Proceedings of the™JUSENIX Tcl/Tk Conference

Austin, Texas, USA, February 14-18, 2000

THE TCL EXTENSION ARCHITECTURE

Brent Welch and Michael Thomas

USE

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510; 528864910 548
5738; Email: office@usenix.org; WWWittp://www.usenix.orgRights to individual papers remain with the author or the author's employer. Permission is

granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must ba theludptbduced paper.
USENIX acknowledges all trademarks herein.

The Tcl Extension Architecture

Brent Welch <welch@scriptics.com>
Michael Thomas <wart@scriptics.com>
Scriptics Corporation

Abstract

This paper describes goals and current state of the
Tcl Extension Architecture (TEA). The goal of
TEA isto create a standard for Tcl extensions that
makes it easier to build, instal, and share Tcl
extensions. In its current form, TEA specifies a
standard compilation environment for Tcl and its
extensions. The standard uses aut oconf, confi g-
ure and make on UNIX and Windows. A longer
term goal isto create an infrastructure that supports
network distribution and installation of Tcl exten-
sions. A standard build environment is a necessary
first step to support automated compilation and dis-
tribution of extensions. This paper describes the
current state of TEA, but we expect to continue to
refine the standard and add to it as we gain experi-
ence with it.

I ntroduction

Compiling Tcl from the source distribution is easy.
One of the strengths of Tcl isthat it is quite porta-
ble and so it has been built on al kinds of systems
including Unix, Windows, Macintosh, AS/400,
IBM mainframes, and embedded systems. How-
ever, it can be a challenge to create a Tcl extension
that has the same portability. The Tcl Extension
Architecture (TEA) provides guidelines and sam-
ples to help extension authors create portable Tcl
extensions. The TEA is a result of collaboration
within the Tcl user community, and it will continue
to evolve. TEA covers the following topics, which
are described in more detail in the paper:

« Recommended Source Directory Struc-
ture:

« Standard Installation Directory Structure.

e Stubs Libraries.

» Autoconf and Confi gure.

+ Standard make Targets.

« A Sample TEA-Compliant Extension.

» Future Plans.

Standard Directory Structure

One goal of TEA isto make the process of config-
uring and building a Tcl extension very similar to
building Tcl itself. In addition, building a Tcl
extension depends on having access to the Tcl
source distribution. You must configure and build
Tcl before you build your extensions. The best way
to organize your source code is to have Tcl and all
your extensions under a common directory (e.g.,
/usr/local/src or /home/ wel ch/ cvs). This way
the build process for an extension can automati-
cally find the Tcl sources. The dependency on the
Tcl source distribution is described later, and in the
long term we hope to support building TEA-com-
pliant extensions against a binary distribution of
Tcl.

The Source Distribution

Table 1 describes the directory structure of the Tcl
source distribution. The Tk distribution is similar.
The directory structure divides the sources into
generic and platform-specific directories.

Table 1 The Tcl source directory structure.

tcl 8.

tcl 8.

tcl 8.

tcl 8.

tcl 8.

tcl 8.

tcl 8.

tcl 8.

2

2/ conpat

2/ doc

2/ generic

2/ mac

2/library

2/ l'i brary/ encodi ng

2/ 1i brary/ package

The root of the Tcl sources. This contains a READMVE and
li cense_terms file, and several subdirectories.

Thiscontains. ¢ filesthat implement procedures that are other-
wise broken in the standard C library on some platforms. They
are only used if necessary.

This contains the reference documentation. Currently thisisin
nroff format suitable for use with the UNIX man program. The
goal isto convert thisto XML.

This contains the generic . ¢ and . h source files that are shared
among Unix, Windows, and Macintosh.

This containsthe. ¢ and . h source files that are specific to
Macintosh. It also contains Code Warrior project files.

Thiscontainsinit.tcl and other Tcl filesin the standard Tcl
script library.

This contains the Unicode conversion tables.

There are several subdirectories (e.g., ht t p2. 0) that contain Tcl
script packages.

This contains the Tcl test suite. These are Tcl scripts that exer-
cise the Tcl implementation.

Thisisacollection of scripts used to help build the Tcl distribu-

This containsthe. ¢ and . h source files that are specific to
UNIX. This also contains the conf i gur e script and the Make-

tcl 8.2/ test
tcl 8.2/tools
tion.
tcl 8.2/ unix
file.intemplate.
tcl 8.2/ uni x/dl test

tcl 8.

