
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

T H E T C L E X T E N S I O N A R C H I T E C T U R E

Brent Welch and Michael Thomas

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Abstract

This paper describes goals and current state of the
Tcl Extension Architecture (TEA). The goal of
TEA is to create a standard for Tcl extensions that
makes it easier to build, install, and share Tcl
extensions. In its current form, TEA specifies a
standard compilation environment for Tcl and its
extensions. The standard uses autoconf, config-
ure and make on UNIX and Windows. A longer
term goal is to create an infrastructure that supports
network distribution and installation of Tcl exten-
sions. A standard build environment is a necessary
first step to support automated compilation and dis-
tribution of extensions. This paper describes the
current state of TEA, but we expect to continue to
refine the standard and add to it as we gain experi-
ence with it.

Introduction

Compiling Tcl from the source distribution is easy.
One of the strengths of Tcl is that it is quite porta-
ble and so it has been built on all kinds of systems
including Unix, Windows, Macintosh, AS/400,
IBM mainframes, and embedded systems. How-
ever, it can be a challenge to create a Tcl extension
that has the same portability. The Tcl Extension
Architecture (TEA) provides guidelines and sam-
ples to help extension authors create portable Tcl
extensions. The TEA is a result of collaboration
within the Tcl user community, and it will continue
to evolve. TEA covers the following topics, which
are described in more detail in the paper:

• Recommended Source Directory Struc-
ture:

• Standard Installation Directory Structure.
• Stubs Libraries.
• Autoconf and Configure.
• Standard Make Targets.
• A Sample TEA-Compliant Extension.
• Future Plans.

Standard Directory Structure

One goal of TEA is to make the process of config-
uring and building a Tcl extension very similar to
building Tcl itself. In addition, building a Tcl
extension depends on having access to the Tcl
source distribution. You must configure and build
Tcl before you build your extensions. The best way
to organize your source code is to have Tcl and all
your extensions under a common directory (e.g.,
/usr/local/src or /home/welch/cvs). This way
the build process for an extension can automati-
cally find the Tcl sources. The dependency on the
Tcl source distribution is described later, and in the
long term we hope to support building TEA-com-
pliant extensions against a binary distribution of
Tcl.

The Source Distribution

Table 1 describes the directory structure of the Tcl
source distribution. The Tk distribution is similar.
The directory structure divides the sources into
generic and platform-specific directories.

The Tcl Extension Architecture

Brent Welch <welch@scriptics.com>
Michael Thomas <wart@scriptics.com>

Scriptics Corporation

The Installation Directory
Structure

When you install Tcl, the files end up in a different
arrangement than the one in the source distribution.
The standard installation directory is organized so it
can be shared by computers with different machine
types (e.g., Windows, Linux, and Solaris). The Tcl
scripts, include files, and documentation are all in
shared directories. The applications and program-

ming libraries (i.e., DLLs) are in platform-specific
directories. You can choose where these two groups
of files are installed with the --prefix and --exec-
prefix options to configure. The --prefix option
specifies the root of the installation directory (e.g.,
/usr/local). The --exec-prefix option specifies a
platform-specific directory (e.g., /usr/local/solaris-
sparc) for applications and programming libraries.
Table 2 shows the standard installation directory
structure:

Table 1 The Tcl source directory structure.

tcl8.2 The root of the Tcl sources. This contains a README and
license_terms file, and several subdirectories.

tcl8.2/compat This contains .c files that implement procedures that are other-
wise broken in the standard C library on some platforms. They
are only used if necessary.

tcl8.2/doc This contains the reference documentation. Currently this is in
nroff format suitable for use with the UNIX man program. The
goal is to convert this to XML.

tcl8.2/generic This contains the generic .c and .h source files that are shared
among Unix, Windows, and Macintosh.

tcl8.2/mac This contains the .c and .h source files that are specific to
Macintosh. It also contains Code Warrior project files.

tcl8.2/library This contains init.tcl and other Tcl files in the standard Tcl
script library.

tcl8.2/library/encoding This contains the Unicode conversion tables.

