
 1

SPIKE: Best Practice Generation for Storage Area Networks
Prasenjit Sarkar

1
, Ramani Routray

1
, Eric Butler

1
, Chung-hao Tan

1
, Kaladhar Voruganti

1
, Kiyoung Yang

2

1 IBM Almaden Research Center 2 University of Southern California

Abstract
This paper presents SPIKE, an automated algorithm to

generate best practices by analyzing Storage Area

Network (SAN) configuration errors. Best practices are a

useful tool in problem diagnosis as most configuration

problems are caused by the violation of best practices in

the storage network domain. However, the manual

generation of best practices is tedious, error-prone and

costly in terms of time and manpower. SPIKE uses a

combination of information-retrieval principles, entity

ranking and decision-tree classification to statistically

infer the best practices for the prevention of SAN

configuration problems. Preliminary results from an

initial implementation of SPIKE indicate speed and

accuracy improvements over manually generating best

practices.

1 Introduction
Adherence to best practices is essential for successful

configuration and deployment of complex systems. In

such scenarios, experts rely on experience as well as

repositories of best practice guidelines to proactively

prevent any configuration problems while deploying a

system in a data center. The reasons for this are not hard

to find. First, the entities in a data center are associated

via complex physical and logical relationships, which

may number an order of magnitude more than the entities

themselves. Second, the diagnosis of a problem requires

the collection, filtering, and correlation of a huge amount

of data from various sources over different periods of

time. Third, most data center deployments are not

integrated enough to present a single, usable text or

graphical interface to navigate through the problem

diagnosis process. Instead, a system administrator must

correlate data across multiple point tools using techniques

that are tedious, time-consuming and prone to errors.

Fourth, the technology in a data center is continually

evolving primarily due to the need for product

differentiation. This hampers the ability of system

administrators to diagnose configuration problems

because their expertise lags behind the state of the art.

Finally, the standardization process that dictates inter-

vendor interoperability may be immature and

continuously evolving leading to hard-to-diagnose

configuration problems.

This paper addresses the problem of automatically

generating best practices for a particular system domain.

Automation is essential because the manual generation of

best practices is costly. In most system domains, it

requires a large team to analyze large sets of

configuration data using rudimentary tools to generate the

best practices for that system domain. The generation of

the best practices using manual methods requires many

man-years of data gathering and analysis. In the case of

storage subsystems, IBM has a Storage Area Network

(SAN) Central team, whose job is to examine all known

storage area network configuration issues and come up

with best practices. These best practices have helped the

SAN Central team reduce the time required in resolving

configuration errors from 2 weeks to 2 days; as 80% of

the configuration problems are caused by the violation of

best practices. However, the generation of the best

practices required 20 man-years of data gathering and

analysis. More importantly, the best practices are dynamic

and change as new technology is introduced.

Due to the many challenges in generating best practices

for a domain, there needs to be a systematic way to gather

all the data needed for problem diagnosis. The success of

any automated mechanism is determined by the quality

and quantity of the data. Since data sets have a large

number of entities, attributes and associations that can

number in the hundreds of thousands, there is a need for

effective dimensionality reduction so that the data sets can

be analyzed efficiently. Finally, system administrators

want the purest subset of entities, attributes and

associations that contribute to a configuration error. This

would require the use of a highly accurate data

classification tool that can overcome incomplete

dimensions as well as noise in the data sets.

The key contribution of this paper is an automated

algorithm to generate best practices for SAN

configuration problem, termed SPIKE (Storage Practices

usIng Knowledge Engineering). SPIKE uses a

combination of information-retrieval principles, entity

ranking algorithms and decision-tree classification to

statistically infer the best practices relevant to a set of

SAN configuration problems.

The rest of the paper is organized as follows: Section 2

describes the domain in greater detail and categorizes the

typical SAN configuration problems obtained based on

field data. Section 3 describes the algorithm to construct

the best practice for a SAN configuration problem.

Section 4 describes preliminary results from an initial

implementation. We present related work in Section 5 and

conclude in Section 6.

 2

2 SAN Configuration Problem
This section describes the Storage Area Network model

with a brief description of the core entities and

associations. This is followed by a description of our

categorization of SAN problems. Then we define the

elemental structure for a best practice based on this

categorization and use this definition to lay the foundation

of the key steps in SPIKE.