2/ uni x/ platform

This containstest files for dynamic loading.

These can be used to build Tcl for several different platforms.
Y ou create the pl at f or mdirectories yourself.

tcl8.2/win Thiscontainsthe. ¢ and . h sourcefilesthat are specific to Win-
dows. This also containsthe conf i gur e script and the Make-
file.intemplate. Thismay contain anmakefile.vc thatis
compatible with nmake.

tcl 8.2/ win/Build Bui | d iSRel ease or Debug. This contains compiler output.

The Installation Directory ming libraries (i.e., DLLs) are in platform-specific

Structure directories. You can choose where these two groups

When you install Tcl, the files end up in a different
arrangement than the one in the source distribution.
The standard installation directory isorganized so it
can be shared by computers with different machine
types (e.g., Windows, Linux, and Solaris). The Tcl
scripts, include files, and documentation are al in
shared directories. The applications and program-

of filesareinstalled withthe- - prefi x and - - exec-
prefix options to confi gure. The --prefix option
specifies the root of the installation directory (e.g.,
fusr/local). The --exec-prefix option specifies a
platform-specific directory (e.g., /ust/local/solaris-
sparc) for applications and programming libraries.
Table 2 shows the standard installation directory
structure:

Table 2 Theinstallation directory structure relative to the - - prefi x directory.

exec_prefix/bin

exec_prefix/lib

exec_prefix/lib/

This contains platform-specific applications. On Windows, this also con-
tains binary libraries (i.e., DLLS). Typical exec_pref i x names end with
sol ari s-sparc, | i nux-ix86,andwi n-i x86.

This contains platform-specific binary libraries on UNIX systems (e.g.,
libtcl8.2.s0)

Contains pkgl ndex. t ¢l files corresponding to binary libraries from pack-

package age that arefoundinexec_prefix/lib.

bin This contains platform-independent applications (e.g., Tcl script applica-
tions).

doc This contains documentation.

i ncl ude This contains public .h files

lib This contains subdirectories for platform-independent script packages.
Packages stored here are found automatically by the Tcl auto loading
mechanism.

lib/tcl8.2 This contains the contents of thet ¢l 8. 2/1i brary source directory,
including subdirectories.

I'i b/ package This contains Tcl scriptsfor package and its pkgl ndex. t ¢l file. Example
package directoriesincludet k8.2 anditcl 3. 0. 1.

man This contains reference documentation in UNIX man format.

The Package M echanism

Extensions are installed and used as packages. A
package can be one Tcl script, a collection of Tcl
scripts, a binary library, or some combination of
scripts and libraries. When you install an extension
you heed to update the package registry so that oth-
ers can find the extension with package require.
This section describes the default package manage-
ment system, which uses a collection of pkglin-
dex.tcl filesin directories along your auto_path.

The packageregistry isimplemented by acollection
of pkglndex.tcl files. Tcl searches the directories
listed in its auto path variable for pkglndex.tcl
files. It also searches down one directory, so you
can put your extensions and pkglndex.tcl filesinto
subdirectories of the main directories listed on
auto_path. The default auto_path is

prefix/lib/tclversion prefix/lib exec_prefix/lib

Each pkglndex.tcl file has one or more package
i f needed commandsin it. These register Tcl com-
mandsthat are called whenever aparticular package
is requested with package require. This section

shows a few sample package i f needed Scripts to
handle different configurations of packages.

Binary Library

A binary library (i.e., DLL) goesinto the platform-
specific lib directory. For example, you install your
DLL into exec_prefix/lib/libfoobarl.0.so and you
create a package index file in
exec_prefix/lib/foobarl.0/pkglndex.tcl, which con-
tains this code:
package ifneeded foobar 1.0 [list load \
[file join $dir .. \
I'i bf oobar 1. 0[i nfo sharedlibextension]]\
Foobar]
Collecting al the binary libraries in one directory
makes it easy to resolve dependencies among them
and third-party librariesthat support your Tcl exten-
sion. UNIX users may have to adjust their
LD_LI BRARY_PATH to include the exec_prefix/lib
directory. On Windows, these files are actually in
the exec_prefix/bin directory, which is automati-
cally searched. Keeping the pkglndex.tcl files in
separate directories keeps them independent.

