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Abstract 
This paper presents SPIKE, an automated algorithm to 

generate best practices by analyzing Storage Area 

Network (SAN) configuration errors. Best practices are a 

useful tool in problem diagnosis as most configuration 

problems are caused by the violation of best practices in 

the storage network domain. However, the manual 

generation of best practices is tedious, error-prone and 

costly in terms of time and manpower. SPIKE uses a 

combination of information-retrieval principles, entity 

ranking and decision-tree classification to statistically 

infer the best practices for the prevention of SAN 

configuration problems.  Preliminary results from an 

initial implementation of SPIKE indicate speed and 

accuracy improvements over manually generating best 

practices. 

1 Introduction 
Adherence to best practices is essential for successful 

configuration and deployment of complex systems. In 

such scenarios, experts rely on experience as well as 

repositories of best practice guidelines to proactively 

prevent any configuration problems while deploying a 

system in a data center. The reasons for this are not hard 

to find. First, the entities in a data center are associated 

via complex physical and logical relationships, which 

may number an order of magnitude more than the entities 

themselves. Second, the diagnosis of a problem requires 

the collection, filtering, and correlation of a huge amount 

of data from various sources over different periods of 

time. Third, most data center deployments are not 

integrated enough to present a single, usable text or 

graphical interface to navigate through the problem 

diagnosis process. Instead, a system administrator must 

correlate data across multiple point tools using techniques 

that are tedious, time-consuming and prone to errors. 

Fourth, the technology in a data center is continually 

evolving primarily due to the need for product 

differentiation. This hampers the ability of system 

administrators to diagnose configuration problems 

because their expertise lags behind the state of the art. 

Finally, the standardization process that dictates inter-

vendor interoperability may be immature and 

continuously evolving leading to hard-to-diagnose 

configuration problems. 

 

This paper addresses the problem of automatically 

generating best practices for a particular system domain. 

Automation is essential because the manual generation of 

best practices is costly. In most system domains, it 

requires a large team to analyze large sets of 

configuration data using rudimentary tools to generate the 

best practices for that system domain. The generation of 

the best practices using manual methods requires many 

man-years of data gathering and analysis. In the case of 

storage subsystems, IBM has a Storage Area Network 

(SAN) Central team, whose job is to examine all known 

storage area network configuration issues and come up 

with best practices. These best practices have helped the 

SAN Central team reduce the time required in resolving 

configuration errors from 2 weeks to 2 days; as 80% of 

the configuration problems are caused by the violation of 

best practices.  However, the generation of the best 

practices required 20 man-years of data gathering and 

analysis. More importantly, the best practices are dynamic 

and change as new technology is introduced. 

 

Due to the many challenges in generating best practices 

for a domain, there needs to be a systematic way to gather 

all the data needed for problem diagnosis. The success of 

any automated mechanism is determined by the quality 

and quantity of the data. Since data sets have a large 

number of entities, attributes and associations that can 

number in the hundreds of thousands, there is a need for 

effective dimensionality reduction so that the data sets can 

be analyzed efficiently. Finally, system administrators 

want the purest subset of entities, attributes and 

associations that contribute to a configuration error. This 

would require the use of a highly accurate data 

classification tool that can overcome incomplete 

dimensions as well as noise in the data sets. 

 

The key contribution of this paper is an automated 

algorithm to generate best practices for SAN 

configuration problem, termed SPIKE (Storage Practices 

usIng Knowledge Engineering).  SPIKE uses a 

combination of information-retrieval principles, entity 

ranking algorithms and decision-tree classification to 

statistically infer the best practices relevant to a set of 

SAN configuration problems.  

 

The rest of the paper is organized as follows: Section 2 

describes the domain in greater detail and categorizes the 

typical SAN configuration problems obtained based on 

field data. Section 3 describes the algorithm to construct 

the best practice for a SAN configuration problem. 

Section 4 describes preliminary results from an initial 

implementation. We present related work in Section 5 and 

conclude in Section 6. 
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2 SAN Configuration Problem 
This section describes the Storage Area Network model 

with a brief description of the core entities and 

associations. This is followed by a description of our 

categorization of SAN problems. Then we define the 

elemental structure for a best practice based on this 

categorization and use this definition to lay the foundation 

of the key steps in SPIKE. 

 
The goal of a storage area network is to provide block 

storage as a service over a typically dedicated network to 

attached hosts. The three principal entities are hosts, 

switches and subsystems. A host typically has one or 

more Host Bus Adapters with ports that are connected to 

switch ports via fibre cables. Switches, which provide 

connectivity between the hosts and storage devices, can 

be connected to each other in a complex topology, 

depending on the scale of the Storage Area Network. 