The goal of a storage area network is to provide block

storage as a service over a typically dedicated network to

attached hosts. The three principal entities are hosts,

switches and subsystems. A host typically has one or

more Host Bus Adapters with ports that are connected to

switch ports via fibre cables. Switches, which provide

connectivity between the hosts and storage devices, can

be connected to each other in a complex topology,

depending on the scale of the Storage Area Network.

Storage subsystems and tape libraries connected to switch

ports provide block storage access in the form of volumes

to the hosts via access control lists.

While the above represents the core domain model, more

advanced storage area networks such as those with

virtualization at different levels can exist. For example,

in-band virtualization device present in the network. Our

storage area network model does account for most of

other dimensions of complexities.

Each entity in the storage area network has attributes of

these types:

• Direct attributes: These are inherent properties of the

entity in the storage area network. In the case of a

host, the direct attributes include: IP addresses,

hostname, operating system, memory size among

others.

• Associations: These are properties that are based on

associations present in the storage area network. The

key difference between an association and a direct

attribute is an association links multiple types of

storage network entities.

• Derived Attributes: These are properties that are

logically derived from the direct attributes and

associations present in the storage area network.

These derivations are principally made to compose

the best practice for a SAN configuration problem.

However, if one were to automatically generate best

practices for a SAN configuration problem, the

identity of the derived attributes is not known in

advance. For example, number of members in a zone

is a derived attribute.

Now that we have a better understanding of the storage

area network domain, next an overview of the typical

problems that affect a storage area network is given. This

is achieved by collected the different types of

configuration problems associated with a SAN and use a

classification mechanism to categorize the problems. At

first glance, it may seem that the conditions in the SAN

configuration problems do not present a structure for

categorization. However, upon closer inspection, one can

gain more insight by analyzing the Boolean expression

representing the best practices corresponding to the SAN

configuration problems. Based on this categorization

technique, we grouped the best practices for SAN

configuration problems into five categories [13].

To explain the five categories in detail, we assume a set of

entities E with elements e1 .. en, each with attributes a1 ..

at. We also assume associations A with instances A1 .. Ak

where each association A1 groups a subset of entities in E.

The categories that represent the best practices are:

• Cartesian: Given set of values v1 .. vm for attributes

a1 .. am, avoid configurations where an element ei

belonging to E satisfies ei.a1 = v1 & .. & ei.am = vm.

For example, avoid all HBAs of Emulex type 9002

that do not have firmware levels of 3.81a, or 3.81b.

• Connectivity: Given an association Ai, avoid

configurations where the number of instances of the

association Ai between two entities ea and eb does not

exceed a certain threshold k. e.g., avoid all

configurations where a host does not have at least 2

network paths to a storage subsystem.

• Exclusion: Given a set of values v11 .. v1m and v21 ..

v2m for attributes a1 .. am, avoid configurations of

elements ei and ej belonging to E that satisfy ei.a1 =

v11 & .. & ei.am = v1m & ej.a1 ≠ v21 & .. & ej.am ≠ v2m.

e.g., tape drives should not exist in a zone if it

contains disk drives.

• Many-to-one: Avoid configurations where the value

of a set of attributes a1 .. am is not the same for all

entities ei in an instance of an association Ak. e.g., all

host computers in the same storage network zone

should have the same operating system type.

• One-to-one: Avoid configurations where the value of

a set of attributes a1 .. am is not different and unique

for all entities ei in an instance of an association Ak.

e.g., all ports in a storage network fabric must have a

different port world-wide name (WWN).

At first glance, some of the operators in the categories

may seem unduly restrictive, but they represent the

known universe of SAN configuration best practices.

As can be seen from the categorization of the best

practices for SAN configuration problems, we need to

identify three important elements in the construction of

the best practice for a given SAN configuration problem:

• Associations: An association that is responsible for

the SAN configuration problem.

 3

• Attributes: The entity attributes and their

corresponding values that are responsible for the

SAN configuration problem.

• Derived Attributes: The derived attributes and their

corresponding values that are responsible for the

SAN configuration problem.