Tcl Scripts

If your extension is just Tcl scripts, then it can be
shared by userson different platforms. Theselibrar-
ies are typically kept in a subdirectory of prefix/lib,
(e.g., /usr/local/lib/foobarl.0). You can use the
pkg_nkl ndex Tcl command to generate a pkgin-
dex.tcl file for your scripts:

pkg_nkl ndex -verbose prefix/lib *.tc

By default, pkg_mkindex generates pkglndex.tcl
files that contain t cl PkgSet up commands that use
sour ce Or | oad indirectly. You might imagine that
package require actualy loads code, but by
default is does not. Instead, the following t ¢l Pkg-
Setup command arranges for foobar.tcl to be
sourced whenever the unknown command tries to
find Foobar_Init, Foobar_ DoSonething, oOr
Foobar End.
package ifneeded foobar 1.0 \

[list tcl PkgSetup $dir foobar 1.0 \

{{foobar.tcl source {Foobar_lnit

Foobar _DoSont hi ng Foobar _End}}}]
The tclPkgSetup command is complex, so you
should use the pkg_nkl ndex command to generate
these commands for you. If you use pkg_rki ndex -
di rect, you can create a simpler package that is
sourced immediately in response to the package
r equi r e command. Thisdirect package index looks
likethis:

package ifneeded foobar 1.0 \
[list source [file join $dir
foobar.tcl]]

Library and Script Combina-
tion

If you have both scripts and binary libraries, then
you can split your package into two parts. the
shared part as Tcl scripts, and a platform-specific
part as a binary library. The tricky part is building
your pkglndex.tcl file correctly. There aretwo prob-
lems. First, you can only have one package
i f needed command for a single package, so you
need to specify something about the scripts and the
library in one command. Next, you cannot predict
the location of both parts of the package, so you
have to assumethey areinstalled in a standard loca-
tion relative to the auto_path. Our preferred solu-
tion is modeled after the one in the SNACK sound
extension by Kare Sjolander.

Create a pkgindex.tcl file in the
exec_prefix/lib/foobar1.0 subdirectory. You will
need to install a copy for each different platform
that you compile for (eg., solaris
sparc/lib/foobarl.0/pkglndex.tcl and linux-
ix86/lib/foobarl.0/pkgindex.tcl.). This file loads
the binary library and sources the Tcl script. We
assume that the scripts are installed relative to the
Tcl script library:

package ifneeded foobarArch 1.0\

"[list load \

[file join $dir ../libfoobarl.0[info \

shar edl i bext ensi on] Foobar] \;

[list source [file join [file dirname \

$tcl _library] \

f oobar 1. 0/foobar.tcl]]"

This example assumes the standard directory struc-
ture. It would be more general to search along the
auto_path for the foobarl.0 subdirectory and then
source its foobar.tcl file. If you have several script
files, you can introduce a short procedure to source
all of them. Or, you can have two pkglndex.tcl files
and requirethat your usersrequire both (e.g., foobar
and foobarArch). The packages can also require
each other. For example:
package ifneeded foobarArch 1.0\

"[list load \

[file join $dir ../libfoobarl.0[info \

shar edl i bext ensi on] Foobar] \;

[list package require foobar 1.0]"
Finally, by using the package unknown hook, you
could define and use an alternate package manager.
Newsgroup discussions have pointed out that
searching for all the pkglndex.tcl files can be slow
on some systems. An alternate package manager
could keep a more compact and efficient database,
and perhaps have smarts about downloading pack-
ages from standard TEA repositories.

Autoconf, Configure and Make

In the past, UNIX, Windows, and Macintosh have
different compilation environments. The advent of
the free Cygwin tools have made it possible to
standardize on aut oconf, confi gure and nake for
the UNIX and Windows compilation environ-
ments. The Macintosh still uses Code Warrior
project files, however. On Windows we use nake,
sh, and autoconf from Cygwin, and the cl

(VC++) compiler from Microsoft.

The aut oconf system is used to create Makefiles
that have settings appropriate for the current operat-
ing system. By using aut oconf, a developer on
Windows or Linux can generate aconfi gur e script
that is usable by other developers on Solaris, HP-
UX, FreeBSD, AlX, or any system that is vaguely
UNIX-like. Theconf i gur e script, inturn, isused to
generate the working Makefile. The three steps:
setup, configuration and make, areillustrated by the
build processfor Tcl and Tk:

1. The developer of a source code package cre-
atesaconfigure. i n template that expresses
the system dependencies of the source code.
They use the aut oconf program to process
thistemplate into aconfi gur e script. The

Table 3 Standard confi gur e flags.

developer also creates aMakef il e. i n tem-
plate. Creating these templates is described
later. The Tcl and Tk source distributions
already contain the conf i gur e script, which
can be found in the uni x and wi n subdirecto-
ries. However, if you get the Tcl sourcesfrom
the network CV S repository, you must run
aut oconf yourself to generatetheconfi gure
script.