Storage subsystems and tape libraries connected to switch 

ports provide block storage access in the form of volumes 

to the hosts via access control lists.   

 

While the above represents the core domain model, more 

advanced storage area networks such as those with 

virtualization at different levels can exist. For example, 

in-band virtualization device present in the network. Our 

storage area network model does account for most of  

other dimensions of complexities.  

 

Each entity in the storage area network has attributes of 

these types: 

• Direct attributes: These are inherent properties of the 

entity in the storage area network. In the case of a 

host, the direct attributes include: IP addresses, 

hostname, operating system, memory size among 

others.  

• Associations: These are properties that are based on 

associations present in the storage area network. The 

key difference between an association and a direct 

attribute is an association links multiple types of 

storage network entities.  

• Derived Attributes: These are properties that are 

logically derived from the direct attributes and 

associations present in the storage area network. 

These derivations are principally made to compose 

the best practice for a SAN configuration problem. 

However, if one were to automatically generate best 

practices for a SAN configuration problem, the 

identity of the derived attributes is not known in 

advance. For example, number of members in a zone 

is a derived attribute.  

Now that we have a better understanding of the storage 

area network domain, next an overview of the typical 

problems that affect a storage area network is given. This 

is achieved by collected the different types of 

configuration problems associated with a SAN and use a 

classification mechanism to categorize the problems. At 

first glance, it may seem that the conditions in the SAN 

configuration problems do not present a structure for 

categorization. However, upon closer inspection, one can 

gain more insight by analyzing the Boolean expression 

representing the best practices corresponding to the SAN 

configuration problems. Based on this categorization 

technique, we grouped the best practices for SAN 

configuration problems into five categories [13].  

 

To explain the five categories in detail, we assume a set of 

entities E with elements e1 .. en, each with attributes a1 .. 

at. We also assume associations A with instances A1 .. Ak 

where each association A1 groups a subset of entities in E. 

The categories that represent the best practices are: 

• Cartesian: Given set of values v1 .. vm for attributes 

a1 .. am, avoid configurations where an element ei 

belonging to E satisfies ei.a1 = v1 & .. & ei.am = vm. 

For example, avoid all HBAs of Emulex type 9002 

that do not have firmware levels of 3.81a, or 3.81b.  

• Connectivity: Given an association Ai, avoid 

configurations where the number of instances of the 

association Ai between two entities ea and eb does not 

exceed a certain threshold k. e.g., avoid all 

configurations where a host does not have at least 2 

network paths to a storage subsystem. 

• Exclusion: Given a set of values v11 .. v1m and v21 .. 

v2m for attributes a1 .. am, avoid configurations of 

elements ei and ej belonging to E that satisfy ei.a1 = 

v11 & .. & ei.am = v1m & ej.a1 ≠ v21 & .. & ej.am ≠ v2m. 

e.g., tape drives should not exist in a zone if it 

contains disk drives. 

• Many-to-one: Avoid configurations where the value 

of a set of attributes a1 .. am  is not the same for all 

entities ei in an instance of an association Ak. e.g., all 

host computers in the same storage network zone 

should have the same operating system type. 

• One-to-one: Avoid configurations where the value of 

a set of attributes a1 .. am  is not different and unique 

for all entities ei in an instance of an association Ak. 

e.g., all ports in a storage network fabric must have a 

different port world-wide name (WWN).  

At first glance, some of the operators in the categories 

may seem unduly restrictive, but they represent the 

known universe of SAN configuration best practices. 

 

As can be seen from the categorization of the best 

practices for SAN configuration problems, we need to 

identify three important elements in the construction of 

the best practice for a given SAN configuration problem: 

• Associations: An association that is responsible for 

the SAN configuration problem. 
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• Attributes: The entity attributes and their 

corresponding values that are responsible for the 

SAN configuration problem. 

• Derived Attributes: The derived attributes and their 

corresponding values that are responsible for the 

SAN configuration problem. 

All the three elements may not be present in a best 

practice. As seen from the categorization, the presence of 

an association in the best practice is optional. However, 

there must be at least one attribute-value pair or one 

derived attribute-value pair in the best practice. Other 

than this, there are no restrictions on the composition of 

the best practice. The next section describes the steps 

needed to generate these elements of a best practice for 

this domain. 

 

One key thing to note is that statistical best practice 

generation is very specific with respect to versions and 

does not tend to implicate all versions of an entity. This 

protects against situations where configuration problems 

fixed in later versions may invalidate a best practice. 

