity.

When a failure occurs that compromises the primary
copy, application recovery uses the secondary to restart
computations from a consistent point. This is most
quickly facilitated by promoting the secondary to
become the primary. However, it requires a change in
the virtual to physical memory map for each of the
application processes, or that recovery by the applica-
tion includes repairing all of its memory references to
the primary. The latter would be particularly error
prone, even for highly disciplined programmers. More-
over, it would pose a significant obstacle for attempts to
modularize recovery code from normal operation code.
Thus, the GMM user space APIs allow processes to
reserve virtual address ranges, which can be freely
mapped and remapped to different sections of physical

memory. The GMM APIs can be classified into the fol-
lowing groups:

1. Reserving and unreserving virtual address ranges.

2. Acquiring and relinquishing access to identified
physical memory resources.

3. Mapping and unmapping specific virtual address
ranges to specific physical memory resources.

Keeping these groups independent of each other as
much as possible is the key for allowing multiple pro-
cesses to maintain the same virtual mappings to shared
memory. After reserving a given range of virtual
addresses and acquiring access to a given segment of
physical memory, a specified portion of the virtual
space is mapped to a specified portion of the physical
memory. This mapping can be undone without losing
reservation and portions of it can be remapped to other
segments of physical memory.

4.3 Security

Security in MCS builds on the access control mecha-
nisms provided by NT. Each object secured by NT has
an associated security descriptor which contains an
access control list (ACL). When a user attempts to
access an object, the security descriptor is consulted and
the access is verified against the ACL. MCS must main-
tain a globally valid association between each MCS ker-
nel object and its security descriptor. This allows
security information to be retrieved even when a user
accesses an object (e.g. a shared memory segment)
located on another node. MCS subsystems that provide
global objects must be modified to perform security
checks using this information.

There are two issues involved in managing globally
accessible security descriptors: storage and lookup. The
security driver stores the descriptors in a table in global
shared memory. This table is identified by a GID, and
the combination of this GID and an offset within the
table make up a globally valid address. This address is
then stored with the GID for the protected MCS object,
making it possible to retrieve the security descriptor
when the object is accessed.

MCS security is implemented by a security driver and
some modifications to the subsystems that provide ker-
nel objects. The security driver implements routines to
assign a security descriptor to an object and to retrieve
the security descriptor for a particular object. Other sub-
systems are modified to use these routines when creat-
ing new objects and verifying accesses.

4.4 Issues with Extending NT for GMM

During our implementation, we encountered three prob-
lems with integrating our system with the NT kernel.

Reservation of the virtual address space. Since GMM
uses shared data structures one of the most convenient
ways to implement the data structures is using pointers.
In order to use this optimization we need to have the
same virtual memory address across all nodes of the
system. Unfortunately, under the NT kernel, there is no
way to guarantee the virtual address allocated to the glo-
bal memory mappings. Instead it is only possible to cre-
ate mappings as early as possible to hopefully receive
the same address. Rather than relying on this ad-hoc
solution, the data structures instead are implemented
through table indexing. While this is not a great prob-
lem, it does reduce the readability of the code base.

Intercepting page faults. Our second problem limited
our implementation and consideration of adding paging
to our system. It appears that there is no way in the NT
kernel to add an external pager for a region of memory.
Since our system exists along side NT rather than inside
it, Windows NT does not manage the physical memory
of the global pool and so we would need to add our own
separate pager in order to manage this address space.

Scaling memory beyond 4GB. Windows 2000 sup-
ports Address Windowing Extensions (AWE) interfaces
for using more than 4GB of physical address space.
AWE allows multiple processes to use more than 4GB
of physical address space. In addition, a single process
can use more than 4GB in a limited way (only 4GB can
be mapped at a time, since virtual address space is still
limited to 4GB). The AWE interfaces represent a step in
the right direction, however, they fall short of the GMM
requirements with the inability:

• specify the physical addresses to be mapped to a cer-
tain virtual address space: the AWE returns free (non-
contiguous) physical pages,

• reserve physical address space for GMM, i.e. NT
should not allocate the physical ranges shared
between nodes to other local mappings, and

• separate unmap from free: AWE supports reserve vir-
tual address space, allocate, map, and free physical
pages; in the absence of inter-node sharing, there is no
need for unmap, it is achieved as a part of free.

New 64-bit processors (e.g. ia64) will relieve some of
the problems encountered with designing and imple-
menting GMM. First, the 4GB limitation would go
away. Second, because of the large virtual address
space, sharing the space among processes would be eas-

ier to implement (space could be reserved ahead for
sharing purposes). Next, the recovery model will be
improved, especially the memory failures.