. A user of asource code package runs con-

fi gur e on the computer system they will use
to compile the sources. Theconf i gur e script
examines the current system and makes vari-
ous settings that are used during compilation.

--prefix=dir

--exec-prefix=dir

--enabl e-gcc

--di sabl e-shar ed

--enabl e- synbol s
--enabl e-t hreads
--with-tcl=dir
--with-tk=dir

--wi th-tclinclude=dir

--with-tcllib=dir

--wi th-x-includes=dir

--with-x-libraries=dir

This defines the root of the installation directory hierarchy. The
defaultis/ usr/ 1 ocal .

This defines the root of the installation areafor platform-spe-
cificfiles. Thisdefaultsto the- - prefi x value. An example set-
tingis/usr/local /sol ari s-sparc.

Use the gcc compiler instead of the default system compiler.

Disable generation of shared libraries and Tcl shells that
dynamically link against them. Statically linked shells and static
archives are built instead.

Compile with debugging symbols.

Compile with thread support turned on.

This specifies the location of the build directory for Tcl.
This specifies the location of the build directory for Tk.
This specificsthe directory that containst cl . h.

This specifies the directory that contains the Tcl binary library
(e.g.,libtcl stubs. a). (Note: thisoption is not yet supported.)

This specifics the directory that contains x11. h.

This specifies the directory that contains the X11 binary library
(e.g.,1ibX11.6.0. so).

3. When you run conf i gur e, you make some basic choices about how you will compile Tcl, such as
whether you will compile with debugging systems, or whether you will turn on threading support.
You also define the Tcl installation directory with conf i gur e. This step converts Makefile.intoa
Makef i | e suitable for the platform and configuration settings. .

4. Onceconfi gure iscomplete, you build your
program with make. This steps checks your
source files against the compiled files and
reruns the compiler on any files that have
changed since the last compilation. The
results are binary libraries for extensions and
executable programs for applications. Make is
used for testing and installation, too. Table 5
on page 8 shows the standard nake targets.

Standard conf i gur e Flags

Table 3 shows the standard optionsfor Tcl confi g-
ur e scripts. These areimplemented by aconfi gure
library file (t cI . m) that you can use in your own
configure scripts. The facilities provided by
t cl . m4 are described in more detail later. There are
also many other command line options that come
standard with conf i gur e. Some of these are meant
to give you control over where the different parts of
theinstallation go. However, because of theway Tcl
automatically searches for scripts and binary librar-
ies, you can mess up the Tcl installation by install-
ing the libraries and the binaries in wildly different
locations. Because of this, the Tcl installation pro-
cedures in the standard Makefile do not support the
--libdir and - -bi ndi r options. In general, if the
flagsarenot listed in Table 3, then they are not guar-
anteed to be supported by the standard Makefile
template.

Examples

If you only have one platform, simply run confi g-
ur e intheuni x (or wi n) directory:

% cd /usr/local/src/tcl 8.2/ unix

% ./ configure flags

Use. /confi gure to ensureyou runtheconfi gure
script from the current directory. If you build for
multiple platforms, create subdirectories of uni x
and run conf i gur e from there. You are free to cre-
ate the compilation directory anywhere (some pre-
fer to keep all the generated files away from the
sources.) Herewe just use asubdirectory of the unix
directory:

% cd /usr/local/src/tcl 8.2/ unix

% mkdir solaris

% cd solaris
% ../configure flags

Any flag with di sabl e or enabl e initsname can be
inverted. Table 3 lists the non-default setting, how-
ever, so you can just leave the flag out to turn it off.
For example, when building Tcl on Solaris with the
gcc compiler, shared libraries, debugging symbols,
and threading support turned on, use this command:
configure --prefix=/home/welch/install \
--€exec-pre-
fix=/hone/wel ch/install/solaris \
--enabl e-gcc --enabl e-threads --
enabl e-synbol s
Your builds will go the most smoothly if you orga-
nize all your sources under a common directory. In
this case, you should be able to specify the same
confi gur e flagsfor Tcl and all the other extensions
you will compile. In particular, you must use the
same - - prefix and - - exec- prefi x S0 everything
getsinstalled together.