tcl8.2/library/package There are several subdirectories (e.g., http2.0) that contain Tcl
script packages.

tcl8.2/test This contains the Tcl test suite. These are Tcl scripts that exer-
cise the Tcl implementation.

tcl8.2/tools This is a collection of scripts used to help build the Tcl distribu-
tion.

tcl8.2/unix This contains the .c and .h source files that are specific to
UNIX. This also contains the configure script and the Make-
file.in template.

tcl8.2/unix/dltest This contains test files for dynamic loading.

tcl8.2/unix/platform These can be used to build Tcl for several different platforms.
You create the platform directories yourself.

tcl8.2/win This contains the .c and .h source files that are specific to Win-
dows. This also contains the configure script and the Make-
file.in template. This may contain a makefile.vc that is
compatible with nmake.

tcl8.2/win/Build Build is Release or Debug. This contains compiler output.

Table 2 The installation directory structure relative to the --prefix directory.

exec_prefix/bin This contains platform-specific applications. On Windows, this also con-
tains binary libraries (i.e., DLLs). Typical exec_prefix names end with
solaris-sparc, linux-ix86, and win-ix86.

exec_prefix/lib This contains platform-specific binary libraries on UNIX systems (e.g.,
libtcl8.2.so)

exec_prefix/lib/
package

Contains pkgIndex.tcl files corresponding to binary libraries from pack-
age that are found in exec_prefix/lib.

bin This contains platform-independent applications (e.g., Tcl script applica-
tions).

doc This contains documentation.

include This contains public .h files

lib This contains subdirectories for platform-independent script packages.
Packages stored here are found automatically by the Tcl auto loading
mechanism.

lib/tcl8.2 This contains the contents of the tcl8.2/library source directory,
including subdirectories.

lib/package This contains Tcl scripts for package and its pkgIndex.tcl file. Example
package directories include tk8.2 and itcl3.0.1.

man This contains reference documentation in UNIX man format.

The Package Mechanism

Extensions are installed and used as packages. A
package can be one Tcl script, a collection of Tcl
scripts, a binary library, or some combination of
scripts and libraries. When you install an extension
you need to update the package registry so that oth-
ers can find the extension with package require.
This section describes the default package manage-
ment system, which uses a collection of pkgIn-
dex.tcl files in directories along your auto_path.

The package registry is implemented by a collection
of pkgIndex.tcl files. Tcl searches the directories
listed in its auto_path variable for pkgIndex.tcl
files. It also searches down one directory, so you
can put your extensions and pkgIndex.tcl files into
subdirectories of the main directories listed on
auto_path. The default auto_path is

prefix/lib/tclversion prefix/lib exec_prefix/lib

Each pkgIndex.tcl file has one or more package
ifneeded commands in it. These register Tcl com-
mands that are called whenever a particular package
is requested with package require. This section

shows a few sample package ifneeded scripts to
handle different configurations of packages.

Binary Library

A binary library (i.e., DLL) goes into the platform-
specific lib directory. For example, you install your
DLL into exec_prefix/lib/libfoobar1.0.so and you
create a package index file in
exec_prefix/lib/foobar1.0/pkgIndex.tcl, which con-
tains this code:
package ifneeded foobar 1.0 [list load \

[file join $dir .. \
libfoobar1.0[info sharedlibextension]]\

Foobar]

Collecting all the binary libraries in one directory
makes it easy to resolve dependencies among them
and third-party libraries that support your Tcl exten-
sion. UNIX users may have to adjust their
LD_LIBRARY_PATH to include the exec_prefix/lib
directory. On Windows, these files are actually in
the exec_prefix/bin directory, which is automati-
cally searched. Keeping the pkgIndex.tcl files in
separate directories keeps them independent.