4.5 Limitations of the GMM Prototype

The current GMM prototype implementation under NT
has the following limitations:

Premapped and non-paged global memory. All glo-
bal memory is pre-allocated in the NT non-paged sys-
tem virtual address space and subsequently allocated
from this pool, since that is the only way NT will permit
dynamic mappings of the memory into the user portion
of a process' address space.

Incompatibility with the local OS semantics. Exam-
ples include address space inheritance, security, etc.
This limitation is introduced because the local OS is not
managing GMM memory and it is not in the position to
handle it in accordance with the GMM requirements. In
order to make this possible, the GMM interfaces need to
be used to achieve security, sharing, recovery, etc.

Inability to test memory failures. Given the reliance of
the current hardware platform on an SCI ring, it is diffi-
cult to test for memory failures as a result of an entire
node failure rather than a simple OS crash. A node fail-
ing cannot be simulated by breaking the SCI ring to iso-
late a node without disrupting communication to all
nodes. Instead, we simulated memory failures by explic-
itly unmapping memory which would in normal opera-
tion be mapped as part of global memory.

5 Using GMM

5.1 Shared Memory Programming Models

An MCS global application is a set of one or more coop-
erating processes that run on the nodes of an MCS sys-
tem. There may be multiple processes per node, and the
processes may be multi-threaded. MCS global applica-
tions that have been modified to take advantage of an
MCS system use the global memory to achieve two ben-
efits: performance scalability and high availability. By
performance scalability we mean that the throughput of
an application should increase in proportion to the
amount of computing resources allocated to it. For
example, an MCS application which has its processes
running on two nodes of an MCS system should deliver
roughly double the throughput of an application running
on one single node. In this context, high availability
means that the application can continue to provide ser-
vice to users in the event of OS (and in future hardware)
failures on any node in the system.

An application must have certain characteristics to be
able to exhibit performance scalability while using
GMM. The first characteristic is the same as in the case
of an SMP system: the application must consist of inde-
pendent threads, and the throughput of the application
must increase with the number of concurrent threads.
The shared data set can be placed in global shared mem-
ory where it can be accessed by all processes compris-
ing the global application. There are two keys to
achieving high availability. First, each process must
maintain its state in global shared memory, so that if a
process terminates (for example, due to the crash of the
operating system on its node) then the task it was exe-
cuting can be completed by another process on another
node. Second, each data item stored in global memory
should be backed up by the application to a redundant
copy, either in global memory residing on a different
node or on disk. If memory is lost at a result of a node
failure then the redundant copy can be referenced.

5.2 Kernel Components that Use GMM

MCS kernel components can use global shared memory
to their advantage. In Windows NT (and other OSes),
the kernel and privileged-mode device drivers share a
common virtual address space. While the Windows NT
kernel itself does not use global shared memory, it per-
mits privileged-mode drivers to map global memory
into the kernel address space. Although all kernel com-
ponents can access all mapped global sections, the com-
mon practice is for MCS kernel components to share
sections only with their counterparts on other nodes.

GMM uses its own services: the tables describing the
global memory sections attributes and the locations of
unallocated ranges of the global memory are themselves
stored in global shared memory. This permits distrib-
uted management of the global memory resource. GMM
on any node can make a new global memory allocation
by updating the shared tables.

Global networking relies on global shared memory as its
physical transport medium. This component presents
itself to the operating system as a standard networking
driver, so all standard networking protocols are sup-
ported. To send a packet from one MCS node to
another, the sender places the packet in a buffer in a glo-
bal memory section and posts an interrupt to the receiv-
ing node. The global memory sections required to hold
the buffers are allocated when nodes initialize their net-
working. Each node creates a global memory section of
about 2 MB on each other node to which it can send
packets. For each buffer, there is only one node that
writes and only one node that reads the contents.

Another MCS kernel component implements global
synchronization objects, mutexes and events, for use by
user space applications. These objects have the same
semantics as the Win32 mutexes and events, except that
they can be used from any process on any node. These
objects also have recoverability features allowing them
to survive node and resource failures in the system.

The final example of a kernel component using global
shared memory is the global file system. This file sys-
tem presents a common global file tree across all MCS
nodes. The file system maintains a cache of recently
used file blocks in global shared memory, so that perfor-
mance is increased for accesses to shared files (opened
by multiple processes simultaneously). The implemen-
tation of the global file cache has not been completed, so
performance statistics are not available.