All the three elements may not be present in a best

practice. As seen from the categorization, the presence of

an association in the best practice is optional. However,

there must be at least one attribute-value pair or one

derived attribute-value pair in the best practice. Other

than this, there are no restrictions on the composition of

the best practice. The next section describes the steps

needed to generate these elements of a best practice for

this domain.

One key thing to note is that statistical best practice

generation is very specific with respect to versions and

does not tend to implicate all versions of an entity. This

protects against situations where configuration problems

fixed in later versions may invalidate a best practice.

3 The SPIKE system
SPIKE uses of two important stages for generating best

practices for SAN configuration problems. The first stage

is the collection of configuration data and problem reports

from the various SAN deployments. The second stage is

the actual generation of best practices by analyzing the

collected data. The second stage is composed of three

important sub-stages that are mandated by the nature of

the best practices: (i) association identification, (ii)

attribute identification (feature selection), and (iii) derived

attribute identification. Each of these three sub-stages is

detailed in the following sections with examples. It is

important to note that SPIKE is generic in nature and not

tailored towards any of the types of configuration

problems listed in Section 2.2. Thus, the discovered

associations, attributes and derived attributes are used in

the generation of the best practice for a given SAN

configuration problem.

3.1 Data Collection
The first stage in SPIKE is collect data from multiple

SAN deployment sites. When a SAN administrator

reports an irresolvable problem to the help desk, the help

desk personnel advises the administrator to provide a

current snapshot of the database of the storage resource

management (SRM) tool managing the SAN. The SAN

administrator also provides a problem report that is

associated with the snapshot of the database. When there

is a sufficient number of problem reports and attached

database snapshots, the best practice generation tool is

applied to the collected data in the warehouse and likely

best practices to prevent the reported problems are

produced.

3.2 Generation Algorithm
As mentioned earlier, the second stage is split into three

sub-stages, with each sub-stage focusing on a different

element of the best practice. For the purpose of the

description, we assume that there is a SAN configuration

problem P that is reported that affects a section of storage

network entities that are a proper subset of E.

3.2.1 Association Identification
The basis of association identification is to use

information-retrieval metrics to identify the most

promising association indicative of a SAN configuration

problem.

The identification of the association proceeds in the

following steps:

1. SPIKE examines every SRM snapshot database

corresponding to a problem P.

2. For each such snapshot database, SPIKE calculates

the set of entities that are reporting problems. Let us

call this set E1.

3. From the entity-relationship model in the snapshot

database, SPIKE generates the list of associations A.

4. For every association a in the list of associations A,

SPIKE generates a list of the instances of the

association, aInst.

5. For every instance aInsti in the list of associations

aInst, SPIKE generates a set of entities corresponding

to that association instance called E(aInsti).

6. Following this generation, SPIKE merges two entity

sets E(aInsti) and E(aInsti) if the two association

instances are independent. The merger step gives

more statistical significance to association instances

with a smaller number of members. We define two

association instances to be independent if the

instances do not have behavioral implications on each

other in terms of the storage area network operations.

7. Following this merger process, SPIKE comes up with

a new list of set of entities called Emerge(aInst).

8. For each instance of the set Emerge(aInst), SPIKE

applies the metrics of precision and recall with

respect to the set E1 (calculated in the second step)

and rank the instances based on the calculated

metrics.

9. SPIKE chooses the top instance of the set

Emerge(aInst) and for that instance, report the relevant

associations as the most promising for the particular

SAN configuration problem P.

In Section 2.2, it was stated that it is possible to generate a

best practice without an association. Therefore, SPIKE

adds the null association to the list of associations

 4

considered for the algorithm. The null association trivially

represents all the entities in E and a selection of the null

association as the top-ranked association implies the

absence of an association in the best practice.

The next critical sub-stage is to identify the attributes and

their corresponding values that may be related to the SAN

configuration problem.

3.2.2 Attribute Identification

SPIKE uses a classification approach in order to

determine the purest subset of attributes that are indicative

of a SAN configuration problem P. To aid in the

classification process, SPIKE uses decision trees

primarily because the results are easily interpretable. The

relatively deterministic nature of the domain of interest

biased the design of SPIKE against the use of naïve

Bayesian classifiers.

