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Abstract
Troubleshooting misconfigurations of modern applica-
tions is difficult due to their large and complex state.
Snitch is a prototype tool that assists human trou-
bleshooters by finding relationships between application
state and subsequent faults. It correlates configuration
state and application errors across many machines and
users, and across long periods of time. Snitch aids the
human expert in extracting patterns from this rich but
enormous data set by building decision trees pinpointing
potential configuration problems.

We applied Snitch to 114 GB of configuration traces
from 151 machines over 567 days. We illustrate how
Snitch can suggest misconfigurations in case studies of
two Windows applications: Messenger and Outlook.

1 Introduction
Misconfiguration is a leading cause of software faults.
Configuration errors are the largest category of opera-
tor errors for Internet services [6], and many types of
misbehavior in Windows programs are caused by reg-
istry entries [11]. As programs grow more complex with
ever more configuration settings, it becomes increasingly
difficult to understand all of their potential interactions.
Furthermore, software components from different ven-
dors often update and interpret shared state in mutually
incompatible ways, leading to “DLL hell” in Windows
and RPM drift in Linux [3].

The sheer volume of persistent state, and the com-
plex interactions between this state and the programs that
manage it, make it difficult to determine which settings
are the root cause of a particular fault. For example, a
typical Windows PC has 70,000 files, 200,000 registry
entries, and dozens of programs [9]. If one of these pro-
grams starts to misbehave, how can we determine the
particular piece of state which is misconfigured?

In this paper, we propose a three-step process to trou-
bleshoot a misconfigured application. First, we use an
always-on tracing environment [2, 10] to record all reads

and writes of configuration state. Second, we explic-
itly identify faulty application runs using outcome mark-
ers. Some markers, such as error messages or exit codes,
must be captured in real time by tracing. Others might
be identified after the fact, e.g., via offline log analysis.
Given traces of configuration operations and outcome
markers, we then use machine learning to do “root-cause
localization” [4], i.e., to correlate bad outcomes with the
configurations that likely caused them.

Creating a fully automatic method for unearthing root
causes is very difficult. Standard machine learning tech-
niques cannot distinguish correlation from causation;
they generally ignore temporal information (how long
ago and in what order state was read or written); and
most importantly they lack semantic understanding of
the state being accessed. Thus, while we use machine
learning techniques to reduce the burden on a human
troubleshooter, we also let her guide the learning algo-
rithms by applying expertise that is not easily automated.

Using interactive decision trees, we allow user input
to guide the construction of a fault diagnosis tree. The
interaction process is supported by timeline views and at-
tribute generalization. We have implemented these tech-
niques in a prototype of Snitch, a tool to aid in configura-
tion troubleshooting. Our target scenario is that of a user
calling a help desk to complain about an observed appli-
cation fault. The help desk expert has access to config-
uration traces from many users, but the sheer volume of
this data makes manual examination impossible. Instead,
she runs Snitch on the data to interactively diagnose the
probable cause of the fault.

The remainder of this paper is organized as follows.
Section 2 describes interactive decision trees, timeline
views, and attribute generalization. Section 3 describes
the implementation of the Snitch prototype. Sections 4
and 5 present two application case studies. Section 6
discusses related work and Section 7 concludes with a
summary of the lessons learned.



2 Interactive Decision Trees
In our model, programs access configuration state by
reading and writing keys that have associated values.
Specifically, on the Windows platform, keys are either
file names or the names of registry entries. The goal of
our troubleshooting algorithm is to identify the keys and
values that induce faults.

We assume an always-on tracing environment such as
Flight Data Recorder [10] which tracks every key/value
read and write. The tracing environment provides a
timestamp and key name for each registry and file access
as well as information about the process generating the
access, e.g., program name, start time, and exit code. It is
desirable to also know the value that was read or written,
but useful fault inferences can be made in the absence of
such knowledge.

Each application run is associated with one or more
outcome markers which indicate any anomalous behav-
ior that was exhibited by the run. Using outcome mark-
ers, we can explicitly differentiate between “good” runs
and “bad” runs, allowing us to avoid the assumption that
healthy configurations are widespread. Possible outcome
markers include application exit codes and error log mes-
sages, as well as users explicitly marking faulty applica-
tion runs.

