On the use of Abstract Workflows to Capture Scientific Process Provenance

Paulo Pinheiro da Silva, Leonardo Salayandia, Nicholas Del Rio, Ann Q. Gates
Overview

- Ontologies and Abstract Workflow to document scientific processes
- The Proof Markup Language (PML) to encode data provenance
- Capturing provenance about scientific processes
- Other efforts
- Conclusions
Documenting Scientific Processes with Ontologies and Abstract Workflows

- **Purpose**
 - Identify appropriate vocabulary for a scientific community
 - Model a scientist’s understanding of a process
 - Identify the parts of a process that are of interest to scientists

- **Benefits**
 - Share scientist’s understanding of a process with others
 - Guide the development of systems that implement scientist’s understanding of a process
 - Enhance existing systems to provide functionality aligned to scientist’s understanding of a process
Phase 1: Capture the vocabulary of the process in a Workflow-Driven Ontology (WDO)

- WDOs have two main classes:
 - **Data**, e.g., Gridded Dataset, Elevation Map
 - **Method**, e.g., Nearest-neighbor extrapolation

- Tool support to construct WDOs
 - Encoded in OWL
 - Reuse vocabulary from other OWL ontologies
 - Generate HTML reports
Phase 2: Model the process as a Semantic Abstract Workflow (SAW)

- Dataflow modeling
- Graphical representation
- Multiple levels of abstraction supported
- Tool support to create SAWs
 - Encoded in OWL
 - Generate HTML reports
 - Generate provenance-capturing modules
Documenting Scientific Processes with Ontologies and Abstract Workflows

- WDOs and SAWs are intended to be authored by Scientists
 - Scientist-centered level of abstraction
 - Dataflow modeling intended to facilitate process modeling
Documenting Scientific Processes with Ontologies and Abstract Workflows

- Some efforts where WDOs and SAWs are being used
 - Environmental data collection at
 - La Jornada Experimental Range
 - The arctic region (Barrow, Alaska)
 - Seismic refraction experiments at Potrillo mountains
Encoding Provenance with PML

- **Proof Markup Language (PML)**
 - Derived from the theorem proving community
 - Divided into three parts:
 - PML-Provenance
 - PML-Justification
 - PML-Trust

With respect to provenance
Encoding Provenance with PML

- Distributed provenance
 - NodeSets generated by distributed components
 - NodeSets linked through Web conventions

Diagram:

- NodeSet 1: Encoded by software at Laboratory
 - URI: http://...

- NodeSet 2: Encoded by software at Data Center
 - URI: http://...

- NodeSet 3: Encoded by field instrumentation
 - URI: http://...

- NodeSet 1 hasAntecendent NodeSet 2
- NodeSet 2 hasAntecendent NodeSet 3
- NodeSet 2 hasAntecendent NodeSet 1
Capturing Scientific Process Provenance

- The framework:
 - Process and Provenance ontology alignment
 - WDO: Identify things that can be used to document how things **can happen** (i.e., process)
 - PML-P: Identify things that can be used to document how things **happened** (i.e., provenance)
Capturing Scientific Process Provenance

The framework:
- WDO reuses concepts from the PML-P ontology
- WDO adds properties to the concepts from PML-P
- WDO vocabulary can be used for Provenance queries!

Vocabulary identified by scientist to document process:

Used to query provenance:
Select NodeSets that have an antecedent of type GravityDataset
Capturing Scientific Process Provenance

- The process of capturing provenance:

1. Encode vocabulary for scientific process
2. Model scientific process as an abstract workflow
3. Capture Provenance about Data that is generated using the scientific process from above; there are two ways:
 - (a) Create Data Annotators (wrapper modules) and use them to enhance a scientific system to capture provenance
 - (b) Use the scientific process as a template to manually link artifacts to capture provenance

Goal: Facilitate provenance encoding in PML
Capturing Scientific Process

Provenance

- **Automated scientific systems**
 - Use process knowledge to generate data annotator modules
 - Instrument system to call data annotators to record provenance during execution
 - E.g., C-shell scripts
 - Use data annotators after system execution to construct provenance from logs/temp files generated by the system
 - E.g., field data-gathering instruments with proprietary software and extensive logging features
Capturing Scientific Process Provenance

- Manual scientific systems
 - Tool support to encode PML using process knowledge as template:

Technical Report
Manually entered parameters
Other Efforts

- Provenance Query
 - Build RDF triple stores from PML encodings
 - SPARQL queries
- Provenance Visualization
 - Probe-It!
Conclusions

- Abstraction is used to comprehensively document scientific processes
- Encoding provenance in PML is not straight-forward, but tools can help
- Not all scientific processes are implemented as software systems
- This approach to document provenance may not be scalable for all systems, but it is useful for some:
 - Scientists building custom systems to gather data
Thank you!
Encoding Provenance with PML

- More details about PML
 - Divided into three parts:
 - PML-Provenance
 - PML-Justification
 - PML-Trust