
Reexamining Some Holy Grails of Data Provenance

Boris Glavic

University of Toronto

Renée J. Miller

University of Toronto

Abstract

We reconsider some of the explicit and implicit prop-

erties that underlie well-established definitions of data

provenance semantics. Previous work on comparing

provenance semantics has mostly focused on expressive

power (does the provenance generated by a certain se-

mantics subsume the provenance generated by other se-

mantics) and on understanding whether a semantics is

insensitive to query rewrite (i.e., do equivalent queries

have the same provenance). In contrast, we try to inves-

tigate why certain semantics possess specific properties

(like insensitivity) and whether these properties are al-

ways desirable. We present a new property stability with

respect to query language extension that, to the best of

our knowledge, has not been isolated and studied on its

own.

1 Introduction

Database Provenance is an area that has been studied

intensively in the recent years leading to several well-

understood provenance semantics. Previous work [4, 14,

10, 23] has compared the expressive power and estab-

lished some properties of these semantics. In this work,

we take a second look at these results from a different

angle and study an additional property. This allows us to

gain interesting insights about provenance semantics and

to highlight what we believe are the causes of some of

their weaknesses. We limit the discussion to the follow-

ing (naturally incomplete) set of provenance semantics:

Where-, Why-, and How-provenance [4], semantics re-

lated to Lineage [9] including the semantics used by the

Perm system [11] (PI-CS and C-CS), and Causality [21].

An overview of these semantics is presented after the dis-

cussion of the properties we investigate in this work. To

have a uniform representation of provenance we follow

the approach from [4] and use the notation X(Q, I,t) to

denote the provenance of tuple t from the result of eval-

uating query Q over instance I according to the prove-

nance semantics X (omitting the instance if it is clear

from the context). For a database instance I let Tuple(I)
denote the set of all (R,t) relation-tuple pairs from I and

Attr(I) all (R,t,A) relation-tuple-attribute pairs from I

(leaving out R if it is clear from the context). Let P(X)
denote the power set of set X .

2 What are Desirable Properties For

Provenance Semantics?

The properties of provenance semantics that have most

dominantly been addressed in the literature are expres-

sive power and insensitivity to query rewrite. We now

review insensitivity, and introduce an additional relevant

and natural property of provenance semantics, called sta-

bility, that has not been studied in depth.

Insensitivity to Query Rewrite A provenance seman-

tics is insensitive to query rewrite (or short insensitive)

if under this semantics equivalent queries have the same

provenance. This property has been studied extensively

in the past and for most of the semantics considered in

this paper it is known whether they are insensitive or not.

Aside from restating these results, we will try to inves-

tigate why semantics possess this property, discuss the

different approaches to achieve insensitivity, and argue

whether this property is desirable or not. Note that some

semantics are only insensitive under set or under bag se-

mantics, because the classes of equivalent queries for set

and bag semantics are different.

Stability with Respect to Query Language Extension

A provenance semantics is “stable with respect to query

language extension” (or short stable) if extending the

query language it is defined for with new operators does

not affect the provenance of queries that do not use the

new operators.

Table 1 shows a summary of the properties for each

provenance semantics considered in this paper (note that



Semantics Insensitive Stable

(set semantics)

Why

Wit X X

Why - X

IWhy X X

Where
Where - X

IWhere X -

How - X

Lineage-based

Lineage - X

PI-CS - X

Copy-CS - X

Causality X X

Table 1: Properties of Provenance Semantics

for insensitivity we consider set semantics). In the fol-

lowing, we first give an overview of these semantics, and

afterwards discuss the properties in more depth and in-

vestigate why certain semantics do or do not possess a

property.

3 Provenance Semantics

In this section we introduce the provenance semantics

discussed in this work. Table 2 shows how these se-

mantics represent provenance information. Examples for

these semantics are given in Figure 1.

