On the Limitations of Provenance for Queries With Difference

Yael Amsterdamer Tel Aviv University and INRIA

Daniel Deutch Ben Gurion University and INRIA

Val Tannen University of Pennsylvania

TaPP 2011

Starting Point: Provenance Semirings

- Provenance semirings [(K,+,·,0,1)] were originally defined for the positive relational algebra
- Two important features of semirings
 - Algebraic uniformity
 - A correspondence between the semiring axioms and query (bag) equivalence identities: the semiring axioms are dictated by the identities!

Correspondence of identities

	Query Identities	Algebraic Identities
1	$R \cup (S \cup T) = (R \cup S) \cup T$	a+(b+c) = (a+b)+c
2	$R \cup \phi = R$	a+0 = a
3	$R \cup S = S \cup R$	a+b=b+a
4	$R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$	$ \begin{array}{l} \mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c}) = \\ \mathbf{(a} \cdot \mathbf{b}) \cdot \mathbf{c} \end{array} $
5	$R \bowtie 1 = R$	$a \cdot 1 = a$
6	$R \bowtie S = S \bowtie R$	$a \cdot b = b \cdot a$
7	$R \bowtie (S \cup T) =$ $(R \bowtie S) \cup (R \bowtie T)$	$ a \cdot (b+c) = a \cdot b+a \cdot c $
8	$R \rightarrow \phi = \phi$	$a \cdot 0 = 0$
		Semiring axioms!

Security = (S, MIN, MAX, 0, 1)

S ={1,C,S,T,0}

Emp C < S < T < 0

GoodEmps

Sales

 $S \cdot T = T$

Suggested semantics for difference

- m-semirings [Geerts Poggi '10]
 a-b is the smallest c such that a ≤ b+c (works for naturally ordered cases:
 a ≤ b ⇔ ∃c a + c = b is an order relation)
- By encoding as a nested aggregate query [Amsterdamer D. Tannen PODS '11]
 a-b=a if b=0, otherwise 0 (for positive semirings)
 - Also suggested for SPARQL
 [Theoharis, Fundulaki, Karvounarakis, Christophides '10]
- Z-semantics [Green Ives Tannen '09]

Abstracting away

- Can we extend the framework to support difference?
- Work with a structure (K,+,·,0,1,-)
- We still want $(K,+,\cdot,0,1)$ to be a semiring
- How do we define the additional operator?
- Let us try to throw in more axioms
 - A subset of those that hold for bag and set semantics

Additional Identities

Query Identities		Algebraic Identities
9	$R - R = \phi$	a - a = 0
10	$\phi - R = \phi$	0 - a = 0
11	$R \cup (S - R) = S \cup (R - S)$	a+(b-a) = b+(a-b)
12	$R - (S \cup T) = (R - S) - T$	a - (b+c) = (a-b) - c
13	$R \bowtie (S - T) =$ $(R \bowtie S) - (R \bowtie T)$	$a \cdot (b - c) =$ $(a \cdot b) - (a \cdot c)$

Impossibility of satisfying the axioms

- Distributive lattices are particular semirings with an order relation such that
 - a+b is the least upper bound of a and b
 - $-a \cdot b$ is the greatest lower bound of a and b
 - The security semiring, Three Value Logic are concrete examples
- Theorem If (K,+, ⋅, 0, 1,-) is an (extension of a) distributive lattice such that axioms 1-12 hold, and there exists in K two distinct elements a, b s.t. a > b and (a b) ⋅ b = 0 then axiom 13 fails in K.

Key observation

- Let (K,+,0) be a naturally ordered commutative monoid
 - Commutative monoid means axioms 1-3 hold
 - Naturally ordered means

 $a \le b \Leftrightarrow \exists c \ a + c = b$ is an order relation

Theorem [Bosbach '65]: Axioms 9-12 hold if and only if

a–b is the smallest c such that $a \le b+c$

Key Observation (cont.)

For the security semiring, with
a = S, b = T we get
a - b = S and (a - b) · b = T = 0

And indeed: $(S - T) \cdot T = S \cdot T = T$ but $S \cdot T - T \cdot T = T - T = 0$

(**S**, MIN, MAX, 0,1)

S ={1,C,S,T,0}

1 < C < S < T < 0

(Emps–FiredEmps) 🖂 GoodEmps

Emp	Prov.
Carol	Т

Emps → GoodEmps – FiredEmps → GoodEmps

Emp	Prov.
Carol	0

Where do solutions fail?

Query Identities	Algebraic Identities
$R - R = \phi$	Fail for: $a - a = 0$
$\phi - R = \phi$	⁰ Zª Semantics
$R \cup (S - R) = \\S \cup (R - S)$	$a+(\underline{kgg})$ SPARQL b+(a-b)
$R - (S \cup T) = (R - S) - T$	a - (b+c) = $(a - b) - c$
$R \bowtie (S - T) =$ $(R \bowtie S) - (R \bowtie T)$	$\begin{array}{c} a \cdot (b - c) = \\ (a \cdot b) - (a \cdot c) \end{array}$

So what can we do?

- Work with a restricted class of semirings
 - We show in the paper another security semiring that is not a lattice; we use sets of security levels
 - Can we characterize the class for which bag equivalences hold?
- Give up on some of the equivalence axioms
- Give up on a uniform definition of difference