Tcl Scripts

If your extension is just Tcl scripts, then it can be
shared by users on different platforms. These librar-
ies are typically kept in a subdirectory of prefix/lib,
(e.g., /usr/local/lib/foobar1.0). You can use the
pkg_mkIndex Tcl command to generate a pkgIn-
dex.tcl file for your scripts:
pkg_mkIndex -verbose prefix/lib *.tcl

By default, pkg_mkIndex generates pkgIndex.tcl
files that contain tclPkgSetup commands that use
source or load indirectly. You might imagine that
package require actually loads code, but by
default is does not. Instead, the following tclPkg-
Setup command arranges for foobar.tcl to be
sourced whenever the unknown command tries to
find Foobar_Init, Foobar_DoSomething, or
Foobar_End.
package ifneeded foobar 1.0 \

[list tclPkgSetup $dir foobar 1.0 \
{{foobar.tcl source {Foobar_Init
Foobar_DoSomthing Foobar_End}}}]

The tclPkgSetup command is complex, so you
should use the pkg_mkIndex command to generate
these commands for you. If you use pkg_mkindex -
direct, you can create a simpler package that is
sourced immediately in response to the package
require command. This direct package index looks
like this:
package ifneeded foobar 1.0 \

[list source [file join $dir
foobar.tcl]]

Library and Script Combina-
tion

If you have both scripts and binary libraries, then
you can split your package into two parts: the
shared part as Tcl scripts, and a platform-specific
part as a binary library. The tricky part is building
your pkgIndex.tcl file correctly. There are two prob-
lems. First, you can only have one package

ifneeded command for a single package, so you
need to specify something about the scripts and the
library in one command. Next, you cannot predict
the location of both parts of the package, so you
have to assume they are installed in a standard loca-
tion relative to the auto_path. Our preferred solu-
tion is modeled after the one in the SNACK sound
extension by Kåre Sjölander.

Create a pkgIndex.tcl file in the
exec_prefix/lib/foobar1.0 subdirectory. You will
need to install a copy for each different platform
that you compile for (e.g., solaris-
sparc/lib/foobar1.0/pkgIndex.tcl and linux-
ix86/lib/foobar1.0/pkgIndex.tcl.). This file loads
the binary library and sources the Tcl script. We
assume that the scripts are installed relative to the
Tcl script library:
package ifneeded foobarArch 1.0 \

"[list load \
[file join $dir ../libfoobar1.0[info \
sharedlibextension] Foobar] \;

[list source [file join [file dirname \
$tcl_library] \
foobar1.0/foobar.tcl]]"

This example assumes the standard directory struc-
ture. It would be more general to search along the
auto_path for the foobar1.0 subdirectory and then
source its foobar.tcl file. If you have several script
files, you can introduce a short procedure to source
all of them. Or, you can have two pkgIndex.tcl files
and require that your users require both (e.g., foobar
and foobarArch). The packages can also require
each other. For example:
package ifneeded foobarArch 1.0 \

"[list load \
[file join $dir ../libfoobar1.0[info \
sharedlibextension] Foobar] \;

[list package require foobar 1.0]"

Finally, by using the package unknown hook, you
could define and use an alternate package manager.
Newsgroup discussions have pointed out that
searching for all the pkgIndex.tcl files can be slow
on some systems. An alternate package manager
could keep a more compact and efficient database,
and perhaps have smarts about downloading pack-
ages from standard TEA repositories.

Autoconf, Configure and Make

In the past, UNIX, Windows, and Macintosh have
different compilation environments. The advent of
the free Cygwin tools have made it possible to
standardize on autoconf, configure and make for
the UNIX and Windows compilation environ-
ments. The Macintosh still uses Code Warrior
project files, however. On Windows we use make,
sh, and autoconf from Cygwin, and the cl

(VC++) compiler from Microsoft.

The autoconf system is used to create Makefiles
that have settings appropriate for the current operat-
ing system. By using autoconf, a developer on
Windows or Linux can generate a configure script
that is usable by other developers on Solaris, HP-
UX, FreeBSD, AIX, or any system that is vaguely
UNIX-like. The configure script, in turn, is used to
generate the working Makefile. The three steps:
setup, configuration and make, are illustrated by the
build process for Tcl and Tk:

1. The developer of a source code package cre-
ates a configure.in template that expresses
the system dependencies of the source code.
They use the autoconf program to process
this template into a configure script. The

developer also creates a Makefile.in tem-
plate. Creating these templates is described
later. The Tcl and Tk source distributions
already contain the configure script, which
can be found in the unix and win subdirecto-
ries. However, if you get the Tcl sources from
the network CVS repository, you must run
autoconf yourself to generate the configure
script.