Why-provenance (Wit, Why, IWhy) [4, 3] Why-

provenance models provenance as a set of so-called wit-

nesses. A witness w for a tuple t from the result of Q(I) is

a subset of the instance I where t ∈ Q(w), i.e., each wit-

ness is a set of tuples that is sufficient to derive t through

Q. Using the Tuple(I) notation, Why-provenance is an

element from P(P(Tuple(I))). We are considering

three variants of this semantics. The Set of Witnesses

(Wit) contains all witnesses of tuple t. This semantics

usually includes a large number of irrelevant tuples in the

provenance. E.g., I is a trivial witness for every mono-

tone query Q and each super set of a witness is also a

witness (as long as it is a subset of I). The Witness Basis

(Why) is a restriction of Wit to so-called proof-witnesses.

A proof-witnesses contains one tuple from each leaf of

the algebra tree for query Q. This means that the witness

basis is defined over the syntactic structure of a query.

For instance, for a query R><S each proof-witness con-

tains a tuple from relation R and one from relation S. The

third variant of Why provenance, the minimal witness ba-

sis (IWhy), is the set of minimal witnesses for a tuple t. A

witness w is minimal, if no subset of w is also a witness.

As has been pointed out before [4], IWhy can be derived

from both Wit and Why.

Example 1 For example, Wit(Qa,a1) as shown in Fig-

ure 1 is the set of all subsets of I that contain tuple r1.

Representation Used by

P(Attr(I)) Where,

IWhere

P(P(Tuple(I))) Wit,

Why,

IWhy

N[Tuple(I)] How

{< R∗
1, . . . ,R

∗
n >| R∗

i ⊆ Ri(Q)} Lineage

P({< t1, . . . ,tn >| ti ∈ Ri(Q)∨ ti =⊥}) PI-CS,

C-CS

P(Tuple(I)) Causality

Table 2: ProvenanceRepresentations

Why(Qa,a1) and IWhy(Qa,a1) both contain only a sin-

gle witness: {r1}.

How-provenance [17, 15, 1, 10, 18, 16, 19] Green et

al. [17] introduced a provenance semantics that mod-

els provenance by annotating tuples with elements from

a semi-ring. We only consider the most general form

of annotations - polynomials over variables representing

tuples from the instance I. Following common termi-

nology we refer to this model as How provenance. Let

N[Tuple(I)] denote the set of these polynomials over

variables from Tuple(I). Green et al. [17] presented how

annotations are propagated for operators of the positive

relational algebra. If every tuple in the database instance

carries its variable as an annotation, then the result tu-

ples of a query will be annotated with a polynomial that

describes how tuples from the instance were combined

by the query to derive the output tuples. In a polynomial,

addition (+) represents disjunctive use of tuples and mul-

tiplication (×) indicates conjunctive use.

Example 2 For instance, consider How(Qb,a1) shown

in Figure 1. Tuple a1 is generated by joining tuple r1

with itself (r2
1) and by joining r1 with r2 (r1 × r2).

Using different semirings, the annotation propagation for

semiring annotated relations (called K-relations) defined

by Green et al. [17] correctly models several extensions

of the relational model such as bag semantics or uncer-

tainty.

Where-provenance [4, 3, 2, 5, 23] The semantics pre-

sented above explain which tuples are responsible for the

existence of a tuple in a query result. In contrast, Where-

provenance (Where) explains from which attribute val-

ues in the instance the attribute values of a query result

tuple have been copied. The provenance of a result at-

tribute value is modeled as a set of instance attribute val-

ues (an element of P(Attr(I))). The sensitivity to query

2



Queries
Qa = R

Qb = ΠA,B(R><A=C ΠA→C,B→D(R))

Qc = ΠA(R)∪ΠB(R)

Qd = ΠA(R><B=C S)

Qe = ΠA(S ><B=C R)