5.3 Applications that Use GMM

An application whose characteristics should benefit
from the properties of global memory management is a
database manager. Most database managers can
increase their throughput in proportion to the number of
concurrent threads accessing (different parts of) the data
set. In current practice, it is common to have data sets
many gigabytes in size, and many workloads feature a
significant number of update operations. We considered
porting a major database manager, such as Oracle or
Informix, to MCS, but the size and complexity of the
code base would make this a difficult undertaking.

The first global application that is ported to our proto-
type MCS system is a main-memory database manager
from TimesTen Performance Software. This product
supports the same query and transactional update func-
tionality of a conventional database manager, but with
increased performance and predictability of response
time owing to the fact that the entire data store resides in
main memory. The structure of the application makes it
simple to place the data store in global shared memory
and to synchronize access to it from multiple nodes.

The second MCS global application is a Web server
modified to share Web caches in global memory. This
application was chosen to allow future study of avail-
ability and performance issues in potential future Inter-
net systems. Both the Microsoft IIS and Apache Web
servers were modified to manage a cache of recently-
used files, rather than relying on the file system’s cache.
The cache is placed in global shared memory so that
each node could read cached files and copy new files
from the file system into the cache. A Least-Recently
Used (LRU) global cache management algorithm was
used. Results in this paper represent initial demonstra-

tion figures of this work using the Microsoft IIS Web
server only.

6 Experiments

In order to obtain the baseline performance of the proto-
type configuration, we used lmbench [20] to measure
the latency of the various levels of the memory hierar-
chy. Lmbench calculates the minimal memory access
time by traversing the memory region at various step
distances (strides) to determine cache effects. By using
two memory region size ranges and two strides to best
determine cache effects (4Kb-512Kb with access stride
4096 bytes and 512Kb-256Mb with access stride 128k)
we were able to effectively evaluate the complete mem-
ory hierarchy access latency, including first and second
level caches as well as local and remote memory. This is
achieved by using memory list structure those elements
are placed at a certain stride through a memory section
(larger than the cache size) from local and shared mem-
ory. In our experiment, we measured the latency for the
level 1 cache latency to be 40ns, the level 2 cache
latency to be 50~85ns, non-cached local memory (both
local DRAM and the local SCI cache) to be about
304~314ns, and the remote memory load access latency
to be approximately 3950-4125ns (see Figure 7).

Another set of performance measurements compares the
use of networking over shared memory v. loopback. The
results are presented in the table below. Shared memory
networking demonstrates relatively good performance
since large blocks of data are being transferred.

We measured the performance of the MCS version of
the TimesTen database manager by using a debit/credit
benchmark patterned after TPC-B. Our data set had

Measurement v.
Environment

Loopback
(Kb/sec)

Shared Memory
Network (Kb/sec)

FTP Transfer: 30MB (binary) 9286 7870

TTCP Transfer: 2K writes of 8KB 10233 8197

Memory Access Times

1

10

100

1000

10000

1000 10000 100000 1000000 10000000 1E+08 1E+09

Memory Region Size (log bytes)

T
im

e
(l

o
g

 n
s)

4096k Stride

131072k Stride

Figure 7 Memory Access Times on the Prototype: Two
memory region tests cover the entire memory hierarchy.

90,000 rows. Our first experiment compared the
released version of TimesTen with the MCS version on
a uniprocessor with the data set stored in memory local
to the node. This showed that the overhead of replacing
native Windows NT functions for memory management
and process synchronization with the corresponding
MCS functions was approximately 1%. Our second
experiment compared the MCS version on a uniproces-
sor with the data set stored in memory local to the node
with a similar configuration with the data set stored in
remote memory. The two runs showed virtually identi-
cal performance, showing that our data set fit in the sys-
tem’s remote memory cache of 32 MB, whose response
time was the same as for local memory. Finally, we
compared the released version on a four-way SMP with
four MCS nodes, and again the performance was simi-
lar, because the execution time was dominated by con-
tention for the lock on the data set.

Experiments on the recoverability of the GMM modules
on three nodes in presence of the failure of the fourth
node were performed. These experiments measured
recovery time of GMM modules in the MCS system and
scalability with number of allocations of GMM recov-
ery. In our experiments we fail one node (blue screen it)
and the other three nodes successfully recover. Our
experiments showed that the time to recover GMM
takes approximately 10.2ms for one shared application
memory region (plus 8 taken by the MCS system com-
ponents). This represents a significant improvement in
service disruption time compared to the time to reboot
the sharing nodes. Experiments also showed that as
these were scaled to a reasonable maximum of 64
shared allocations, the overhead to recover scaled lin-
early (see Figure 8). These figures include the time to
signal the failure, recover on all remaining nodes and
resynchronize on completion.