If you use alternate build directories, like the
unix/solaris example above, you must specify --
wi th-tcl when building your extensions. This is
the directory where the Tcl build occurred. It con-
tainslibraries and a tclConfig.sh file that is used by
the extensions configure process.

If your source tree is not adjacent to the Tcl source
tree, then you must use - - wi t h-t cl i ncl ude or - -
wi th-tcllib sotheheader filesand runtimelibrary
can be found during compilation. Typically this can
happen if you build an extension under your home
directory, but you are using a copy of Tcl that has
been installed by your system administrator. The- -
wi th-x-includes and --wi th-x-1ibraries flags
are similar options necessary when building Tk if
your X11 installation is in a non-standard |ocation.

Finding a working compiler

Astheconfi gur e script executes, it prints out mes-
sages about the properties of the current platform.
You can tell if you are in trouble if the output con-
tains either of these messages:

checking for cross conpiler ... yes
or
checking if conmpiler works ... no

Either of these means confi gur e hasfailed to find
aworking compiler. Inthefirst case, it assumesyou
are configuring on the target system but will cross-
compile from a different system. Confi gure pro-
ceeds bravely ahead, but the resulting Makefile is

useless. While cross-compiling is common on
embedded processors, it is rarely necessary on
UNIX and Windows. The cross-compiling message
typically occurs when your UNIX environment
isn’t set up right to find the compiler.

On Windows there is a more explicit compiler
check, and configure exits if it cannot find the
compiler. Currently, the Windows configure macros
knows only about the Visual C++ compiler. VC++
ships with a batch file, vcvar s32. bat , that sets up
the environment so you can run the compiler, cl ,
from the command line. You must run
vcvar s32. bat beforerunning conf i gur e, or set up
your environment so you do not have to remember
to run the batch file all the time.

I nstallation Directories

The - - prefix flag specifies the main installation
directory (e.g., / horre/ wel ch/ i nstal |). The direc-
tories listed in Table 2 are created under this direc-
tory. If you do not specify - - exec- prefi x, then the
platform-specific binary files are mixed into the
main bin and |ib directories. For example, the
tclshg.2 program and libtcl8.2.so shared

library will beinstalled in:

/ home/ wel ch/install/bin/tclsh8.2

/ home/ wel ch/install/lib/libtclsh8.2. so
The script libraries and manual pages will be
installed in:

/ home/ wel ch/install/lib/tcl8.2/

/ home/ wel ch/install/ man/

If you want to have installations for several differ-
ent platforms, then specify an - - exec- prefi x that
is different for each platform. For example, if you
use --€exec-pre-
fix=/home/ wel ch/install/solaris, then the
tclshg.2 program and libtcl8.2.so shared
library will beinstalled in:

/ home/ wel ch/install/solaris/bin/tclsh8.2

/ home/ wel ch/install/solaris/lib/libtclsh8
.2.s0

The script libraries and manual pages will remain
where they are, so they are shared by all platforms.
Note that Windows has a dlightly different installa-
tion location for binary libraries (i.e., DLLS). They
go into the exec_prefi x/ bi n directory along with
the main executable programs.:

Table 4 Standard autoconf macros defined by t ¢l . m4.

SC_PATH_TCLCONFI G

Locatethet cl Confi g. sh file and sanity check the compiler

flags. Thisimplementsthe--wi t h-tcl option.

SC_PATH_TKCONFI G
SC_LOAD_TCLCONFI G
SC_LOAD_TKCONFI G
SC_ENABLE_GCC
SC_ENABLE_SHARED
SC_ENABLE_THREADS
SC_ENABLE_SYMBOLS
SC_MAKE_LI B

Locatethet kConfi g. sh file. Thisimplements- - wi t h- t k.
Load the tclConfig.sh file.

L oad the tkConfig.sh file.

Implements the --enable-gcc option.

Implements the --enable-shared option.

Implements the --enabl e-threads option.

I mplements the --enable-symbols option.

Generates definitions used to make shared or unshared libraries

on various platforms.

SC_LI B_SPEC

SC_PRI VATE_TCL_HEADERS
SC_PUBLI C_TCL_HEADERS

Generates the name of alibrary and appropriate linker flags
needed to link it.

Usethisif youneedtoincludetcl Int.h

Locate the standard Tcl include files.