Database Instance And Query Results

R

A B

r1 1 2

r2 1 3

r3 2 3

r4 2 5

S

C

s1 2

s2 3

Qa & Qb

A B

a1 1 2

a2 1 3

a3 2 3

a4 2 5

Qc

A

c1 1

c2 2

c3 3

c4 5

Qd & Qe

A

d1 1

d2 2

Provenance

Wit(Qa,a1) = Wit(Qb,a1) = {J | J ⊂ R∧ r1 ∈ J}

W hy(Qa,a1) = {{r1}}

W hy(Qb,a1) = {{r1},{r1,r2}}

IW hy(Qa,a1) = IWhy(Qb,a1) = {{r1}}

PI-CS(Qc,c2) = {<⊥,r1 >,< r3,⊥>,< r4,⊥>}

PI-CS(Qd ,d1) = {< r1,s1 >,< r2,s2 >}

PI-CS(Qe,d1) = {< s1,r1 >,< s2,r2 >}

C-CS(Qd ,d1) = {< r1,⊥>,< r2,⊥>}

Causality(Qa,a1) = Causality(Qb,a1) = {r1}

Where(Qa,a1,A) = {(r1,A)}

Where(Qb,a1,A) = {(r1,A),(r2,A)}

IWhere(Qa,a1,A) = IWhere(Qb,a1,A) = {(r1,A),(r2,A)}

IWhere(Qa,a3,A) = {(r3,A),(r4,A)}

UWhere(Qa,a3,A) = {(r3,A),(r4,A),(r1,B),(s1,C)}

How(Qa,a1) = r1

How(Qb,a1) = r2
1 + r1 × r2

Lineage(Qd ,d1) =< {r1,r2},{s1,s2} >

Lineage(Qe,d1) =< {s1,s2},{r1,r2} >

Figure 1: Provenance Semantics Examples

rewrite of Where lead to the development an insensitive

version of this semantics (which we refer to as IWhere).

IWhere(Q,t,A) is the union over Where(Q′,t,A) for all

queries Q′ that are equivalent to query Q.

Example 3 For example, Where(Qa,a1,A) (shown in

Figure 1) is the singleton set {(r1,A)}, because attribute

value a1.A has been copied from this location. For query

Qb that is equivalent to query Qa, Where(Qb,a1,A) con-

tains the additional attribute value (r2,A), because of the

join on attribute A.

Lineage-based (Lineage, PI-CS, C-CS) [9, 7, 8, 6, 11,

12, 13] Cui et al. [9] introduced one of the first prove-

nance semantics (which we refer to as Lineage). This se-

mantics represents provenance as a list of subsets of the

relations accessed by a query (appearing in the same or-

der as they are accessed by the algebra tree of the query).

Lineage considers tuples to belong to the provenance if

they “contributed” to an output tuple (similar to How and

Why).

Example 4 For example, consider Lineage(Qd,d1)
(Figure 1). The result tuple d1 is derived by joining tuple

r1 with s1 and r2 with s2. Thus, Lineage(Qd,d1) contains

the two sets {r1,r2} and {s1,s2}.

Glavic et al. [11] presented provenance semantics that

are based on Lineage, but use a different provenance rep-

resentation and are defined for a larger class of queries.

This line of work represents provenance as sets of so-

called witness lists. As shown in Table 2, a witness-list

is a list of instance tuples that were used together to de-

rive an output tuple. A witness list for a query Q con-

tains one tuple per relation accessed by Q (Ri(q) denotes

the relation accessed by the ith leaf of the algebra tree

for Q). A special value ⊥ is used to indicate that no

tuple from an instance relation access belongs to a wit-

ness list. Here we present two of the provenance seman-

tics supported by the Perm [11] provenance management

system. Perm-Influence contribution semantics (PI-CS)

considers tuples to belong to the provenance if they were

used to derive a query result tuple t.

Example 5 For instance, Figure 1 shows PI-CS(Qc,c2).
Tuple c2 was generated by (1) projecting tuple r1 on at-

tribute B (the right input of the union) resulting in the

witness list <⊥,r1 > and (2) by projecting tuples r3 and

r4 on attribute A explained by witness lists < r3,⊥> and

< r4,⊥>.