However, there is a significant challenge in using a

decision tree in this case. The key challenge is there are

multiple types of entities with disjoint attribute sets, while

decision trees typically take a single entity type as input.

To alleviate this problem, SPIKE can combine all the

entity types into an aggregated entity type using database

joins. However, a naïve approach of joining all entities is

going to result in an extremely large number of instances

for the aggregated entity.

The next challenge is determining if SPIKE can do better

than a full aggregation of all entity types. To achieve this,

SPIKE uses a ranking metric for all entity types based on

their relevance to the reported SAN configuration

problem. Then this ranking metric used to decide the

number and order of database joins to perform on the

entity types.

In this step, SPIKE computes the ranking of every entity

type based on the concept of information entropy. In

canonical terms, the information entropy of an event x is

the sum, over all possible outcomes i of x, of the product

of the probability of outcome i times the log of the inverse

of the probability of i (which is also called i's surprisal -

the entropy of x is the expected value of its outcome's

surprisal). Formally, this is represented as:

∑
=

=

)(

1

1 2
log)()(

ip

n

i
ipxH

Next, the concept of information entropy is used in

ranking the various entity types. We define a data path

between two entities as a list of association instances that

can be used to perform a database join of the entities in

question. Trivially, there exists a data path between an

entity and itself through the null association.

For each entity, SPIKE computes the number of data

paths from entities in as well as outside the set of entities

E. As defined earlier, the set E represents the collection of

entities reporting the SAN configuration problem. We

define a true data path as one to an entity in the set E and

a false data path as one to an entity outside the set E.

SPIKE uses the data path statistics to define the entropy

for an entity type T. Assume that there are P true and N

false data paths in the entity type T. Let us assume that

instances of the entity type T divide the above-mentioned

data paths into k partitions, each containing Pi true and Ni

false data paths, where i varies from 1 to k.

+

×

+

+

+

×

+

−=

NP

N

NP

N

NP

P

NP

P
NPEntropy

2
log

2
log),(

Based on the above, SPIKE computes the information

gain accruing from the entity type T as follows:

),(
1

)()(iNiPEntropy
k

i NP

iNiP
THTGain ×∑

= +

+

−=

Based on this concept of information gain, SPIKE follows

these steps to identify the attributes and values of interest:

1. Entity types are ranked in order of their computed

information gain metric: Gain(T) for an entity type T.

2. The top-ranked entity type is chosen in terms of

information gain as the current entity type and

applies the decision tree algorithm on the current

entity type.

3. The current entity type is joined with the next-ranked

entity type that is connected to the current entity type

to form the new current entity type and the decision

tree algorithm is applied to the new current entity

type.

4. If there is no increase in classification accuracy in

step 3, the classification process is halted and SPIKE

moves on to step 5. Otherwise, step 3 is repeated to

continue the classification process.

5. The classification process results in is a list of

attributes and values belonging to various entity

types. These attributes and values are used in the

construction of the best practice relevant to the SAN

configuration problem P.

When, the set of attributes and values is not enough to

construct the best practice for a SAN configuration

problem P, derived attributes and their corresponding

values are generated.

3.2.3 Derived Attribute Identification
The derived attribute identification step is based on the

principle of generating derived attributes by analyzing the

associations in the storage network domain. Given a SAN

 5

configuration, there are a number of associations as

described in Section 2.1. We assume that each association

can be represented as a derived entity in the entity-

relationship model corresponding to the storage network

domain. This implies that there is a table corresponding to

each association in the input configuration data.

Therefore, every association type can also be input into

the decision-tree classifier for derived attribute

identification.

The derived attribute generation algorithm is invoked

when SPIKE considers an association type for joining into

the input table for classification (Step 2 or Step 3 in

Section 3.2.2). When such an association type is selected,

SPIKE adds summary information on the entities

involved in the association that are already part of the

input table. This summary information is considered to be

the derived attributes for the association type.

For each entity type identified in the previous step that is

linked with an association type, SPIKE computes the

summary information on each of the attributes in the

entity type. Typically, the these six aggregate functions

have been employed for computing the summary;

average, min, max, count, count distinct and sum. In

typical SAN configurations, however, most of the

attributes are categorical attributes. Hence, SPIKE utilizes

count and count distinct aggregate functions.