Using aut oconf and thetcl . m File

Aut oconf USses the m4 macro processor to translate
the configure.in template into the configure
script. Creating the confi gure. i n templateis sim-
plified by a standard m4 macro library that is dis-
tributed with autoconf. In addition, a Tcl
distribution contains a tcl . mt file that has addi-
tional autoconf macros. Among other things,
these macros support the standard conf i gur e flags
described in Table 3.

The goal of tcl.m is to simply the configure.in
templates used for extensions and to replace the use
of the tcl Config.sh and tkConfi g. sh files. The
idea of t ¢l Confi g. sh was to capture some impor-
tant results of Tcl's configure so they could be
included in the conf i gur e scriptsused by an exten-
sion. However, it is better to recompute these set-
tings when configuring an extension because, for
example, different compilers could be used to build
Tcl and the extension. At present Tcl still generates

Table 5 TEA standard Makefile targets.

tcl Config. sh, and some of the tcl.m macros
depend on it. We plan to restructure the macros fur-
ther so tcl Confi g. sh (and t kConfi g. sh) will no
longer be needed. So, instead of using
SC LOAD TCLCONFI G, extensions will use a new
macro that computes compiler settings.

Table 4 lists the public macros defined in the
tcl. ms file. Thetcl . m4 file defines macros whose
names begin with sc_ (for Scriptics). The four
TCLCONFI Gand TK_CONFI Gmacroslisted in Table 4
will be eventually be replaced. There are other mac-
ros defined, but the following are the only ones
guaranteed to persistStandard Make Targets

The sample Makefile includes several standard tar-
gets. Even if you decide not to use the sample
Makefil e.in template, you should still define the
targets listed in Table 5 to ensure your extension is
TEA compliant. Plans for automatic build environ-
ments depend on every extension implementing the
standard make targets. The targets can be empty,
but you should define them so that nmake will not
complain if they are used.

al

Makes thesetargetsin order: bi nari es, | i brari es, doc.

Makes executable programs and binary libraries (e.g., DLLS).

bi naries

libraries Makes platform-independent libraries.
doc Generates documentation files.
install

install-binaries
install-libraries
install-doc

t est

depend

cl ean

di stcl ean

Makesthesetargetsin order: al | ,instal |l -binaries,install-
libraries,install-doc.

Makesbi nari es, and installs programs and binary libraries.
Makes! i brari es, and installs script libraries.

Makes doc, and installs documentation files.

Runs the test suite for the package.

Generates makefile dependency rules.

Removes files built during the make process.

Makes cl ean, and removes files built during the conf i gur e process.

Using Stub Libraries

One problem with extensions is that they get com-
piled for a particular version of Tcl. As new Tcl
releases occur, you find yourself having to recom-
pile extensions. This was necessary for two rea
sons. First, the Tcl C library tended to changes its
APIsfromreleaseto release. Changesin its symbol
table tie a compiled extension to a specific version
of the Tcl library. Another problem occurred if you
compiledt cl sh statically, and then tried to dynam-
icaly load a library. Some systems do not support
back linking in this situation, so tcl sh would
crash. Paul Duffin created a stub library mecha
nism for Tcl that helps solve these problems.

The main ideaisthat Tcl creates two binary librar-
ies. the main library (e.g., libtcl8.2.s0) and a
stub library (e.g., li bt cl st ub. a). All the codeisin
the main library. The stub library contains a big
jump table that has addresses of the functionsin the
main library. An extension calls Tcl through the
jump table. The level of indirection makes the
extension immune to changes in the Tcl library. It
also handles the back linking problem. If this
sounds expensive, it turns out to be equivalent to
what the operating system does when you use
shared libraries(i.e., dynamiclink libraries). Tcl has
just implemented dynamic linking in a portable,
robust way.

To make your extension use stubs, you have to com-
pile with the correct flags, and you have to add a
new call to your extensions I nit procedure (e.g.,
Exanpl ea_lnit). The TCL_USE_STUBS compile-
time flag turnsthe Tcl C API calls into macros that
use the stub table. The Tcl _I ni t St ubs call ensures
that the jump table is initialized, so you must call
Tcl _I ni t St ubs asthe very first thing in your I ni t
procedure. A typical call looks like this;

if (Tcl _InitStubs(interp, "8.1", 0) ==
NULL) {
return TCL_ERROR;
}
Tel _InitStubs is sSmilar in spirit to

Tcl _PkgRequi r e inthat you request aminimum Tcl
version number. Stubs have been supported since
Tcl 8.1, and the Tcl C API will evolve in a back-
ward-compatible way. Unless your extension uses
new C APIsintroduced in later versions, you should
specify the lowest version possible so that it iscom-
patible with more Tcl applications.