2. A user of a source code package runs con-
figure on the computer system they will use
to compile the sources. The configure script
examines the current system and makes vari-
ous settings that are used during compilation.

3. When you run configure, you make some basic choices about how you will compile Tcl, such as
whether you will compile with debugging systems, or whether you will turn on threading support.
You also define the Tcl installation directory with configure. This step converts Makefile.in to a
Makefile suitable for the platform and configuration settings. .

Table 3 Standard configure flags.

--prefix=dir This defines the root of the installation directory hierarchy. The
default is /usr/local.

--exec-prefix=dir This defines the root of the installation area for platform-spe-
cific files. This defaults to the --prefix value. An example set-
ting is /usr/local/solaris-sparc.

--enable-gcc Use the gcc compiler instead of the default system compiler.

--disable-shared Disable generation of shared libraries and Tcl shells that
dynamically link against them. Statically linked shells and static
archives are built instead.

--enable-symbols Compile with debugging symbols.

--enable-threads Compile with thread support turned on.

--with-tcl=dir This specifies the location of the build directory for Tcl.

--with-tk=dir This specifies the location of the build directory for Tk.

--with-tclinclude=dir This specifics the directory that contains tcl.h.

--with-tcllib=dir This specifies the directory that contains the Tcl binary library
(e.g., libtclstubs.a). (Note: this option is not yet supported.)

--with-x-includes=dir This specifics the directory that contains X11.h.

--with-x-libraries=dir This specifies the directory that contains the X11 binary library
(e.g., libX11.6.0.so).

4. Once configure is complete, you build your
program with make. This steps checks your
source files against the compiled files and
reruns the compiler on any files that have
changed since the last compilation. The
results are binary libraries for extensions and
executable programs for applications. Make is
used for testing and installation, too. Table 5
on page 8 shows the standard make targets.

Standard configure Flags

Table 3 shows the standard options for Tcl config-
ure scripts. These are implemented by a configure
library file (tcl.m4) that you can use in your own
configure scripts. The facilities provided by
tcl.m4 are described in more detail later. There are
also many other command line options that come
standard with configure. Some of these are meant
to give you control over where the different parts of
the installation go. However, because of the way Tcl
automatically searches for scripts and binary librar-
ies, you can mess up the Tcl installation by install-
ing the libraries and the binaries in wildly different
locations. Because of this, the Tcl installation pro-
cedures in the standard Makefile do not support the
--libdir and --bindir options. In general, if the
flags are not listed in Table 3, then they are not guar-
anteed to be supported by the standard Makefile
template.

Examples

If you only have one platform, simply run config-
ure in the unix (or win) directory:
% cd /usr/local/src/tcl8.2/unix
% ./configure flags

Use ./configure to ensure you run the configure
script from the current directory. If you build for
multiple platforms, create subdirectories of unix
and run configure from there. You are free to cre-
ate the compilation directory anywhere (some pre-
fer to keep all the generated files away from the
sources.) Here we just use a subdirectory of the unix
directory:
% cd /usr/local/src/tcl8.2/unix
% mkdir solaris
% cd solaris
% ../configure flags

Any flag with disable or enable in its name can be
inverted. Table 3 lists the non-default setting, how-
ever, so you can just leave the flag out to turn it off.
For example, when building Tcl on Solaris with the
gcc compiler, shared libraries, debugging symbols,
and threading support turned on, use this command:
configure --prefix=/home/welch/install \

--exec-pre-
fix=/home/welch/install/solaris \

--enable-gcc --enable-threads --
enable-symbols

Your builds will go the most smoothly if you orga-
nize all your sources under a common directory. In
this case, you should be able to specify the same
configure flags for Tcl and all the other extensions
you will compile. In particular, you must use the
same --prefix and --exec-prefix so everything
gets installed together.

