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ABSTRACT 

Users are often frustrated when they encounter a sudden 
decrease in the responsiveness of their personal 
computers.  However, it is often difficult to pinpoint a 
particular offending process and the resource it is over-
consuming, even when such a simple explanation does 
exist.  We present preliminary results from several weeks 
of PC usage showing that user-perceived 
unresponsiveness often has such a simple explanation and 
that simple statistical models often suffice to pinpoint the 
problem.  The statistical models we build use all the 
performance counters for all running processes.  When 
the user expresses frustration at a given time point, we 
can use these models to determine which processes are 
acting most anomalously, and in turn which features of 
those processes are most anomalous.  We present an 
investigative tool that ranks processes and features 
according to their degree of anomaly, and allows the user 
to interactively examine the relevant time series.   

KEYWORDS:  performance instrumentation, machine 
management, statistical modeling, anomaly detection. 

1. INTRODUCTION 

Nearly everyone who has used a computer has 
encountered a situation where an application or the entire 
machine seems to slow down dramatically: all of a 
sudden, windows are not as responsive, actions are taking 
longer than they should, and so on.  At this point, 
although the user might like to investigate what’s wrong, 
he has a limited set of options.  He may open up 
Windows’ Task Manager or use UNIX’s “ps” command 
to view the running processes, and then check to see 
which ones are taking the most CPU, I/O, or memory, but 
he will generally not know whether the values he sees are 
typical or surprising.  In other words, while he can view 
instantaneous values of some system features, he has no 
model of what their typical values are; furthermore, even 
if he could view all possible features, it would be difficult 
to glean insights from the resulting deluge of data.  

One plausible hypothesis is that most slowdowns are the 
result of one process consuming an abnormally high 
amount of one resource (e.g., CPU, disk, network, OS 
handles or file descriptors, system threads, etc.) from a 
large set of possible resources. However, presenting the 

consumption of every resource for every process directly 
would likely be too much information for a user to digest.  
We built a system based on these assumptions, and found 
it to be remarkably effective. Our system collects data and 
builds a model for each process. The model allows us to 
determine the level of anomaly for any process, and 
furthermore for any feature within a process.   This allows 
us to use all possible features, since only the anomalous 
ones will float to the top. We have also developed a 
visualization tool that allows interactive investigation of 
the processes and their features with respect to these 
models. When a user experiences a slowdown at a given 
point, he can see the processes ranked by their relative 
level of anomaly, and for each process, the features 
ranked by anomaly.   In addition, the user can see the time 
series for the feature of interest.   

Once a user has identified a high-likelihood offender 
(perhaps an antivirus product or a desktop search 
application), he has numerous options to improve the 
situation. He might start shopping for a new antivirus 
product, switch to a competing desktop search 
application, or just stop using something that is more 
trouble that its worth. Additionally, because many 
developers also use the software they write, this tool may 
help them catch transient resource usage issues that are 
significantly slowing down the system as a whole. 

The primary question raised by our approach is its 
effectiveness: how often does user-perceived machine 
slowness have such a simple explanation? Beyond this, 
there were also significant questions about how best to 
represent features that would only be available 
sporadically (i.e., when the relevant processes were 
running). In the remainder of this paper, we address these 
questions and show preliminary results from using our 
investigative tool.   

2. RELATED WORK 

There has been a significant amount of work using 
statistical models to detect and/or diagnose faults and 
performance problems [A+03, Ba+04, Bo+05, Ch+02, 
F+04, G+05, KF05, R+04, R05, X+04]. Researchers have 
investigated many different sources of data (e.g., 
performance counters [Co+04], request paths [Ch+03, 
Ch+04]), as well as many different statistical models. 
Most of this work has focused on a server environment: 



an environment where a large number of machines serve 
an even larger number of user requests. In addition to 
their obvious economic importance, the high request 
volume of server environments makes them particularly 
well-suited to analysis using statistical models. The 
consumers of this analysis are either operations personnel 
(sometimes viewed as datacenter system administrators) 
or developers. 

In contrast to this previous line of research, our work 
focuses on end-user desktops, and the consumer of the 
analysis is the end-user himself. End-user desktops are a 
significantly different environment from servers. Perhaps 
most importantly, we have much less expectation of the 
workload being repetitive. Because of this, we might find 
it quite difficult to duplicate the success that statistical 
models have had detecting request failures in server 
environments. Luckily, we can sidestep this issue because 
the consumer of the analysis is the frustrated user – the 
user will himself indicate that the system is slow 
(detection), and the statistical model is only responsible 
for narrowing down the reason for this slowness 
(diagnosis). 