The Sample Extension

This section describes the sample extension that is
distributed as part of TEA. The sample extension
implements the Secure Hash Algorithm (SHA1).
Steve Reid wrote the origina SHA1 C code, and
Dave Dykstra wrote the original Tcl interface to it.
Michael Thomas created the standard confi gure
and Makef i | e templates.

The goa of the sample extension is to provide a
TEA-compliant example that is easy to read and
modify for your own extension. Instead of using the
origina name, shal, the example uses a more
generic name, exanpl eA, in its files, libraries, and
package names. When editing the sample templates
for your own extension, you can simply replace
occurrences of "exampleA" with the appropriate
name for your extension. The sample files are well
commented, so it is easy to see where you need to
make the changes.

configure.in

Theconfigure.in fileisthe template for the con-
figure script. This file is very well commented.
The places you need to change are marked with
__CHANGE__. Thefirst macro to changeis:

AC_|I NI T(exanpl eA. h)

TheAC_I NI Tmacro listsafilethat ispart of thedis-
tribution. Thenameisrelativetotheconfigure.in
file. Other possibilitiesinclude. . / generic/tcl . h
or src/ myl i b. h, depending on where the confi g-
ure.infileisrelativeto your sources. TheAC INI'T
macro is necessary to support building the package
in different directories (e.g., either t ¢l 8. 2/ uni x or
tcl 8. 2/ uni x/ sol ari s).

Thenext thinginconfigure.inisaset of variable
assignments that define the package’'s name and
version number:

PACKAGE = exanpl eA

MAJOR VERSION = 0

M NOR_VERSI ON = 2

PATCH LEVEL =

The package name determines the file names used
for the directory and the binary library file created
by the Makefile. This name is also used in several
configure and Makefi | e variables. You will need
to changeall referencesto "exampleA" to match the
name you choose for your package.

The version and patch level support a three-level
scheme, but you can |eave the patch level empty for
two-level versions like 0. 2. If you do specify a
patch-level, you need to include aleading "." or "p"
in it. These values are combined to create the ver-
sion number like this:

VERSI ON =

${ MAJOR_VERSI ON} . ${ M NOR_VERSI ON} ${ PATCH_

LEVEL}

Windows compilers create a special case for shared
libraries (i.e., DLLS). When you compilethelibrary
itself, you need to declare its functions one way.
When you compile code that uses the library, you
need to declareits functions another way. Thiscom-
plicates the exanpl eA. h header file. Happily, the
complexity is hidden inside some macros. The stan-
dard configure.in defines a bui | d_Package vari-
able with the following line, which you do not need
to change:

AC_DEFI NE_UNQUOTED(BUI LD_${ PACKAGE})

Thebui | d_packageA variableisonly set when you
are building the library itself, and it is only defined
when compiling on Windows. We will show later
how thisis used in exanpl eA. h to control the defi-
nition of the Exanpl ea_I ni t procedure.

The configure.in file has a bunch of magic to
determine the name of the shared library file (e.qg.,
packageA02.dl |, packageA. 0.2.s0, packa-
geA. 0. 2. shl i b, etc.). All you need to do is change
one macro to match your package name.
AC_SUBST(exanpl eA LI B_FI LE)

These should be the only places you need to edit
when adapting the sample configure.in to your
extension.

Makefile.in

The makefile.in template is converted by the
configure script into the makefil e. The sample
Makefil e. i niswell commented sothat it iseasy to
see where to make changes. There are a few vari-
ables with exanpl eA in their name. In particular,
exanpl eA LI B_FILE corresponds to a variable
name in the confi gur e script. You need to change
both files consistently. Some of the lines you need
to change are shown below:

exanpl eA LI B FILE = @xanpl eA_LI B_FI LE@
lib_BINARI ES = $(exanpl eA LI B _FI LE)

$(exanpl eA LI B_FI LE) _OBJECTS =
$(exanpl eA_OBJECTS)

You must define the set of source files and the cor-
responding object filesthat are part of thelibrary. In
the sample, exanpl eA. ¢ implements the core of the
Secure Hash Algorithm, and the t cl exanpl eA. ¢
file implements the Tcl command interface:

exanpl eA_SOURCES = exanpl eA.c tcl exam

pl eA c

SOURCES = $(exanpl eA SOURCES)