The second provenance semantics of Perm we are dis-

cussing is Copy contribution semantics (C-CS). Similar

to Where, this semantics studies where data in the query

result has been copied from. C-CS uses the same witness

list representation of provenance as PI-CS. In contrast to

Where, this semantics traces copying on a per tuple ba-

sis. Under C-CS a tuple belongs to the provenance of a

query result tuple t if attribute values have been copied

from this tuple to tuple t.

Example 6 For instance, C-CS(Qd ,d1) is {< r1,⊥>},

because the value of attribute A in tuple d1 has been

3



copied from tuple r1. Tuple r1 has been joined with tuple

s1 to produce d1, but no values have been copied from

s1 to the result and, therefore, s1 does not belong to the

provenance.

Causality [22, 21, 20] Based on work from the AI com-

munity, Meliou et al. [21] presented a provenance se-

mantics that considers the set of causes to be the prove-

nance of a tuple t. Causes are defined declaratively as

follows: An instance tuple ti is a cause for a result tuple

t ∈ Q(I) if (1) t 6∈ Q(I −{ti}) (in this case ti is called a

counterfactual cause) or (2) if there exists a subset C of

the instance called contingency so that t ∈ Q(I −C) and

t 6∈ Q(I− (C∪{ti})).

Example 7 For instance, consider Causality(Qa,a1)
shown in Figure 1. Tuple r1 is a counterfactual cause for

a1, because removing this tuple from the instance causes

a1 to disappear from the result of query Qa.

4 Insensitivity to Query Rewrite

Out of the presented provenance semantics only Wit,

IWhy, IWhere, and Causality are insensitive. Counterex-

amples and proofs of insensitivity have been given in

the literature [4, 2, 3] (except for PI-CS and C-CS for

which simple counterexamples exist and Causality which

is naturally insensitive). Here we focus on the question

of how these semantics achieve insensitivity and what

causes other semantics to be sensitive. To some extent

this question was answered before [3, 2, 4] using the ar-

gument that semantics that are defined over the syntactic

structure of a query are susceptible to be sensitive. We

would like to go further and discuss whether insensitivity

is a desirable property at all and investigate some of its

undesirable side-effects.

Why-provenance Wit is insensitive, because the only

condition on witnesses is that they produce a set con-

taining the tuple t for which provenance is generated.

Since this is a black-box property of the query (it is stated

solely over the input-output behaviour of the query) a se-

mantics that is based only on this property is bound to

be insensitive under both set and bag semantics. Why, in

spite of being a subset of Wit, is sensitive. Why is con-

structed over the syntax of a query, but this does not nec-

essarily imply insensitivity. The insensitivity stems from

the fact that Why(Q, I,t) may contain tuples that do not

“contribute” to the existence of t at all. Thus, equivalent

queries that apply redundant computations may have a

larger provenance than their non-redundant counterpart.

For example, consider the provenance for tuple a1 from

result of example queries Qa and Qb (Figure 1). The rea-

son for Why being sensitive is that in addition to being

based on the syntactic structure of a query (which implies

a potential of insensitivity) it does not take into account

if a tuple is needed to derive t. However, as the insen-

sitivity of Wit demonstrates, including irrelevant tuples

in the provenance does not necessarily imply sensitivity.

In fact, not excluding irrelevant tuples does not affect the

insensitivity of Wit, because all super-sets of witnesses

are also witnesses. This implies that tuples that may

be used by redundant computations are included in the

provenance by default. IWhy can be derived from Wit

by excluding all non-minimal witnesses from Wit. Using

this approach, it is trivial to see that IWhy has to be insen-

sitive: Since Wit is insensitive, Wit(Q, I,t)=Wit(Q′, I,t)
for equivalent queries Q and Q′ and, thus, the minimal

witnesses of the two sets have to be the same too.