3 The SPIKE system 
SPIKE uses of two important stages for generating best 

practices for SAN configuration problems. The first stage 

is the collection of configuration data and problem reports 

from the various SAN deployments. The second stage is 

the actual generation of best practices by analyzing the 

collected data. The second stage is composed of three 

important sub-stages that are mandated by the nature of 

the best practices: (i) association identification, (ii) 

attribute identification (feature selection), and (iii) derived 

attribute identification. Each of these three sub-stages is 

detailed in the following sections with examples. It is 

important to note that SPIKE is generic in nature and not 

tailored towards any of the types of configuration 

problems listed in Section 2.2. Thus, the discovered 

associations, attributes and derived attributes are used in 

the generation of the best practice for a given SAN 

configuration problem. 

3.1 Data Collection 
The first stage in SPIKE is collect data from multiple 

SAN deployment sites. When a SAN administrator 

reports an irresolvable problem to the help desk, the help 

desk personnel advises the administrator to provide a 

current snapshot of the database of the storage resource 

management (SRM) tool managing the SAN. The SAN 

administrator also provides a problem report that is 

associated with the snapshot of the database. When there 

is a sufficient number of problem reports and attached 

database snapshots, the best practice generation tool is 

applied to the collected data in the warehouse and likely 

best practices to prevent the reported problems are 

produced. 

3.2 Generation Algorithm 
As mentioned earlier, the second stage is split into three 

sub-stages, with each sub-stage focusing on a different 

element of the best practice. For the purpose of the 

description, we assume that there is a SAN configuration 

problem P that is reported that affects a section of storage 

network entities that are a proper subset of E.   

3.2.1 Association Identification 
The basis of association identification is to use 

information-retrieval metrics to identify the most 

promising association indicative of a SAN configuration 

problem.  

 

The identification of the association proceeds in the 

following steps: 

1. SPIKE examines every SRM snapshot database 

corresponding to a problem P. 

2. For each such snapshot database, SPIKE calculates 

the set of entities that are reporting problems. Let us 

call this set E1.  

3. From the entity-relationship model in the snapshot 

database, SPIKE generates the list of associations A. 

4. For every association a in the list of associations A, 

SPIKE generates a list of the instances of the 

association, aInst. 

5. For every instance aInsti in the list of associations 

aInst, SPIKE generates a set of entities corresponding 

to that association instance called E(aInsti). 

6. Following this generation, SPIKE merges two entity 

sets E(aInsti) and E(aInsti) if the two association 

instances are independent. The merger step gives 

more statistical significance to association instances 

with a smaller number of members. We define two 

association instances to be independent if the 

instances do not have behavioral implications on each 

other in terms of the storage area network operations.  

7. Following this merger process, SPIKE comes up with 

a new list of set of entities called Emerge(aInst). 

8. For each instance of the set Emerge(aInst), SPIKE 

applies the metrics of precision and recall with 

respect to the set E1 (calculated in the second step) 

and rank the instances based on the calculated 

metrics. 

9. SPIKE chooses the top instance of the set 

Emerge(aInst) and for that instance, report the relevant 

associations as the most promising for the particular 

SAN configuration problem P. 

 

In Section 2.2, it was stated that it is possible to generate a 

best practice without an association. Therefore, SPIKE 

adds the null association to the list of associations 
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considered for the algorithm. The null association trivially 

represents all the entities in E and a selection of the null 

association as the top-ranked association implies the 

absence of an association in the best practice.  

 

The next critical sub-stage is to identify the attributes and 

their corresponding values that may be related to the SAN 

configuration problem. 

3.2.2 Attribute Identification 

SPIKE uses a classification approach in order to 

determine the purest subset of attributes that are indicative 

of a SAN configuration problem P. To aid in the 

classification process, SPIKE uses decision trees 

primarily because the results are easily interpretable. The 

relatively deterministic nature of the domain of interest 

biased the design of SPIKE against the use of naïve 

Bayesian classifiers. 

However, there is a significant challenge in using a 

decision tree in this case. The key challenge is there are 

multiple types of entities with disjoint attribute sets, while 

decision trees typically take a single entity type as input.  

 
To alleviate this problem, SPIKE can combine all the 

entity types into an aggregated entity type using database 

joins. However, a naïve approach of joining all entities is 

going to result in an extremely large number of instances 

for the aggregated entity.  

 

The next challenge is determining if SPIKE can do better 

than a full aggregation of all entity types. To achieve this, 

SPIKE uses a ranking metric for all entity types based on 

their relevance to the reported SAN configuration 

problem. Then this ranking metric used to decide the 

number and order of database joins to perform on the 

entity types. 