2.1 Basic Design
A decision tree [7] predicts the class of an instance based
on its attributes. Each interior node splits the set of in-
stances by testing a specific attribute: each child of that
node will correspond to a distinct value of that attribute.
Each leaf node predicts the class of all instances whose
attributes trace that path down the tree. In Snitch, classes
correspond to application outcomes. Instances are ap-
plication runs, attributes are the registry entries and files
accessed by the application, and attribute values indicate
whether the attribute was accessed or not (and possibly
the value). We reduce all attributes to binary ones, each
indicating whether a particular key/value pair, or a par-
ticular key irrespective of value, was accessed.

We chose decision trees because they can be efficiently
learned and applied to large data sets. They also of-
fer compact, human-readable representations of relation-
ships between faults and potential causes. This is a key
requirement since our aim is explanation rather than pre-
diction: Snitch’s output is intended to assist help desk
experts in finding and fixing misconfigurations. Ap-
proaches such as neural nets offer “black-box” prediction
rather than human-readable explanation and are unsuit-
able for our purposes.

We build our decision trees as binary classifiers that
distinguish a single outcome from other outcomes, since
these are smaller and easier for users to interpret. Our
method is similar to the C4.5 algorithm [7]: leaf nodes
are split greedily until they have sufficiently low classifi-
cation error (we do not prune the tree after building it).

Snitch greedily splits each node on the attribute with
the highest information gain. Given a set of instances
S with outcome probability distribution P (c), we define
the entropy, a measure of class “pureness,” as:

Entropy(S) = −
∑

all classes c

P (c) log2 P (c).

The information gain from splitting on an attribute A
with value v resulting in an instance subset Sv is then

Gain(S, A) = Entropy(S) −
∑

val v∈A

|Sv|
|S|

Entropy(Sv).

If different attributes have the same information gain,
standard decision tree algorithms will choose one of
them arbitrarily. Such arbitrary tie-breaking can hide im-
portant troubleshooting information. For example, sup-
pose that a program acts faultily when it reads a particu-
lar configuration value, and that an error-reporting DLL
is loaded after the fault occurs. The fault will be equally
correlated with both the bad configuration setting and the
DLL file. The decision tree might split on either one, al-
though a human user would probably regard the config-
uration value as a more useful causal explanation of the
fault.

In general, actions that are highly correlated with a
fault might be causes or effects of the fault. Snitch allows
the user to distinguish these through interactive splitting,
permitting the user to select the most appropriate split
attribute at each step. Whenever a node must be split,
Snitch displays the attribute group with the greatest in-
formation gain and asks the user to choose one group
member as the human-readable label for the split. Each
attribute group contains a set of attributes that are per-
fectly correlated with each other, i.e., splitting on any
member of the group is equivalent to splitting on any
other. However, some attributes in the group may be
more useful to a human as explanations of a fault.

If none of the attribute group members seem meaning-
ful, the user can examine the next best attribute group.
This group will provide less information gain but it may
have more meaningful attributes. Thus, interactive split-
ting facilitates two types of interaction. Allowing the
user to choose attribute group representatives gives us
meaningful node labels without changing the tree struc-
ture. Allowing the user to choose a different attribute
group lets them change the tree structure.

If desired, the entire decision tree can be generated in
non-interactive mode with some specified target classifi-
cation error. The user can then examine each split in the
generated tree to choose the labels.

Deep trees may overfit the data. We rely on the user
to interactively stop tree construction early, before overly
complex explanations have been built. The user can de-
cide to stop growing a tree branch based on statistics cal-
culated by Snitch, such as the distribution of exit codes



Table Columns
Event TimeStamp, IsRead, Attribute, Value, InstanceId
Instance InstanceId, StartTime, ExitTime, ExitCode, ProgramName, MachineName
String StringId, String

Table 1: Schema for post-processed traces.

at the branch and their absolute numbers. The user may
also stop branch growth due to the desired amount of tree
detail.