Like our work, statistical debugging [Z+04, Z+05, Z+06], 
Strider [Wa+03], Chronus [Wh+04] and Peer-Pressure 
[Wa+04] target end-user applications, but they are 
otherwise radically different. Statistical debugging 
focuses on helping developers understand why a 
particular application occasionally fails. To this end, 
statistical debugging requires an external mechanism to 
determine which process is failing (in contrast to our goal 
of determining which process is at fault), and it requires a 
large number of differently-instrumented binaries (in 
contrast to our goal of working on a single machine 
without some external correlation mechanism and without 
instrumentation).  Strider, Chronus and Peer-Pressure aim 
to diagnose problems due to bad persistent state (i.e., file 
contents and registry settings). Strider and Peer-Pressure 
presume that the failing process is known a-priori, while 
Chronus requires the user to specify a probe determining 
if the failure is present. In contrast, our analysis is not 
restricted to persistent state changes (some other input or 
change in workload may have triggered resource over-
consumption), and we require significantly less expertise 
from the user (he just pushes the “why is my machine 
slow” button). 

There has also been a significant amount of previous 
work on helping developers or sophisticated system 
administrators understand performance of individual 
components on a single machine, which may be either a 
server or an end-user’s desktop. For example, profilers 
and other instrumentation or logging systems allow a 
developer or sophisticated system administrator to 
understand where the time/memory/etc. is spent in an 
application or OS, thereby guiding refinements to the 
application or OS [Ca+04, HC+01]. Our work relies on 

Windows performance counters (one such logging 
system) to gather the low-level performance metrics; our 
contribution is to present more useful analysis of this data 
to the end-user. We are not aware of previous work trying 
to make the analysis done by these systems useful to an 
end-user.  

A final distinction with previous work is our focus on the 
user’s perception of slowness.  In contrast, most previous 
work has looked at more directly measureable quantities, 
like the latency of a particular machine operation.  

3. DATA COLLECTION AND MODELING 

To evaluate our approach, we collected data over the 
course of several weeks on two machines running 
Windows XP. Every time a user of either machine was 
frustrated at the slowness of the system, he would press 
the “why is my machine slow” button (Scroll Lock in our 
implementation), which we refer to as a “frustration 
event”. During this time, there was approximately one 
frustration event per day per machine.  

Instead of carefully choosing which features should be 
used for the analysis, we gathered all available 
performance counters for all processes.  This included 
items such as total number of threads in the process, I/O 
bytes read per second, percentage of CPU used, page 
faults, and so on.   Our reasoning was that more data 
could only help us, since we would be prioritizing 
features to show the user the ones that were most relevant 
– as such, if we included uninteresting or constant 
features, they would simply sink to the bottom of the list. 

These features were written to a file for all running 
processes once every 60 seconds.  Every four hours, the 
resulting file was compressed and copied to a fileserver.  
We found the overhead of this logging to be negligible (in 
particular, on a 3Ghz Xeon PC, less than 0.15% of the 
CPU on average).  

The nature of the data is complex – not only are there 
dozens of features for each of dozens of processes; at any 
given time only some processes are running. Figure 1 
below illustrates this aspect of the data. 

Figure 1: Process lifetimes shown against time.  At the 
query time, only a subset of the processes are running. 
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Figure 2:  The Investigative Tool.  The left pane shows per process average likelihoods; the upper right pane shows 
the non-constant features for that process ranked by anomaly; the lower right pane shows the time series. 

Our dataset is thus tree-structured: the first level nodes 
are processes, whose children are the features for that 
process; each of those features contains a time series 
which may have large gaps and may not match up with 
other features/processes, as illustrated in Figure 3. 

Figure 3: Tree-Structured Dataset.  Each process has 
multiple features, and each feature has a time series 
which may be non-contiguous in time. 

When the user makes a query at a particular point in time, 
only some of the processes are running.  This results in an 
instantaneous sample which is also tree-structured.  In 
order to extract this sample, we traverse the dataset and 
see if there is a value in the time series for each feature 
(leaf node) that is within a window of the query time, and 
then keep the closest such value. 

For this initial study, we chose to model each feature 
independently as a univariate Gaussian.  Though we know 
our features will not all be independent of each other (for 
instance, I/O total bytes and I/O read bytes are far from 
independent), this makes dealing with missing data far 
easier. We trained the models independently over each 4-

hour window corresponding to a particular log file, and 
then used this model for any frustration event in the same 
4-hour window. Though this was sufficient for our 
investigation of historical data, fully supporting the 
interactive scenario outlined in the Introduction will 
obviously require looking only at data gathered prior to a 
frustration event – this is one of our tasks for future work. 