Initial experiments with a Web Server application were
performed to demonstrate the use of the GMM modules

in a real world application. Using two nodes of our pro-
totype, we ran the Microsoft IIS Web server with a mod-
ified shared memory cache. Then a popular web
benchmark was run to provide a workload benchmark
for these two web server machines. Four client
machines were used to generate sufficient workload to
maximize the work of the servers, with the total work-
load spread across the two server machines. Each client
ran four load-generating processes. Results were mea-
sured for just one machine with a 200Mb Web cache
and two machines each contributing 100Mb to a shared
GMM cache. The second configuration therefore has the
same total cache size as the first configuration, but with
the use of shared memory between machines has
allowed the application to be scaled to two machines
while maintaining any sharing. Results are presented in
Figure 9.

Our experiments measured that the performance approx-
imately doubled when processing and I/O resources
were doubled. Such speedups are common with web
servers since content can be replicated, but this requires
doubling the memory resources also. In this experiment,
the servers seem to scale with server resources while
memory resources remained constant due to the sharing
of resources. These figures, while interesting, are not
designed to demonstrate specific performance benefits,
since they are relative and entirely unoptimized. They
do, however, demonstrate that the MCS system and in
particular the GMM modules are capable of running real
world applications and provide suitable potential for the
real world use of such a platform. Once this work has
been completed, we hope to publish further results.

7 Lessons Learned

1. It is possible to extend NT with global memory man-
agement without changes to the existing code base.
However, this is only true for limited implementa-
tions, where memory is preallocated and pinned.

2. In order to achieve fully functional GMM there is a
need for extensions to Windows NT (see Section 4.4

Recovery Scalability w ith Number of
Allocations

0
5

10
15
20
25
30

0 20 40 60 80
Number of Allocations

T
im

e
(m

s)

Figure 8 GMM Recovery Scalability: Recovery was timed
on the four nodes when one failed with an increasing quantity
of shared memory allocations.

Relative Web Server Benchmark Performance

0
0.5

1
1.5

2
2.5

S
in

gl
e

N
od

e
(2

00
M

b)

D
ua

l
N

od
es

(2
00

M
b

sh
ar

ed
)

Configuration

R
el

at
iv

e
S

p
ee

d

Figure 9 Web Server Benchmark Performance: Through-
put in single- and two-node shared memory configurations.

for more details). If NUMA-like machines become
widely spread, this effort is likely to be standardized
among OS and hardware vendors.

3. It is hard to develop a flexible and easily deployable
programming model acceptable for legacy applica-
tions. Applications need to be parallelized in order to
allow for easy deployment using GMM. Kernel com-
ponents are more likely to use GMM since their use is
hidden from the users. An example is networking
(see Section 5.2).

4. Recoverable programming models for GMM are
even harder. They require careful design and replica-
tion of data structures. Furthermore, they are error-
prone since recovery from partial updates can be
complex. Memory failures (not addressed in the ini-
tial implementation, but considered long term) make
this problem even harder and more hardware depen-
dent.

5. Recovery poses a requirement to the local OS “not to
get in the way”. For recovery purposes, it is easier to
provide extra code that pays attention to preserving
the state, rather than relying on the existing (nonre-
coverable) OS which may lose the state on the OS
execution stack. This may duplicate functionality, but
the same code can be used for different OSes.

6. Hardware support for containment and recovery is
very important. We realized that in order to support
recovery from hardware failures we need additional
hardware support in order to notify and mask mem-
ory failures, which would normally cause the system
to machine check and fail.

8 Related Work

There are a number of systems related to GMM both in
academia and in industry. In academia, most related to
our work are OSes developed at Stanford: Hive [6],
DISCO [4], and Cellular DISCO [13]. For Hive, Teodo-
siu explored the possibilities hardware fault contain-
ment in multiprocessor systems [28]. Cellular DISCO is
derived from the DISCO virtual machine work. DISCO
showed that the scalability limitations of multi-proces-
sor systems could be overcome by running multiple vir-
tualized OSes rather than scaling one OS. Cellular
DISCO takes this virtualization further by using the
ability to kill and restart virtualized OSes for fault isola-
tion and containment. This approach does not consider
recovery other than rebooting virtualized OSes. Our
approach attempts to provide the ability to recover from
software and hardware failures.