If you use alternate build directories, like the
unix/solaris example above, you must specify --
with-tcl when building your extensions. This is
the directory where the Tcl build occurred. It con-
tains libraries and a tclConfig.sh file that is used by
the extensions configure process.

If your source tree is not adjacent to the Tcl source
tree, then you must use --with-tclinclude or --
with-tcllib so the header files and runtime library
can be found during compilation. Typically this can
happen if you build an extension under your home
directory, but you are using a copy of Tcl that has
been installed by your system administrator. The --
with-x-includes and --with-x-libraries flags
are similar options necessary when building Tk if
your X11 installation is in a non-standard location.

Finding a working compiler

As the configure script executes, it prints out mes-
sages about the properties of the current platform.
You can tell if you are in trouble if the output con-
tains either of these messages:
checking for cross compiler ... yes

or
checking if compiler works ... no

Either of these means configure has failed to find
a working compiler. In the first case, it assumes you
are configuring on the target system but will cross-
compile from a different system. Configure pro-
ceeds bravely ahead, but the resulting Makefile is

useless. While cross-compiling is common on
embedded processors, it is rarely necessary on
UNIX and Windows. The cross-compiling message
typically occurs when your UNIX environment
isn’t set up right to find the compiler.

On Windows there is a more explicit compiler
check, and configure exits if it cannot find the
compiler. Currently, the Windows configure macros
knows only about the Visual C++ compiler. VC++
ships with a batch file, vcvars32.bat, that sets up
the environment so you can run the compiler, cl,
from the command line. You must run
vcvars32.bat before running configure, or set up
your environment so you do not have to remember
to run the batch file all the time.

Installation Directories

The --prefix flag specifies the main installation
directory (e.g., /home/welch/install). The direc-
tories listed in Table 2 are created under this direc-
tory. If you do not specify --exec-prefix, then the
platform-specific binary files are mixed into the
main bin and lib directories. For example, the
tclsh8.2 program and libtcl8.2.so shared

library will be installed in:
/home/welch/install/bin/tclsh8.2
/home/welch/install/lib/libtclsh8.2.so

The script libraries and manual pages will be
installed in:
/home/welch/install/lib/tcl8.2/
/home/welch/install/man/

If you want to have installations for several differ-
ent platforms, then specify an --exec-prefix that
is different for each platform. For example, if you
use --exec-pre-

fix=/home/welch/install/solaris, then the
tclsh8.2 program and libtcl8.2.so shared
library will be installed in:
/home/welch/install/solaris/bin/tclsh8.2
/home/welch/install/solaris/lib/libtclsh8
.2.so

The script libraries and manual pages will remain
where they are, so they are shared by all platforms.
Note that Windows has a slightly different installa-
tion location for binary libraries (i.e., DLLs). They
go into the exec_prefix/bin directory along with
the main executable programs.:

Table 4 Standard autoconf macros defined by tcl.m4.

SC_PATH_TCLCONFIG Locate the tclConfig.sh file and sanity check the compiler
flags. This implements the --with-tcl option.

SC_PATH_TKCONFIG Locate the tkConfig.sh file. This implements --with-tk.

SC_LOAD_TCLCONFIG Load the tclConfig.sh file.

SC_LOAD_TKCONFIG Load the tkConfig.sh file.

SC_ENABLE_GCC Implements the --enable-gcc option.

SC_ENABLE_SHARED Implements the --enable-shared option.

SC_ENABLE_THREADS Implements the --enable-threads option.

SC_ENABLE_SYMBOLS Implements the --enable-symbols option.

SC_MAKE_LIB Generates definitions used to make shared or unshared libraries
on various platforms.

SC_LIB_SPEC Generates the name of a library and appropriate linker flags
needed to link it.

SC_PRIVATE_TCL_HEADERS Use this if you need to include tclInt.h

SC_PUBLIC_TCL_HEADERS Locate the standard Tcl include files.

Using autoconf and the tcl.m4 File

Autoconf uses the m4 macro processor to translate
the configure.in template into the configure
script. Creating the configure.in template is sim-
plified by a standard m4 macro library that is dis-
tributed with autoconf. In addition, a Tcl
distribution contains a tcl.m4 file that has addi-
tional autoconf macros. Among other things,
these macros support the standard configure flags
described in Table 3.