To compute the log likelihood of a given process, we 
could simply take the sum of the log likelihoods of the 
individual features. Unfortunately, features that are 
constant in a particular process lead to numerical 
instability in this computation, as the empirical variance 
will be zero. After excluding constant features, we need a 
different method to compare different processes with 
different numbers of features.   We thus compute the 
average likelihood per feature for each process that has 
more than a minimal number of non-constant features (10 
in our experiments).    

4. THE INVESTIGATIVE TOOL 

In order to make this data accessible to the user, we 
developed an interface to help the user peruse the 
performance data (see Figure 2 above). The left pane 
shows a list of processes ranked by their level of anomaly; 
the upper right pane shows the features for that process 
along with the feature values as compared to the mean 
and standard deviation, again ranked by anomaly.  The 
lower right pane shows a plot of the time series for that 
feature, and the red crosshairs pinpoint the query time and 
the feature value.  We feel that it is important for the user 
to be able to see the entire time series – this gives his 
context about how atypical the value is, whether it was a 
sudden transition or a slow climb/fall, whether this kind 
of behavior occurs regularly, etc.  

Root 
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At present, the UI only consumes performance data that 
has been logged to disk. We plan to remove this limitation 
soon so that the UI can appear at the moment the user 
presses the “why is my machine slow” button, completing 
the scenario we described in the Introduction. 

5. RESULTS 

To investigate the effectiveness of our proposed approach, 
we looked at the collection of time points at which the 
user hit the “why is my machine slow” button.    Over the 
course of 53 machine-days of data from two users, there 
were 36 such occasions, of which five were duplicates for 
our purposes (the user pressed the button more than once 
within a few seconds).  For each of the remaining 31 
cases, we examined the data point with respect to its four-
hour context in the investigative tool as described above. 
Our first evaluation was determining the fraction of query 
points for which the tool correctly identified the process 
and features which were causing the slowness.  Of course, 
we cannot know for certain what the cause was, but the 
presence of large spikes in CPU, I/O, memory, and/or 
other resources made it very plausible in all but 3 cases 
that a given process (or set of processes) was causing the 
problem.   

Table 1 below examines whether the top process 
identified by our investigative tool was a plausible cause 
of the slowness: 

Top process is plausible 
source of slowness 

26 / 31  (83.9%) 

One of top two processes 
is plausible source 

28 / 31 (90.3%) 

Source of slowness 
unclear from tool 

3 / 31 (6.4%) 

Table 1: Performance for identifying the process 
causing slowness. 

In two of the cases where the source of slowness was 
unclear, no process that we could determine had unusual 
features.  It is possible that the user hit the frustration 
button by accident, but since we currently do not have 
user annotations of these events, we cannot be sure.  The 
third case is described in case study 3 below.  

For the 26 cases in which the process was correctly 
identified, Table 2 considers whether the top feature 
identified by our tool was a plausible cause of the process 
behavior: 

Though these results are promising, we were curious 
whether CPU load alone could determine the cause of 
slowness.  If so, Task Manager or ps would be sufficient 
to find the answers.  Our experience has led us to believe 
CPU load is not always the answer, and with the data in 
hand, we looked at what the plausible primary and 

contributing factors for slowdown were in each case.  
Table 3 below shows the results for the 25 cases where 
we were able to identify highly plausible causes for the 
slowness: 

Top feature is plausible 
source of slowness 

25 / 26 (96.2%) 

Source of slowness 
unclear 

1 / 26 (3.8%) 

Table 2: Performance for identifying features causing 
slowness. 

 CPU Mem I/O Handle 
Count 

Page 
Faults 

Thread 
Count 

Most 
anomalo

us 
feature 

8/ 
25 

4/ 
25 

11/ 
25 

1/ 
25 

1/ 
25 

0/ 
25 

Contribu
ting 

feature 

14/ 
25 

7/ 
25 

16/ 
25 

2/ 
25 

7/ 
25 

1/ 
25 

Table 3:  Breakdown of primary and contributing 
factors for slowness by CPU, Memory, IO, Handle 
Count, Page Faults, and Thread Count. 