There has been a lot of work on memory management
for early NUMA systems [3, 9], as well as for NORMA
(distributed memory) model [1, 2, 12, 31], but none
addressed failures. The cooperative caching project at
the University of Washington investigated the use of
memory from underutilized workstations [11]. Some of
distributed shared memory systems address fault recov-
ery [5, 17]. The Rio system addresses recoverability of
the OS from SW failures, including wild writes [7].

Many companies provide 'high availability' systems
through partitioning, such as Sun's UE10000 [27], Uni-
sys's Cellular Multiprocessing Architecture [29],
Sequent's NUMA-Q servers [26], Compaq's Wildfire/
OpenVMS Galaxy platform [8, 10], SGI’s Cellular
IRIX /SGI 2000 family [19] and IBM's S/390 Parallel
Sysplexes [21, 24]. These systems provide increased
availability by hardware partitioning, redundancy, and
by running in “lock-step” (IBM's Sysplexes). These sys-
tems rely on hardware features to allow failures to be
contained per partition (a logical node or set of nodes).
By having such partitions and executing multiple OS
instances, they provide the ability to contain the effects
of software failures while since allowing shared-mem-
ory between instances for fast communication. On such
systems, high availability software provides error
reporting/logging and control of partitioning where
applicable. But non-redundant software and hardware
failures cause failure of particular partitions and are
resolved by rebooting. Our work tries to increase the
availability envelope by using software which can
attempt to recover from dependencies on software
crashes rather than requiring dependent partitions to
reboot. This form of recovery is of increased importance
when resources, such as memory, are being shared and
partitions are therefore more tightly coupled. This type
of sharing, as typified by common applications, such as
Oracle's Database Server, is key to obtaining good per-
formance [23].

9 Summary and Future Work

We designed and implemented a prototype implementa-
tion of global memory management for the NT OS. We
achieved this without modifications to the OS. How-
ever, the prototype implementation has limitations, such
as non-paged global memory. In order to remove these
limitations, some modifications to the underlying OS
are required. We described the required functionality
missing in the existing NT implementation for fully
functional GMM. We described GMM recovery as well
as some applications that we used with it. Finally, we
derived lessons learned.

Our future work will address memory hardware failures
and specifically how to recover from them in case of the
ia64 architecture. We believe that most of the failures
that will remain will be due to software [14]. However,
with the increased high availability requirements of
scalable systems, the mean-time between failure of
memory and other components, such as interconnec-
tions, processors, will increase. This may not be suffi-
cient for systems such as enterprise data servers.
Therefore we need recoverable programming models to
fill the gap. In particular, we are interested in the
tradeoffs between hardware and software support for
optimal recoverable programming models.

Acknowledgments

Tung Nguyen is the father of the MCS program. Lu Xu
implemented GNS and parts of GMM. Todd Poynor and
Guangrui Fu conducted Web server and GMM latency
experiments. Chen Li ported TimesTen to MCS. Jork
Löser evaluated GMM on Linux. We thank TimesTen
for letting us use their product. We are indebted to Her-
man Härtig, Keith Moore, Todd Poynor, and Mike
Traynor for reviewing the paper. Their comments
improved contents and presentation.

References
[1] Abrosimov, V., Armand, F., Ortega, M., I., “A Distributed

Consistency Server for the CHORUS System”, Proc. of the
USENIX SEDMS, March 1992, Newport Beach, pp 129-
148.

[2] Black, D., Milojicic, D., Dean, R., Dominijanni, M., Sears,
S., Langerman, A., “Distributed Memory Management”.
Software Practice and Experience, 28(9):1011-1031, July
1998.

[3] Bolosky, W., Fitzgerald, R. P., Scott, M. L., “Simple but
Effective Techniques for NUMA Memory Management,”
Proc. 12th SOSP, pp. 19–31, Wigwam Litchfield Park, Az,
December 1989.

[4] Bugnion, E., Devine, S., Rosenblum, M, “Disco: Running
Commodity Operating Systems on Scalable Multiproces-
sors,” Proc. of the 16th SOSP, Saint Malo, France, pp. 143-
156, Oct. 1997.

[5] Cabillic, G., Muller, G., Puaut, I., “The Performance of
Consistent Checkpointing in Distributed Shared Memory
Systems”, Proc. of the 14th Symposium on Reliable Dis-
tributed Systems, Bad Neunahr, Germany, September 1995.