Where-provenance The example discussed below

shows that Where is sensitive. Traditionally, the sensi-

tivity of Where has been attributed to the fact that Where

depends on the syntactic structure of a query. But why

does this lead to sensitivity? The reason is that the origin

of an attribute value in the result of a query depends on

how this value is routed through the query, i.e., it depends

on the internal data flow of the query.

Example 8 Consider a standard example for the sensi-

tivity of Where (e.g., used by Cheney et al. [4]). Queries

Qa and Qb (Figure 1) are equivalent, but their Where

provenance for tuple a1 and attribute A is different.

Query Qa copies the A attribute value from tuple r1 and

Qb copies the value from tuples r1 and r2. Because of the

join on attribute A, tuples with the same A attribute value

as r1 are included in the provenance (r2).

As mentioned in the last section IWhere [2] was de-

veloped to deal with the sensitivity of this semantics.

IWhere achieves insensitivity by combining the Where

provenance for all queries equivalent to a query Q. This

approach for achieving insensitivity has the counter-

intuitive effect that if the provenance contains an at-

tribute value (R,t,A), then it also contains all attribute

values (R,t ′,A) for which t.A = t ′.A (the A attribute val-

ues are the same). This leads to strange situations where

the provenance contains attribute values from tuples that

were not even used to derive a tuple (e.g., value (r2.A)
from the example). The reason for this effect is that if

a query Q copies an attribute value from attribute A of

source relation R then an equivalent query can be con-

structed by extending Q with a redundant self-join on A.

For example, query Qb extends Qa in this way.

How-provenance How is sensitive to query rewrite un-

der set semantics (shown by Cheney et al. [4] using a

counterexample). However, this semantics is insensitive

under bag semantics as has been shown in the original

work that introduced this semantics [17]. Insensitivity

stems from the fact that query evaluation on K-relation

was defined to take bag semantics equivalences into ac-

count.

4



Example 9 Consider the how provenance for tuple a1

from the result of queries Qa and Qb (Figure 1). For

query Qa, tuple a1 has been produced from r1. For query

Qb the tuple a1 is in the result because (1) r1 was joined

with itself (r2
1) and (2) r1 was joined with r2 (r1 × r2).

From this example we can abstract that the reason for

the sensitivity of How is the same as for Why: including

irrelevant tuples in the provenance.

Lineage-based Lineage-based semantics are strongly

depended on the syntactic structure of a query. Thus, it

is not surprising that Lineage, PI-CS and C-CS are sen-

sitive under both set and bag semantics.

Example 10 For instance, equivalent queries Qd and

Qe differ in the order they join relations R and S which

causes them to have different Lineage, PI-CS, and C-CS

provenance. Consider Lineage and PI-CS for tuple d1

from the result of these queries as shown in Figure 1.

The provenance contains the same tuples from relations

R and S, but in different order (the order they are ac-

cessed by the query).

Causality Causality is defined over the black-box be-

haviour of a query. It follows that this semantics is in-

sensitive under both set and bag semantics.

Example 11 Causality(Qa,a1) and Causality(Qb,a1)
shown in Figure 1 demonstrate the insensitivity of

causality.

Arguments for Insensitivity Traditionally, insensitivity

to query rewrite has been considered as a desirable prop-

erty for a provenance semantics to possess. The main ar-

guments are: (1) query equivalence is a well-established

and well-studied field and many advantages of declara-

tive languages stem from knowledge about equivalence

classes of queries. For instance, being able to choose

different execution plans by applying equivalence pre-

serving rewrites is one of the main enablers of query

optimization. Thus, it is not surprising that database

researchers tend to believe that invariance under query

rewrite (insensitivity) is a desirable property for prove-

nance semantics. (2) Given the fact that query optimizers

may choose an execution plan that is quite different from

how the query was stated by the user, sensitive semantics

can lead to paradoxical situations. Usually, provenance

is computed for the query as stated by the user, which

means it may not reflect the actual execution. (3) The last

argument is more a practical consideration. If a sensitive

semantics is implemented inside a database engine, this

would limit the options of the engine to apply optimiza-

tions, because not all equivalent execution plans would

result in the “correct” provenance being generated.