A fault may arise from the misconfiguration of mul-
tiple keys. If the keys have perfectly correlated values,
then only one of them will be explicitly represented as
a split attribute in the tree. However, during interactive
splitting, Snitch will display all of these keys in a sin-
gle attribute group. This allows a human troubleshooter
to notice any unexpected correlations between configu-
ration state.

2.2 Timeline Views
When deciding between multiple attributes that are
equally correlated with some outcome, it is often use-
ful to consider the timestamps of the corresponding
read/write events. For example, an earlier event might
be a better candidate for a root cause than a later event.

We found it helpful to look at timeline views while
interacting with Snitch. Given some set of attributes
that are highly correlated with the outcome, a timeline
view shows the order of the corresponding configuration
events in a specific application run. As we show in Sec-
tion 4, these timelines can be useful in validating a root
cause hypothesis that is suggested by looking at a deci-
sion tree.

2.3 Attribute Generalization
By default, we assume that each key name/value pair is a
unique attribute. However, when processing data across
machines and users, we often find key names that are
semantically equivalent but differ because they contain
a user name or machine ID. In these cases it might be
valuable to generalize these attributes, for example by
wildcarding the user or machine name. In the case study
in Section 5 we show how simple generalization based on
wildcarding can substantially improve the decision trees.

3 Data and Implementation
To evaluate Snitch, we used trace logs from the Flight
Data Recorder (FDR) project [10]. The logs tracked the
registry, file, and process activity of 151 Windows hosts
over 567 days for a total of 7,401 machine-days. Registry
and file activity consisted of operations such as opens,
reads, deletes, etc. Process activity included process cre-
ation and exit events as well as exit codes.

Before building a tree for a particular application, we
determined all of the keys (registry entries and files) that
were read during any run, using them to generate the at-
tributes for tree-building. Each key generated at least one
binary attribute which specified whether it was read or
not read. Additionally, each observed value for a key
generated one binary attribute which specified whether
that key was read with that value.

We used a program’s exit code as its outcome marker.
Compared to more detailed markers such as error logs,
exit codes provide limited information about a subset of
program faults. Unfortunately, our input traces did not
include error logs.

The FDR traces presented us with a few other chal-
lenges. For reasons of efficiency, the traces did not con-
tain the binary data that was read from or written to files.
Data values were logged for registry writes but not reads.
We inferred values for registry read events using previous
writes (if any) to the same registry entry on the same ma-
chine. However, the traces did not start at the beginning
of each machine’s lifetime, and few writes were observed
during the traced period. Thus, only 2% of read/write
events were of a known value, and in our case studies
these were never selected by the decision tree algorithms.
In other words, due to an artifact of the data, the trees
generated by Snitch used only “read/not read” attributes.
However, as we will see, these attributes were still useful
as indicators of misconfigured state.

We stored the FDR data in a Microsoft SQL Server
database using the schema shown in Table 1. The
Event table stored all reads and writes to persistent state.
The Instance table uniquely identified each application
run. Strings such as key names and machine names
were stored in a separate String table and referenced
in the other two tables through unique integer IDs. The
tree construction code was implemented in C# and used
LINQ [5] to query the database.

A few simple optimizations made tree construction
fast and efficient. First, by filtering out all key events
except reads and writes, and by representing the data as
described above, we reduced 114 GB of raw trace data to
5.3 GB of SQL data. Second, by careful use of LINQ
queries, we were able to push much of the data pro-
cessing into the SQL Server back end, minimizing the
amount of data read from the server and the processing
load on the client. Third, before constructing the tree, we



collected all perfectly correlated attributes into attribute
groups. This substantially reduced the number of split
candidates, e.g., by a factor of 25 in our Outlook case
study. Since each split candidate must be examined at
each node to compute its information gain, this led to a
substantial speedup. In our two case studies, tree size
varied from 1 to 19 nodes, and the worst-case tree con-
struction time in non-interactive mode was 0.45 seconds.

4 Case study: MSN Messenger
MSN Messenger is Microsoft’s instant messaging client.
In Figure 1(a), we depict a classifier for the exit code
-1073741819. Using a single split, the tree achieves per-
fect classification accuracy — Messenger exits with this
code if and only if it reads a wpad[1].dat file in In-
ternet Explorer’s temporary data folder.