The goal of tcl.m4 is to simply the configure.in
templates used for extensions and to replace the use
of the tclConfig.sh and tkConfig.sh files. The
idea of tclConfig.sh was to capture some impor-
tant results of Tcl’s configure so they could be
included in the configure scripts used by an exten-
sion. However, it is better to recompute these set-
tings when configuring an extension because, for
example, different compilers could be used to build
Tcl and the extension. At present Tcl still generates

tclConfig.sh, and some of the tcl.m4 macros
depend on it. We plan to restructure the macros fur-
ther so tclConfig.sh (and tkConfig.sh) will no
longer be needed. So, instead of using
SC_LOAD_TCLCONFIG, extensions will use a new
macro that computes compiler settings.

Table 4 lists the public macros defined in the
tcl.m4 file. The tcl.m4 file defines macros whose
names begin with SC_ (for Scriptics). The four
TCLCONFIG and TK_CONFIG macros listed in Table 4
will be eventually be replaced. There are other mac-
ros defined, but the following are the only ones
guaranteed to persistStandard Make Targets
The sample Makefile includes several standard tar-
gets. Even if you decide not to use the sample
Makefile.in template, you should still define the
targets listed in Table 5 to ensure your extension is
TEA compliant. Plans for automatic build environ-
ments depend on every extension implementing the
standard make targets. The targets can be empty,
but you should define them so that make will not
complain if they are used.

Table 5 TEA standard Makefile targets.

all Makes these targets in order: binaries, libraries, doc.

binaries Makes executable programs and binary libraries (e.g., DLLs).

libraries Makes platform-independent libraries.

doc Generates documentation files.

install Makes these targets in order: all, install-binaries, install-
libraries, install-doc.

install-binaries Makes binaries, and installs programs and binary libraries.

install-libraries Makes libraries, and installs script libraries.

install-doc Makes doc, and installs documentation files.

test Runs the test suite for the package.

depend Generates makefile dependency rules.

clean Removes files built during the make process.

distclean Makes clean, and removes files built during the configure process.

Using Stub Libraries

One problem with extensions is that they get com-
piled for a particular version of Tcl. As new Tcl
releases occur, you find yourself having to recom-
pile extensions. This was necessary for two rea-
sons. First, the Tcl C library tended to changes its
APIs from release to release. Changes in its symbol
table tie a compiled extension to a specific version
of the Tcl library. Another problem occurred if you
compiled tclsh statically, and then tried to dynam-
ically load a library. Some systems do not support
back linking in this situation, so tclsh would
crash. Paul Duffin created a stub library mecha-
nism for Tcl that helps solve these problems.

The main idea is that Tcl creates two binary librar-
ies: the main library (e.g., libtcl8.2.so) and a
stub library (e.g., libtclstub.a). All the code is in
the main library. The stub library contains a big
jump table that has addresses of the functions in the
main library. An extension calls Tcl through the
jump table. The level of indirection makes the
extension immune to changes in the Tcl library. It
also handles the back linking problem. If this
sounds expensive, it turns out to be equivalent to
what the operating system does when you use
shared libraries (i.e., dynamic link libraries). Tcl has
just implemented dynamic linking in a portable,
robust way.

To make your extension use stubs, you have to com-
pile with the correct flags, and you have to add a
new call to your extensions Init procedure (e.g.,
Examplea_Init). The TCL_USE_STUBS compile-
time flag turns the Tcl C API calls into macros that
use the stub table. The Tcl_InitStubs call ensures
that the jump table is initialized, so you must call
Tcl_InitStubs as the very first thing in your Init
procedure. A typical call looks like this:
if (Tcl_InitStubs(interp, "8.1", 0) ==
NULL) {

return TCL_ERROR;
}

Tcl_InitStubs is similar in spirit to
Tcl_PkgRequire in that you request a minimum Tcl
version number. Stubs have been supported since
Tcl 8.1, and the Tcl C API will evolve in a back-
ward-compatible way. Unless your extension uses
new C APIs introduced in later versions, you should
specify the lowest version possible so that it is com-
patible with more Tcl applications.