 

In this step, SPIKE computes the ranking of every entity 

type based on the concept of information entropy. In 

canonical terms, the information entropy of an event x is 

the sum, over all possible outcomes i of x, of the product 

of the probability of outcome i times the log of the inverse 

of the probability of i (which is also called i's surprisal - 

the entropy of x is the expected value of its outcome's 

surprisal).  Formally, this is represented as: 
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Next, the concept of information entropy is used in 

ranking the various entity types. We define a data path 

between two entities as a list of association instances that 

can be used to perform a database join of the entities in 

question. Trivially, there exists a data path between an 

entity and itself through the null association. 

 

For each entity, SPIKE computes the number of data 

paths from entities in as well as outside the set of entities 

E. As defined earlier, the set E represents the collection of 

entities reporting the SAN configuration problem. We 

define a true data path as one to an entity in the set E and 

a false data path as one to an entity outside the set E.  

 

SPIKE uses the data path statistics to define the entropy 

for an entity type T. Assume that there are P true and N 

false data paths in the entity type T. Let us assume that 

instances of the entity type T divide the above-mentioned 

data paths into k partitions, each containing Pi true and Ni 

false data paths, where i varies from 1 to k. 
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Based on the above, SPIKE computes the information 

gain accruing from the entity type T as follows: 
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Based on this concept of information gain, SPIKE follows 

these steps to identify the attributes and values of interest: 

1. Entity types are ranked in order of their computed 

information gain metric: Gain(T) for an entity type T. 

2. The top-ranked entity type is chosen in terms of 

information gain as the current entity type and 

applies the decision tree algorithm on the current 

entity type. 

3. The current entity type is joined with the next-ranked 

entity type that is connected to the current entity type 

to form the new current entity type and the decision 

tree algorithm is applied to the new current entity 

type. 

4. If there is no increase in classification accuracy in 

step 3, the classification process is halted and SPIKE 

moves on to step 5. Otherwise, step 3 is repeated to 

continue the classification process. 

5. The classification process results in is a list of 

attributes and values belonging to various entity 

types. These attributes and values are used in the 

construction of the best practice relevant to the SAN 

configuration problem P. 

 
When, the set of attributes and values is not enough to 

construct the best practice for a SAN configuration 

problem P, derived attributes and their corresponding 

values are generated.  

3.2.3 Derived Attribute Identification 
The derived attribute identification step is based on the 

principle of generating derived attributes by analyzing the 

associations in the storage network domain. Given a SAN 
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configuration, there are a number of associations as 

described in Section 2.1. We assume that each association 

can be represented as a derived entity in the entity-

relationship model corresponding to the storage network 

domain. This implies that there is a table corresponding to 

each association in the input configuration data. 

Therefore, every association type can also be input into 

the decision-tree classifier for derived attribute 

identification. 

 

The derived attribute generation algorithm is invoked 

when SPIKE considers an association type for joining into 

the input table for classification (Step 2 or Step 3 in 

Section 3.2.2). When such an association type is selected, 

SPIKE adds summary information on the entities 

involved in the association that are already part of the 

input table. This summary information is considered to be 

the derived attributes for the association type. 

 

For each entity type identified in the previous step that is 

linked with an association type, SPIKE computes the 

summary information on each of the attributes in the 

entity type. Typically, the these six aggregate functions 

have been employed for computing the summary; 

average, min, max, count, count distinct and sum. In 

typical SAN configurations, however, most of the 

attributes are categorical attributes. Hence, SPIKE utilizes 

count and count distinct aggregate functions. 

 

SPIKE first obtains the distinct values for each attribute, 

then the following two attributes for each distinct value: 

• count attribute: the count of data instances with each 

distinct value is stored. The name of this attribute is 

N_<distinct value> 

• boolean existence attribute: the existence of the 

distinct value within the association is stored. When 

the data is sparse, this attribute helps the 

classification technique to correctly obtain the best 

practices. The name of this attribute is HAS_<distinct 

value> 

4 Preliminary Results 
In this section, we perform an exhaustive evaluation of an 

initial implementation of SPIKE with data synthetically 

generated from a fault injection routine. While synthetic 

data cannot substitute for real-world data, the evaluation 

provides an initial validation of SPIKE. To this end, we 

injected SPIKE with problem reports under various 

conditions and observed the behavior of SPIKE in terms 

of correct best practices generated as well as false 

positives. The problem reports not only contain the 

entities reporting problems but also the rest of the SAN 

configuration that may be working correctly. Both the 

problematic and non-problematic data is used for decision 

tree classification. Another thing to note in interpreting 

the data is it takes 2000 problem reports for an expert 

team to come to similar conclusions. 