The object file definitions use the OBJEXT variable
that is. o for UNIX and . obj for Windows:

exanpl eA OBJECTS = exanpl eA. ${ OBJEXT}

t cl exanpl eA. ${ OBJEXT}

OBJECTS = $(exanpl eA OBJECTS)

The header files that you want to have installed are
assigned to the GENERI C_HDRS variable. Thesrcdi r
Make variable is defined during confi gure to be
the name of the directory containing the file named
inthe AC_I| NI T macro:

GENERI C_HDRS = $(srcdir)/exanpl eA h

Unfortunately, you must specify explicit rules for
each C source file. The VPATH mechanism is not
reliable enough to find the correct source files reli-
ably. The confi gure script uses AC_ | NI T to locate
sourcefiles, and you create rules that use the result-
ing $(srcdir) value Theruleslook likethis:
exanpl eA. $(OBJEXT) : $(srcdir)/exanpl eA c
$(COWPI LE) -c ' @YGPATH@
$(srcdir)/exanpleA.c* -0 $@
The cygpat h program convertsfile namesto differ-
ent formats required by different tools on Windows.
On UNIX, the cyaw N macro is simply defined to
echo.

Standard Header Files

This section explains a technique you should useto
get symbols defined properly inyour binary library.
The issue is raised by Windows compilers, which
have a notion of explicitly importing and exporting
symbols. When you build alibrary you export sym-
bols. When you link against a library, you import
symbols. The BUI LD_exanpl eA variable is defined
on Windowswhen you are building thelibrary. This
variable should be undefined on UNI X, which does
not have this issue. Your header file uses this vari-
ablelikethis:

#i f def BUI LD _exanpl eA

#undef TCL_STORAGE_CLASS

#defi ne TCL_STORAGE_CLASS DLLEXPORT
#endi f

The TCL_STORAGE_CLASS variable is used in the
definition of the EXTERN macro. You must use
EXTERN before the prototype for any function you
want to export from your library:

EXTERN i nt Exanpl ea_lnit
_ANSI _ARGS _((Tcl _Interp *Interp));

The _ANSI _ARGS_ macro is used to guard against
old C compilers that do not tolerate function proto-

types.

Using the Sample Extension

You should be able to configure, compile and
install the sample extension without modification.
On my Solaris machine it creates a binary library
named exanpl eA0. 2. so, while on my Windows
NT machinethelibrary is named exanpl eA02. dI | .
The package name is Tcl shal, and it implements
the shal Tcl command. Ordinarily these names
would be more consistent with the file names and
package names in the template files. However, the
names in the sample are designed to be easy to edit
in the template. Assuming you use make install to
copy thebinary library into the standard location for
your site, you can use the package from Tcl like
this:

package require Tcl shal

shal -string "sone string"

The shal command returns a 128 bit encoded hash
function of the input string. There are a number of
options to shal you can learn about by reading the
man page that is part of the sample.

Future Directions

The short term goal of TEA isto provide astandard
way to build Tcl extensions. We have created a
sample extension for others to learn from, and we
have been converting the widely used [incr Tcl],
Expect, and TclX extensions to adhere to the stan-
dard.

The long term goal of TEA isto make distributing
and installing Tcl extensions easy for the end user.
We envision a system where open source extensions
can be hosted in a common CV'S repository, built
automatically on avariety of platforms, and distrib-
uted to end users and installed automatically on
their system. For this goal to succeed, we need to

start with a standard framework for configuring and
building extensions.

Web Links

The TEA home pageis:
http://wwv scriptics.confteal

The sample extension can be found at the Scriptics
FTP site:

ftp://ftp.scriptics.com pub/tcl/exam

pl es/ teal

The on-line CVS repository for Tcl software is
explained here:

http://wwv scriptics.conf cvs/

Acknowledgments

We would like to thank the following people and
organizations: Paul Duffin, Jan Nijtmans, Jean-
Claude Wippler, and Scott Stanton designed and
implemented the stub library mechanism for Tcl.
Steve Reid and Dave Dykstra wrote the Secure
Hash Algorithm and the Tcl interface to it. Unified
building procedures on all flavors of UNIX would
not be possible without the autoconf tools from the
GNU project, and the Cygwin tools from Cygwin
extend this functionality to Windows.

A different version of this paper will appear as a
chapter in Brent Welch's book, Practical Program-
ming in Tcl and Tk, 3rd Edition, published by Pren-
tice Hall.