The Sample Extension

This section describes the sample extension that is
distributed as part of TEA. The sample extension
implements the Secure Hash Algorithm (SHA1).
Steve Reid wrote the original SHA1 C code, and
Dave Dykstra wrote the original Tcl interface to it.
Michael Thomas created the standard configure
and Makefile templates.

The goal of the sample extension is to provide a
TEA-compliant example that is easy to read and
modify for your own extension. Instead of using the
original name, sha1, the example uses a more
generic name, exampleA, in its files, libraries, and
package names. When editing the sample templates
for your own extension, you can simply replace
occurrences of "exampleA" with the appropriate
name for your extension. The sample files are well
commented, so it is easy to see where you need to
make the changes.

configure.in

The configure.in file is the template for the con-
figure script. This file is very well commented.
The places you need to change are marked with
__CHANGE__. The first macro to change is:
AC_INIT(exampleA.h)

The AC_INIT macro lists a file that is part of the dis-
tribution. The name is relative to the configure.in
file. Other possibilities include ../generic/tcl.h
or src/mylib.h, depending on where the config-
ure.in file is relative to your sources. The AC_INIT
macro is necessary to support building the package
in different directories (e.g., either tcl8.2/unix or
tcl8.2/unix/solaris).

The next thing in configure.in is a set of variable
assignments that define the package’s name and
version number:
PACKAGE = exampleA
MAJOR_VERSION = 0
MINOR_VERSION = 2
PATCH_LEVEL =

The package name determines the file names used
for the directory and the binary library file created
by the Makefile. This name is also used in several
configure and Makefile variables. You will need
to change all references to "exampleA" to match the
name you choose for your package.

The version and patch level support a three-level
scheme, but you can leave the patch level empty for
two-level versions like 0.2. If you do specify a
patch-level, you need to include a leading "." or "p"
in it. These values are combined to create the ver-
sion number like this:
VERSION =
${MAJOR_VERSION}.${MINOR_VERSION}${PATCH_
LEVEL}

Windows compilers create a special case for shared
libraries (i.e., DLLs). When you compile the library
itself, you need to declare its functions one way.
When you compile code that uses the library, you
need to declare its functions another way. This com-
plicates the exampleA.h header file. Happily, the
complexity is hidden inside some macros. The stan-
dard configure.in defines a build_Package vari-
able with the following line, which you do not need
to change:
AC_DEFINE_UNQUOTED(BUILD_${PACKAGE})

The build_packageA variable is only set when you
are building the library itself, and it is only defined
when compiling on Windows. We will show later
how this is used in exampleA.h to control the defi-
nition of the Examplea_Init procedure.

The configure.in file has a bunch of magic to
determine the name of the shared library file (e.g.,
packageA02.dll, packageA.0.2.so, packa-

geA.0.2.shlib, etc.). All you need to do is change
one macro to match your package name.
AC_SUBST(exampleA_LIB_FILE)

These should be the only places you need to edit
when adapting the sample configure.in to your
extension.

Makefile.in

The Makefile.in template is converted by the
configure script into the Makefile. The sample
Makefile.in is well commented so that it is easy to
see where to make changes. There are a few vari-
ables with exampleA in their name. In particular,
exampleA_LIB_FILE corresponds to a variable
name in the configure script. You need to change
both files consistently. Some of the lines you need
to change are shown below:
exampleA_LIB_FILE = @exampleA_LIB_FILE@
lib_BINARIES = $(exampleA_LIB_FILE)
$(exampleA_LIB_FILE)_OBJECTS =
$(exampleA_OBJECTS)

You must define the set of source files and the cor-
responding object files that are part of the library. In
the sample, exampleA.c implements the core of the
Secure Hash Algorithm, and the tclexampleA.c
file implements the Tcl command interface:
exampleA_SOURCES = exampleA.c tclexam-
pleA.c
SOURCES = $(exampleA_SOURCES)