In these preliminary results, IO-related features most 
often appeared as the most anomalous feature, though 
CPU was close behind.  Furthermore, in a handful of 
cases, handle counts, page faults, and thread counts 
appeared to be primary factors or contributors to the 
slowness.  This is particularly interesting in that tools like 
Task Manager and ps are typically used only to examine 
CPU consumption.  

To give the reader a better sense for the results, we now 
go into three case studies that describe three different 
modes of behavior:  a case with an obvious single process 
causing slowness, a case with multiple processes 
interacting to cause slowness, and a case where our 
method completely fails to identify the source of the 
problem (but we have a good guess as to what happened). 

 
Figure 4: Average per-feature log-likelihood for the 
top ten processes in case study 1. 



Case Study 1: One Process Causing Slowness 

In this instance, the WindowsSearchFilter 
(“WindowsSea” in the figure) process has a far lower 
average log-likelihood than the other processes, as we can 
see in Figure 4 above.  In this case, then, it is clear in the 
tool which process is likely to be at fault.  The top feature 
(i.e., the one with the lowest likelihood) for this process is 
“IO Data Bytes/sec,” and we show the time series in 
Figure 5 below. 

 
Figure 5:  The top ranked feature, IO Data Bytes/sec, 
for process WindowsSearchFilter in case study 1.  The 
star marks value at the user query time. 

In this case, not only does the feature have a peak at the 
query time, it is also the highest value in the four hour 
contextual window.    As such, the investigation tool has 
showcased the plausible cause of the slowness via its top-
ranked process and feature; without any further clicking 
the user would have a good guess of what’s going wrong. 

Case Study 2: Multiple Processes Involved 

The second case is more complex.  We can see this when 
we look at the likelihood distribution over the top ten 
processes in Figure 6 below: 

 
Figure 6: Per-process average likelihoods for case 
study 2. 

Both WINWORD and InoRT (an anti-virus program) are 
strongly anomalous in this case.  When we examine the 
features in detail, we find that both are jumping in terms 
of memory usage.   It seems plausible that the virus 
checker is intercepting and checking a large file as Word 
tries to open it; this is causing both to increase their 
memory footprint dramatically. 

 

Case Study 3: A Failure Mode 

For our final example, we look at a case where things did 
not work so well.   The distribution of process likelihoods 
implies that something might be amiss (see Figure 7 
below), since many processes seem to be anomalous: 

 
Figure 7: Per-process average likelihoods for case 
study 3. 

This puzzled us initially, but once we examined the 
features, we saw that the frustration point was at the 
beginning of each time series, and that all the features for 
each process quickly ramped up to their usual states.  
Thus this first point in the time series seemed anomalous 
to our model, since all of the values were far below usual.   
What seems likely to have happened in this case is that 
the machine had just restarted, and the user was frustrated 
waiting for the system to become responsive.  We 
consider this a failure for our method, since none of our 
indicators help explain why the system is being slow 
during startup (e.g.., is it paging in code, spending CPU 
running a startup script, or something else entirely?) or 
even identify which process (if any) is causing the most 
problems. We hope that incorporating system-level 
features may help diagnose this kind of situation in our 
future work. 

6. DISCUSSION AND FUTURE WORK 

Our initial experimental results are quite promising. Our 
immediate work plan is to make the interactive version of 
our tool fully functional. Beyond this, there are many 
interesting open questions. 



First, we have not yet been able to validate the causal 
relationships we believe we have uncovered. In cases 
where a process that the user is not actively engaged with 
causes the rest of the system to slow down, simply rate-
limiting the aggressive process may be enough to 
maintain the user’s perception of overall system 
responsiveness. If such a technique were successful, it 
would provide empirical validation that the process and 
resource identified as anomalous were indeed at fault (in 
addition to improving the overall user experience). The 
case where the process at fault is one that the user is 
actively engaged with seems harder, and it may be 
necessary in this case to involve a developer for the 
relevant application to validate the diagnosis (and 
possibly to fix the problem as well). Developing and 
evaluating some validation strategy is one of our areas for 
future work. 

Second, there are obvious opportunities to employ more 
sophisticated models and additional data sources. One we 
are particularly excited about is allowing the user to 
optionally annotate frustration events at the time they 
occur. Mapping such annotations to the machine-level 
symptoms might reveal interesting new connections and 
allow more detailed analyses. 

Third, we have not yet undertaken a user study with the 
tool. In the future we would like to evaluate whether 
particular classes of users consider the tool to be useful, 
whether they decide to make changes in their software 
usage because of the tool’s output, and whether these 
changes result in fewer incidents of sudden system 
slowdown. 
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