 

In the evaluation of SPIKE, we found that the association 

identification was able to correctly identify the relevant 

association within 10 problem reports and was relatively 

less sensitive to environmental factors than the attribute 

identification. Consequently, the major emphasis of our 

evaluation is focused on the generation of the correct 

attribute and value pairs for the sake of brevity.  

 

In one experiment, we measure the sensitivity of SPIKE 

to the number of faults of the same type presented in the 

input SAN configuration data. We vary the number of 

problem reports as input to SPIKE from 50 to 500 in steps 

of 50. The fault injection routine introduces four different 

problems of the Cartesian type into the problem reports 

and we observe the number of problem reports required 

by SPIKE to generate the problem reports. We choose the 

Cartesian type as the default problem type because the 

number of attributes and values in this type typically 

exceeded those in the other problem types. As can be seen 

in Figure 1, SPIKE cannot generate any best practice 

using up to 150 problem reports. Following this, the 

number of best practices generated slowly increases until 

SPIKE is able to generate all four best practices using 500 

problem reports. The number of false positives decline 

gradually with the increase in the number of problem 

reports. 
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Figure 1. Sensitivity to the number of problems of the same 

problem type 

 

In a related experiment, we also vary the number of 

different problems of the same problem type from 1 to 4. 

We observed in this experiment, that the number of 

problem reports required to find the first two best 

practices varies from 150 to 200 and to find the third 

varies from 250 to 300. As before, SPIKE finds the fourth 

best practice when there are 500 problem reports.  

 

In another experiment, we measure the sensitivity of 

SPIKE to partial and complete mis-reporting of SAN 

configuration problems by system administrators. For the 

partial mis-reporting case, we vary the number of problem 

reports as input to the best practice generator from 50 to 
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500 in steps of 50. The fault injection routine introduces a 

single problem of the Cartesian type into the problem 

reports selectively erases a subset of the entities reporting 

a problem based on the degree of misreporting. In this 

experiment, we vary the percentage of misreporting from 

0% to 50% in steps of 10%.  SPIKE is able to correctly 

predict the best practice within 150 problem reports even 

with an error rate of 20%. The number of required 

problem reports climbs to 200 with an error rate of 30%, 

and the algorithm is unable to generate the best practice 

with 500 problem reports at an error rate of 40% or more. 

For the complete misreporting case, SPIKE is able to 

correctly generate the best practice within 150 problem 

reports with an error rate of up to 10% and 200 problem 

reports with an error rate of 20%. If the error rate is 

increased beyond this, SPIKE is unable to generate the 

correct best practice even with an input of 500 problem 

reports.  

5 Related Work 
Recent research has focused on the black-box approach in 

order to handle the complexity and the non-deterministic 

behaviors of the managed system. One typical setup is the 

symptom-based approach. By observing system states 

from the results of probes, a symptom-based approach 

tries to predict the cause of failure from past experience. 

Unsurprisingly, machine learning techniques are adopted 

in most recent papers in the black-box approach. Among 

those various learning algorithms, Decision Tree [4], 

Naïve Bayes Classifier [12, 9, 7], Bayesian Network [5, 

14] and Clustering [3, 6, 10, 9] are widely used due to 

their advantages of interpretability and modifiability [6, 

17].  

 

From the perspective of machine learning, failure 

diagnosis can be viewed as an anomaly detection problem 

[9, 10, 17], particularly if the majority of the training 

samples define good cases. The concept of feature 

selection and model selection are also explored in several 

recent papers [12, 18]. A history-based approach is 

another useful technique which reduces the solution space 

significantly [16, 17].  Diagnosis of configuration 

problem has been studied in several areas such as 

Windows Registry [16, 10, 8], router configuration [7] 

and general Internet application [11]. Other recent 

research activities focus on performance problems [1, 6], 

software failure [3, 4] or general fault localization 

techniques [14, 12, 2]. 

6 Conclusions 
Best practices are a useful tool in problem diagnosis as 

most configuration problems are caused by the violation 

of best practices in the storage network domain. The 

paper presents SPIKE, an automated best practice 

generation tool that uses a combination of information-

retrieval principles, entity ranking and decision-tree 

classification to statistically infer the best practices for 

SAN configuration problems.  We have presented 

preliminary results from an initial implementation of 

SPIKE and hope to validate SPIKE with real world 

problem reports. 
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