[6] Chapin, J., et al., “Hive: Fault Containment for Shared-
Memory Multiprocessors,” Proc. of the 15th SOSP, pp. 12-
25, Dec. 1995.

[7] Chen, P.M., et al., "The Rio File Cache: Surviving Operat-
ing System Crashes", Proc. of the 7th ASPLOS, October
1996.

[8] Compaq, “OpenVMS Alpha Galaxy Guide”, Downloaded
January 2000, http://www.openvms.digital.com:8000/
72final/6512/6512pro.pdf.

[9] Cox, A., Fowler, R., “The Implementation of a Coherent
Memory Abstraction on a NUMA Multiprocessor: Experi-
ences with Platinum,” Proc. Twelfth SOSP, pp. 32–44, De-
cember 1989.

[10] Digital Readies 500mhz-based 'Wildfire' Server”, PC
Week, March 1997.

[11] Feeley, M.J., et al., “Implementing Global Memory Man-
agement in a Workstation Cluster”, Proc. of the 15th SOSP,
Dec. 1995.

[12] Forin, A., Barrera, J., Sanzi, R., “The Shared Memory Serv-
er”, Proc. of the Winter USENIX Conf., San Diego, 1989,
pp 229-243.

[13] Govil, K., et al., “Cellular DISCO: Resource management
Using Virtual Clusters on Shared-Memory Multiproces-
sors,” Proc. of the 17th SOSP, pp. 154-169, December
1999.

[14] Gray, J., and Reuter, A., “Transaction processing: Concepts
and Techniques,” Morgan Kaufmann, 1993.

[15] Intel, "Intel Architecture Software Developer's Manual",
and "Addendum”, 1997.

[16] Intel, "The Intel Extended Server Memory Architecture”,
1998.

[17] Kermarrec, A-M., Cabillic, G., Gefflaut, A., Morin, C.,
Puaut, I., “A Recoverable Distributed Shared Memory Inte-
grating Coherence and Recoverability”, Proc. of the 25th
Int’l Symposium on Fault-Tolerant Computing Systems, pp
289-298, June. 1995.

[18] Lampson, B., “Hints for Computer System Design”, Proc.
of the 9th SOSP, October 1983, pp 33-48.

[19] Laudon, J., Lenoski, D., “The SGI Origin: A ccNUMA
Highly Scalable Server”, Proceedings of the 24th Interna-
tional Symposium on Computer Architecture, pp 241-251
June 1997.

[20] McVoy, L., Staelin, C., “lmbench: Portable Tools for Per-
formance Analysis”, Proc. of USENIX 1996 Conference,
San Diego, CA, January 22-26, 1996, pp 279-294

[21] Nick, J.M., et al., “S/390 Cluster Technology: Parallel Sys-
plex”, IBM Systems Journal, v 36, n 2., 1997.

[22] Oracle, “Oracle Parallel Server in the Digital Environment,
High Availability and Scalable Performance for Loosely
Coupled Systems,” Oracle White Paper, June 1994.

[23] Oracle 8 Support for the IntelR “Extended Server Memory
Architecture: Achieving Breakthrough Performance,” Intel
Document, Oracle's Note, 1998.

[24] Pfister, G., “In Search of Clusters”, Prentice Hall, 1998.
[25] Popek, G., Walker, B., “The Locus Distributed System Ar-

chitecture”, MIT Press Cambridge Massachusetts, 1985.
[26] Sequent White Paper, “Application Region Manager”,

Downloaded in January 2000 from http://www.se-
quent.com/dcsolutions/agile.pdf.

[27] Sun Microsystems, “Sun EnterpriseTM 10000 Server: Dy-
namic System Domains”, White Paper, Downloaded Janu-
ary 2000, http://www.sun.com/datacenter/docs/
domainswp.pdf.

[28] Teodosiu, D., et al., “Hardware Fault Containment in Scal-
able Shared-Memory Multiprocessors,” Proc. of the 24th
ISCA, June 1997.

[29] Unisys, “Cellular MultiProcessing Architecture,” White
Paper, Downloaded January 2000, http://www.unisys.com/
marketplace/ent/downloads/cmparch.pdf.

[30] Viscarola P. and Mason, W.A., “Windows NT Device
Driver Development,” Macmillan technical Publishing,
1999.

[31] Zajcew, R., et al., “An OSF/1 UNIX for Massively Parallel
Multicomputers”, Proc. of the Winter USENIX Conference,
January 1993, pp 449-468.