Discussion Are the arguments for insensitivity presented

above meaningful in general? In our opinion, the first

argument can be dismissed, because “tradition” is not a

solid argument. The paradox mentioned in the second

argument can not be prevented for sensible provenance

semantics. However, we believe that generating prove-

nance for the query as originally stated by a user is a

reasonable approach (for instance, the Perm system [11]

applies this policy).

The third argument addresses the practicality of in-

tegrating sensible provenance semantics into a database

engine. While limiting the optimizers options is certainly

undesirable, we believe the argument is weakened by the

following observations. (1) Insensitive semantics may

be harder to compute resulting in a trade-off between the

computational complexity of provenance generation ver-

sus limiting the optimizers options. (2) The optimizer

search space for queries with provenance computation

may be very different from the search space for standard

relational queries. Furthermore, integrating provenance

computation inside a database execution engine and op-

timizer has, to the best of our knowledge, not been ad-

dressed and, thus, the impact remains to be studied.

In summary, insensitivity has some advantages, but

is not a desirable property for all types of provenance

semantics. In particular, semantics that address the

data-flow inside a query or study how tuples have been

combined by a query are not well-suited for insensitiv-

ity. Furthermore, the approach to achieve insensitivity

should be chosen carefully. For instance, the “maximal-

ity” approach chosen for IWhere results in strange side-

effects (which we will discuss in the next section).

5 Stability

We would naturally expect most provenance semantics to

be stable. Adding new operators to the query language

should not affect the provenance of queries that do not

use these operators. IWhere is a notable exception to

this rule. Bhagwat et al. [2] presented two versions of

IWhere, one for SPJ-queries and one for SPJU-queries

(we refer to the latter as UWhere). This is necessary,

because of how insensitivity is achieved by this seman-

tics. Recall that the IWhere provenance for a tuple t from

the result of a query Q is the union of the Where prove-

nance for all queries equivalent to Q. Adding a new op-

erator, such as set union, to the query language obviously

changes the set of queries that are equivalent to a query

Q. The Where provenance of these additional queries

may contain additional elements not found in the prove-

nance of the original set of equivalent queries. Thus,

UWhere containing these additional elements is a super-

set of IWhere, i.e., adding the union operator changes the

provenance of queries that do not even use this operator.

Example 12 Consider IWhere and UWhere for the

5



value of attribute A from tuple a3 ∈ Qa (Figure 1). The

UWhere provenance contains attribute values of tuples

from relation S simply because query R∪ (R><A=C S) is

equivalent to Qa and for this query the A attribute value

of a3 has been copied from tuples from relation S.

As evident in the example, the UWhere semantics con-

siders all attribute values that are equal to an output at-

tribute value A to belong to the provenance of A. In

addition to the computational effort needed to compute

this kind of semantics, this behaviour is also counterin-

tuitive. This example strengthens our argument that the

approach to achieve insensitivity should be chosen care-

fully to avoid undesirable behaviour such as instability.

6 Conclusions

In this work, we reexamined well-known properties

of provenance semantics by reviewing previous results

from a different point of view and presented a property

that is natural but has not been considered before. Es-

pecially, we were interested in examining why a prove-

nance semantics possesses a certain property or not. We

hope that the insights we presented in this work will in-

spire discussion about provenance semantics by the com-

munity, and that showing why semantics possess desir-

able or undesirable properties will aid in the development

of future provenance semantics.

References

[1] AMSTERDAMER, Y., DEUTCH, D., AND TANNEN, V. Prove-

nance for Aggregate Queries. In PODS (2011), p. to appear.