SPIKE first obtains the distinct values for each attribute,

then the following two attributes for each distinct value:

• count attribute: the count of data instances with each

distinct value is stored. The name of this attribute is

N_<distinct value>

• boolean existence attribute: the existence of the

distinct value within the association is stored. When

the data is sparse, this attribute helps the

classification technique to correctly obtain the best

practices. The name of this attribute is HAS_<distinct

value>

4 Preliminary Results
In this section, we perform an exhaustive evaluation of an

initial implementation of SPIKE with data synthetically

generated from a fault injection routine. While synthetic

data cannot substitute for real-world data, the evaluation

provides an initial validation of SPIKE. To this end, we

injected SPIKE with problem reports under various

conditions and observed the behavior of SPIKE in terms

of correct best practices generated as well as false

positives. The problem reports not only contain the

entities reporting problems but also the rest of the SAN

configuration that may be working correctly. Both the

problematic and non-problematic data is used for decision

tree classification. Another thing to note in interpreting

the data is it takes 2000 problem reports for an expert

team to come to similar conclusions.

In the evaluation of SPIKE, we found that the association

identification was able to correctly identify the relevant

association within 10 problem reports and was relatively

less sensitive to environmental factors than the attribute

identification. Consequently, the major emphasis of our

evaluation is focused on the generation of the correct

attribute and value pairs for the sake of brevity.

In one experiment, we measure the sensitivity of SPIKE

to the number of faults of the same type presented in the

input SAN configuration data. We vary the number of

problem reports as input to SPIKE from 50 to 500 in steps

of 50. The fault injection routine introduces four different

problems of the Cartesian type into the problem reports

and we observe the number of problem reports required

by SPIKE to generate the problem reports. We choose the

Cartesian type as the default problem type because the

number of attributes and values in this type typically

exceeded those in the other problem types. As can be seen

in Figure 1, SPIKE cannot generate any best practice

using up to 150 problem reports. Following this, the

number of best practices generated slowly increases until

SPIKE is able to generate all four best practices using 500

problem reports. The number of false positives decline

gradually with the increase in the number of problem

reports.

0

1

2

3

4

50 100 150 200 250 300 350 400 450 500

Number of Problem Reports

N
u

m
b

e
r

o
f

C
o

rr
e
c
t

B
e
s
t

P
ra

c
ti

c
e
s

Figure 1. Sensitivity to the number of problems of the same

problem type

In a related experiment, we also vary the number of

different problems of the same problem type from 1 to 4.

We observed in this experiment, that the number of

problem reports required to find the first two best

practices varies from 150 to 200 and to find the third

varies from 250 to 300. As before, SPIKE finds the fourth

best practice when there are 500 problem reports.

In another experiment, we measure the sensitivity of

SPIKE to partial and complete mis-reporting of SAN

configuration problems by system administrators. For the

partial mis-reporting case, we vary the number of problem

reports as input to the best practice generator from 50 to

 6

500 in steps of 50. The fault injection routine introduces a

single problem of the Cartesian type into the problem

reports selectively erases a subset of the entities reporting

a problem based on the degree of misreporting. In this

experiment, we vary the percentage of misreporting from

0% to 50% in steps of 10%. SPIKE is able to correctly

predict the best practice within 150 problem reports even

with an error rate of 20%. The number of required

problem reports climbs to 200 with an error rate of 30%,

and the algorithm is unable to generate the best practice

with 500 problem reports at an error rate of 40% or more.

For the complete misreporting case, SPIKE is able to

correctly generate the best practice within 150 problem

reports with an error rate of up to 10% and 200 problem

reports with an error rate of 20%. If the error rate is

increased beyond this, SPIKE is unable to generate the

correct best practice even with an input of 500 problem

reports.

5 Related Work
Recent research has focused on the black-box approach in

order to handle the complexity and the non-deterministic

behaviors of the managed system. One typical setup is the

symptom-based approach. By observing system states

from the results of probes, a symptom-based approach

tries to predict the cause of failure from past experience.

Unsurprisingly, machine learning techniques are adopted

in most recent papers in the black-box approach. Among

those various learning algorithms, Decision Tree [4],

Naïve Bayes Classifier [12, 9, 7], Bayesian Network [5,

14] and Clustering [3, 6, 10, 9] are widely used due to

their advantages of interpretability and modifiability [6,

17].

