Combining Dependent Annotations for Relational Algebra

Egor V. Kostylev, Peter Buneman

University of Edinburgh

Theory and Practice of Provenance, 2011

Semiring Model

- Domain of annotations for positive relational algebra (SPJU) is expected to be a semiring [Green, et al.]
- What to do if we need to annotate a database with 2 domains R_{1} and R_{2} ?
- Simple answer: the set of pairs $R_{1} \times R_{2}$.

Semiring Model

- Domain of annotations for positive relational algebra (SPJU) is expected to be a semiring [Green, et al.]
- What to do if we need to annotate a database with 2 domains R_{1} and R_{2} ?
- Simple answer: the set of pairs $R_{1} \times R_{2}$.

Semiring Model

- Domain of annotations for positive relational algebra (SPJU) is expected to be a semiring [Green, et al.]
- What to do if we need to annotate a database with 2 domains R_{1} and R_{2} ?
- Simple answer: the set of pairs $R_{1} \times R_{2}$.
- Does it always work?

Example

Exports:

CName	Goods	Time	Customers
Greece	Food	$2004-2008$	UK, Germany
Greece	Textile	$2007-2010$	Germany, Italy, Cyprus

Time - sets of years with \cup and \cap as operations
Customers - sets of countries with \cup and \cap as operations
$\mathbf{Q}=\pi_{\mathrm{CName}}$ (Exports) :

CName	Time	Customers
Greece	$2004-2010$	UK, Germany, Italy, Cyprus

Example

Exports:

CName	Goods	Time	Customers
Greece	Food	$2004-2008$	UK, Germany
Greece	Textile	$2007-2010$	Germany, Italy, Cyprus

Time - sets of years with \cup and \cap as operations
Customers - sets of countries with \cup and \cap as operations
$\mathbf{Q}=\pi_{\mathrm{CName}}$ (Exports) :

CName	Time	Customers
Greece	$2004-2010$	UK, Germany, Italy, Cyprus

Is it the answer we expect?

Graphical representation

([2004-2008], \{UK, Germany\})
([2007-2010], \{Germany, Italy, Cyprus\}):

Graphical representation

([2004-2010], \{UK, Germany, Italy, Cyprus\})

Combined domain of dependent annotations

It is impossible to represent the desired set of dots by a single pair of elements from the combining domains.

Combined annotation - a set of pairs from $R_{1} \times R_{2}$.

Combined domain of dependent annotations

It is impossible to represent the desired set of dots by a single pair of elements from the combining domains.

Combined annotation - a set of pairs from $R_{1} \times R_{2}$.

Example: Combined annotation

$$
\lambda_{1}=\left\{\begin{aligned}
& \{([2004-2008],\{\text { SUK, Germany }\}) \\
& ([2007-2010],\{\text { Germany, Italy, Cyprus }\})\}:
\end{aligned}\right.
$$

Example: Combined annotation

$$
\begin{aligned}
\lambda_{2}= & \{([2004-2006], \text {, \{UK, Germany\}) } \\
& ([2007-2008],\{\text { UK, Ger, Italy, Cyprus)\})\}: } \\
& ([2009-2010],\{\text { Germany, Italy, Cyprus\})\}: }
\end{aligned}
$$

Semiring of Combined Annotations

- define an equivalence in combined annotations
- define a semiring of equivalence classes of combined annotations
- define a normal form for equivalence classes
- design an algorithm to compute normal forms

Do it carefully to make it work for (almost) all semirings (no difference, idempotence, etc.)