[2] BHAGWAT, D., CHITICARIU, L., TAN, W., AND VIJAY-

VARGIYA, G. An Annotation Management System for Relational

Databases. VLDB Journal 14, 4 (2005), 373–396.

[3] BUNEMAN, P., KHANNA, S., AND TAN, W.-C. Why and

Where: A Characterization of Data Provenance. In ICDT (2001),

pp. 316–330.

[4] CHENEY, J., CHITICARIU, L., AND TAN, W.-C. Provenance in

Databases: Why, How, and Where. Foundations and Trends in

Databases 1, 4 (2009), 379–474.

[5] CHITICARIU, L., TAN, W.-C., AND VIJAYVARGIYA, G. DB-

Notes: a Post-it System for Relational Databases based on Prove-

nance. In SIGMOD (2005), pp. 942–944.

[6] CUI, Y. Lineage Tracing in Data Warehouses. PhD thesis, Stan-

ford University, 2002.

[7] CUI, Y., AND WIDOM, J. Lineage Tracing for General Data

Warehouse Transformations. In VLDB (2001), pp. 471–480.

[8] CUI, Y., AND WIDOM, J. Run-time Translation of View Tuple

Deletions using Data Lineage. Tech. rep., Stanford University,

2001.

[9] CUI, Y., WIDOM, J., AND WIENER, J. L. Tracing the Lineage

of View Data in a Warehousing Environment. TODS 25, 2 (2000),

179–227.

[10] GEERTS, F., AND POGGI, A. On Database Query Languages for

K-relations. Journal of Applied Logic 8, 2 (2010), 173–185.

[11] GLAVIC, B. Perm: Efficient Provenance Support for Relational

Databases. PhD thesis, University of Zurich, 2010.

[12] GLAVIC, B., AND ALONSO, G. Perm: Processing Provenance

and Data on the same Data Model through Query Rewriting. In

ICDE (2009), pp. 174–185.

[13] GLAVIC, B., AND ALONSO, G. Provenance for Nested Sub-

queries. In EDBT (2009), pp. 982–993.

[14] GREEN, T. J. Containment of Conjunctive Queries on Annotated

Relations. In ICDT (2009), pp. 296–309.

[15] GREEN, T. J., IVES, Z. G., AND TANNEN, V. Reconcilable

Differences. In ICDT (2009), pp. 212–224.

[16] GREEN, T. J., KARVOUNARAKIS, G., IVES, Z. G., AND TAN-

NEN, V. Update Exchange with Mappings and Provenance. In

VLDB (2007), pp. 675–686.

[17] GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. Prove-

nance Semirings. In PODS (2007), pp. 31–40.

[18] IVES, Z. G., GREEN, T. J., KARVOUNARAKIS, G., TAYLOR,

N. E., TANNEN, V., TALUKDAR, P. P., JACOB, M., AND

PEREIRA, F. The ORCHESTRA Collaborative Data Sharing

System. SIGMOD Record 37, 2 (2008), 26–32.

[19] KARVOUNARAKIS, G., IVES, Z., AND TANNEN, V. Querying

Data Provenance. In SIGMOD (2010), pp. 951–962.

[20] MELIOU, A., GATTERBAUER, W., HALPERN, J., KOCH, C.,

MOORE, K., AND SUCIU, D. Causality in Databases. IEEE

Data Engineering Bulletin (2010).

[21] MELIOU, A., GATTERBAUER, W., MOORE, K., AND SUCIU,

D. The Complexity of Causality and Responsibility for Query

Answers and non-Answers. PVLDB 4, 1 (2010).

[22] MELIOU, A., GATTERBAUER, W., MOORE, K. F., AND SUCIU,

D. Why so? or Why no? Functional Causality for Explaining

Query Answers. Tech. rep., University of Washington, 2009.

[23] TAN, W.-C. Containment of Relational Queries with Annotation

Propagation. DBPL (2003).

6