From the perspective of machine learning, failure

diagnosis can be viewed as an anomaly detection problem

[9, 10, 17], particularly if the majority of the training

samples define good cases. The concept of feature

selection and model selection are also explored in several

recent papers [12, 18]. A history-based approach is

another useful technique which reduces the solution space

significantly [16, 17]. Diagnosis of configuration

problem has been studied in several areas such as

Windows Registry [16, 10, 8], router configuration [7]

and general Internet application [11]. Other recent

research activities focus on performance problems [1, 6],

software failure [3, 4] or general fault localization

techniques [14, 12, 2].

6 Conclusions
Best practices are a useful tool in problem diagnosis as

most configuration problems are caused by the violation

of best practices in the storage network domain. The

paper presents SPIKE, an automated best practice

generation tool that uses a combination of information-

retrieval principles, entity ranking and decision-tree

classification to statistically infer the best practices for

SAN configuration problems. We have presented

preliminary results from an initial implementation of

SPIKE and hope to validate SPIKE with real world

problem reports.

References
[1] M. K. Aguilera, P. Reynolds, and A. Muthitacharoen. Performance

debugging for distributed system of black boxes.

In Proc. 19th ACM SOSP, October 2003.

[2] A. Beygelzimer, M. Brodie, S. Ma, and I. Rish. Test-based diagnosis:

Tree and matrix representations. In Proc. 9th

IFIP/IEEE IM, May 2005.

[3] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:

Problem determination in large, dynamic internet services. In DSN, June

2002.

[4] M. Chen, A. X. Zheng, J. Lloyd, M. Jordan, and E. Brewer. Failure

diagnosis using decision tree. In Proc. 1st IEEE

ICAC, May 2004.

[5] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.

Correlating instrument data to system states: A

building block for automated diagnosis and control. In Proc. 6th

USENIX OSDI, December 2004.

[6] I. Cohen, Z. Steve, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.

Capturing, indexing, clustering, and retrieving system. In Proc. 20th

ACM SOSP, October 2005.

[7] K. El-Arini and K. Killourhy. Bayesian detection of router

configuration anomalies. In Proc. ACM SIGCOMM Workshop on

Mining Network Data, August 2005.

[8] A. Ganapathi, Y.-M.Wang, N. Lao, and J.-R.Wen. Why pcs are

fragile and what we can do about it: A study of windows registry

problems. In DSN, June 2004.

[9] G. Hamerly and C. Elkan. Bayesian approaches to failure prediction

for disk drives. In Proc. 18th ICML, June 2001.

[10] E. Kiciman and Y.-M. Wang. Discovering correctness constraints

for self-management of system configuration. In

Proc. 1st IEEE ICAC, May 2004.

[11] K. Nagaraja, F. Oliveria, R. Bianchini, R. P. Martin, and T. D.

Nguyen. Understanding and deailing with operator

mistakes in internet services. In Proc. 6th USENIX OSDI, December

2004.

[12] I. Rish, M. Brodie, and N. Odintsova. Real-time problem

determination in distributed system using active probing. In Proc. 9th

IEEE/IFIP NOMS, April 2004.

[13] Dakshi Agrawal, James Giles, Kang-Won Lee, Kaladhar Voruganti,

Khalid Filali-Adib: Policy-Based Validation of SAN Configuration.

POLICY 2004: 77-86

[14] M. Steinder and A. S. Sethi. End-to-end service failure diagnosis

using belief networks. In Proc. 8th IEEE/IFIP NOMS, April 2002.

[15] P.-N. Tan, S. Michael, and K. Vipin. Introduction to Data Mining.

Addison Wesley, 2006.

[16] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C.

Yuan, and Z. Zhang. Strider: A black-box, statebased approach to

change and configuration management and support. In Proc. 17th

USENIX LISA, Oct 2003.

[17] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration

debugging as search: Finding the needle in the haystack. In Proc. 6th

USENIX OSDI, December 2004.

[18] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.

Ensembles of models for automated diagnosis of system performance

problems. In DSN, June 2005.