The decision tree is simple and accurate, but it is not
interpretable. Why does this split offer perfect classifica-
tion accuracy? Since we are performing black-box anal-
ysis, we cannot look at Messenger’s source code and find
the code paths that are activated by consumption of spe-
cific files. However, there is additional context that is ig-
nored by standard tree algorithms but can provide clues
to the root cause of the fault.

During interactive splitting, Snitch displays attribute
groups ranked by decreasing information gain. We
searched the web for information about the most
promising-looking attributes in the first two groups.
These attributes fell into four categories:
• wpad*.dat files in IE’s temporary folder
• windows messenger\ceip\sqmdata*.
sqm files in the user’s application data folder

• A HNetCfg.FwAuthorizedApplication
registry entry

• A registry entry containing the GUID
ec9846b3-2762-4a6b-a214-6acb603462d2

The wpad*.dat files are Web Proxy Automatic De-
tection Files automatically generated by Internet Ex-
plorer and used by applications to discover nearby web
proxies. The .sqm files are Service Quality Moni-
toring files generated by Microsoft’s Customer Expe-
rience Improvement Program (CEIP). They log errors
encountered during program execution. HNetCfg.
FwAuthorizedApplication refers to a Windows
firewall COM object which grants network access to ap-
plications; the GUID is simply an alias for this object.

Given that three of these categories pertain to fire-
wall settings and the fourth to error reporting, we hy-
pothesized that the exit code -1073741819 was caused
by misconfigured firewall settings which prevented Mes-
senger from using the network. This caused CEIP ac-
tivity before the program exited. This hypothesis was
supported by the timeline view (Figure 1(b)) for the left-
hand tree branch (the single instance corresponding to
the anomalous run of Messenger). Shortly before the

(a) Numbers in parentheses show the number of instances classified by
an interior node. For leaf nodes, the numerator shows the number of cor-
rectly classified instances, and the denominator the total. XXX represents
a single (anonymized) user.

(b) Timeline view

Figure 1: Decision tree and timeline view for Messenger.

Figure 2: Classification error vs. tree size for Outlook.

program exited, it wrote and then read a wpad[2].dat
file. Since there were no intervening writes by other
programs, any bad settings in that file must have been
written by Messenger itself. Soon after this Messenger
accessed HNetCfg.FwAuthorizedApplication,
learned (presumably) that it could no longer access the
network, and generated CEIP activity before exiting.

5 Case study: Microsoft Outlook
In our next case study, we investigated the Outlook email
client. Outlook is a complex application and a single run
can generate over 30,000 read/write events. Given the
volume of data, we confined user interaction in this case
study to choosing node labels after the tree was gener-
ated.

We investigated exit code -1. Our database contained
812 runs of Outlook, 189 of which exited with a -1.



Across these runs we observed 97,056 distinct attributes
in 3,687 attribute groups. We first explored the trade-off
between tree size and classification accuracy. We built
trees of varying sizes by varying the error threshold c
between 50% and 0.07%. This produced trees with be-
tween 1 and 19 nodes (Figure 2). Note that the threshold
affects the overall classification error but is neither an
upper nor a lower bound on it.

Figure 3(a) shows the decision tree computed with
c = 12.5%. The tree has 5 nodes and an overall error
of 3.3%. If we expand the tree further, the error shrinks
but the tree size increases substantially; with c = 6.25%,
the error is 1.5% but the tree has 11 nodes (Figure 3(b)).
Furthermore, each additional split only classifies a small
number of instances, i.e., each split has to choose from a
large number of attributes providing a small information
gain.

We noticed that several attributes had user names
embedded in them. We speculated that generalizing
such attributes by wildcarding the user name might im-
prove the trees. We applied three simple generaliza-
tions based on regular-expression matching: wildcarding
user names in keys beginning with \registry\user\
*\ and \documents and settings\*\, and wild-
carding filenames while retaining the pathname and file
extension. The generalized attributes were added to the
original attribute set. This increased the number of at-
tributes by 73% and the number of attribute groups by
30%. With generalized attributes, the same c yields a
tree of the same size but with an error of only 0.7% (Fig-
ure 3(c)). More importantly, the tree achieves most of its
accuracy by using two generalized attributes.