The object file definitions use the OBJEXT variable
that is .o for UNIX and .obj for Windows:
exampleA_OBJECTS = exampleA.${OBJEXT}
tclexampleA.${OBJEXT}
OBJECTS = $(exampleA_OBJECTS)

The header files that you want to have installed are
assigned to the GENERIC_HDRS variable. The srcdir
Make variable is defined during configure to be
the name of the directory containing the file named
in the AC_INIT macro:
GENERIC_HDRS = $(srcdir)/exampleA.h

Unfortunately, you must specify explicit rules for
each C source file. The VPATH mechanism is not
reliable enough to find the correct source files reli-
ably. The configure script uses AC_INIT to locate
source files, and you create rules that use the result-
ing $(srcdir) value. The rules look like this:
exampleA.$(OBJEXT) : $(srcdir)/exampleA.c

$(COMPILE) -c ‘@CYGPATH@
$(srcdir)/exampleA.c‘ -o $@

The cygpath program converts file names to differ-
ent formats required by different tools on Windows.
On UNIX, the CYGWIN macro is simply defined to
echo.

Standard Header Files

This section explains a technique you should use to
get symbols defined properly in your binary library.
The issue is raised by Windows compilers, which
have a notion of explicitly importing and exporting
symbols. When you build a library you export sym-
bols. When you link against a library, you import
symbols. The BUILD_exampleA variable is defined
on Windows when you are building the library. This
variable should be undefined on UNIX, which does
not have this issue. Your header file uses this vari-
able like this:
#ifdef BUILD_exampleA
#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLEXPORT
#endif

The TCL_STORAGE_CLASS variable is used in the
definition of the EXTERN macro. You must use
EXTERN before the prototype for any function you
want to export from your library:
EXTERN int Examplea_Init
_ANSI_ARGS_((Tcl_Interp *Interp));

The _ANSI_ARGS_ macro is used to guard against
old C compilers that do not tolerate function proto-
types.

Using the Sample Extension

You should be able to configure, compile and
install the sample extension without modification.
On my Solaris machine it creates a binary library
named exampleA0.2.so, while on my Windows
NT machine the library is named exampleA02.dll.
The package name is Tclsha1, and it implements
the sha1 Tcl command. Ordinarily these names
would be more consistent with the file names and
package names in the template files. However, the
names in the sample are designed to be easy to edit
in the template. Assuming you use make install to
copy the binary library into the standard location for
your site, you can use the package from Tcl like
this:
package require Tclsha1
sha1 -string "some string"

The sha1 command returns a 128 bit encoded hash
function of the input string. There are a number of
options to sha1 you can learn about by reading the
man page that is part of the sample.

Future Directions

The short term goal of TEA is to provide a standard
way to build Tcl extensions. We have created a
sample extension for others to learn from, and we
have been converting the widely used [incr Tcl],
Expect, and TclX extensions to adhere to the stan-
dard.

The long term goal of TEA is to make distributing
and installing Tcl extensions easy for the end user.
We envision a system where open source extensions
can be hosted in a common CVS repository, built
automatically on a variety of platforms, and distrib-
uted to end users and installed automatically on
their system. For this goal to succeed, we need to

start with a standard framework for configuring and
building extensions.

Web Links

The TEA home page is:
http://www.scriptics.com/tea/

The sample extension can be found at the Scriptics
FTP site:
ftp://ftp.scriptics.com/pub/tcl/exam-
ples/tea/

The on-line CVS repository for Tcl software is
explained here:
http://www.scriptics.com/cvs/

Acknowledgments

We would like to thank the following people and
organizations: Paul Duffin, Jan Nijtmans, Jean-
Claude Wippler, and Scott Stanton designed and
implemented the stub library mechanism for Tcl.
Steve Reid and Dave Dykstra wrote the Secure
Hash Algorithm and the Tcl interface to it. Unified
building procedures on all flavors of UNIX would
not be possible without the autoconf tools from the
GNU project, and the Cygwin tools from Cygwin
extend this functionality to Windows.

A different version of this paper will appear as a
chapter in Brent Welch’s book, Practical Program-
ming in Tcl and Tk, 3rd Edition, published by Pren-
tice Hall.