The generalized tree suggests that the exit code is re-
lated to reading user-specific startupitems data and
.pf files residing in a global prefetch directory. We be-
lieve that this is a better explanation than the one gener-
ated without attribute generalization; however, we cannot
be sure of this as we do not know the ground truth for this
particular data set. We are currently investigating the -1
exit code in order to validate the tree.

6 Related Work
The closest related work to Snitch is PeerPressure [11],
the current state of the art in troubleshooting registry set-
tings. PeerPressure identifies faults through statistical
analysis of registry snapshots from a large number of ma-
chines. Faulty programs are re-executed in a special trac-
ing environment which captures the registry data that is
read. These values are then compared to the correspond-
ing values that are stored in other machines’ registries.
Rare values are nominated as faulty.

Snitch addresses three limitations of PeerPressure.
First, PeerPressure’s assumption that “common is cor-
rect” is not always true. For example, a patch for one ap-
plication that breaks a configuration setting for another

(a) c = 12.5%, 3.3% error

(b) c = 6.25%, 1.5% error

(c) c = 6.25% with generalization, 0.7% error

Figure 3: Decision trees for Microsoft Outlook.



might be installed system-wide before any problems are
noted. Second, PeerPressure requires the fault to be
reproducible by re-running the application. Always-on
tracing allows Snitch to diagnose past faults without re-
quiring their reproduction. Finally, lack of always-on
tracking means that PeerPressure is limited to “one-step”
causal analysis. It can find suspect registry entries, but
not the programs or the chain of events that caused them.

Chen et al use decision trees to diagnose failures in
the eBay system [1]. Each user request is tagged with
attributes representing the software systems that handled
it. These attributes are culled from an always-on logging
infrastructure. There are three major differences between
Chen’s work and Snitch. First, Snitch provides interac-
tive tree construction, allowing a human troubleshooter
to guide the diagnostic process using extrinsic domain
knowledge. Second, using timeline views, Snitch lets
troubleshooters examine the temporal interactions be-
tween configuration operations. Third, Snitch must deal
with noise in the attribute namespace. In our problem
domain, the semantic equivalence between registries and
files on different machines is often obscured by attribute
names containing local identifiers. Snitch uses attribute
generalization to remove this noise and produce tractable
data sets.

7 Conclusions
Our case studies demonstrate that Snitch provides useful
insights into the relationship between configuration state
and exit codes. High-level explanations of faults still re-
quire a human expert to search the web and interpret the
results. This is challenging when the troubleshooter is
not the original application developer and lacks an un-
derstanding of the program’s internal operation. Trou-
bleshooting could be made easier by raising the level of
abstraction, e.g., through a database that mapped GUIDs
to the corresponding objects and services. Other useful
databases would associate keywords such as “error re-
porting” or “firewall” with registry keys, file names, and
application exit codes. A global repository of structured
fault reports [8] would also make it easier to identify
common misconfigurations across many machines.

We found that timeline views were very useful in di-
agnosing faults. Currently, the user must manually com-
bine this temporal data with the information gain metrics
provided by Snitch. Ideally, Snitch would combine these
two metrics automatically, perhaps by favoring split at-
tributes that have high information gain and also occur
earlier in time, under the assumption that an earlier action
is more likely to be a root cause than a later one. Since
standard decision tree algorithms do not consider tempo-
ral information, future work involves extending our algo-
rithms to do this.

Another insight from the Outlook study is the impor-
tance of attribute generalization through the removal of

local uniquifiers from attribute names. Currently we gen-
eralize using a small, fixed set of regular expression tem-
plates; we plan to extend this by using string matching
and clustering techniques to automatically extract gener-
alized attributes.

Our immediate plan for the future is to validate Snitch
using a broader set of applications and richer traces that
include registry values and error logs. In the medium
term, we plan to investigate other machine learning tech-
niques and their applicability to this problem. We would
also like to develop distributed versions of these tech-
niques for use in large networks where centralization of
all trace data might be impractical.
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