
Leveraging Good Intentions to Reduce Unwanted Network Traffic

Marianne Shaw
marianne.shaw@gmail.com

Abstract

We present a solution to reduce unwanted network
traffic by enabling either side of a conversation to sum-
marily terminate the conversation without the other end-
point’s cooperation. Our work is motivated by the obser-
vation that many compromised endhosts on the network
are well-intentioned but easily compromised; these ma-
chines are often compromised and their resources used to
attack others. We argue that the good intentions of these
endhosts can be leveraged to construct a control plane
that ensures that, even when compromised, these well-
intentioned machines only generate well-behaved traf-
fic. This independently enforced control plane prevents
an endhost from blatantly disregarding requests to cease
traffic generation. The solution’s viability rests upon its
unobtrusive deployment. No extra mechanism is needed
within the network as all enforcement is performed at the
endhosts. Hosts are not restricted in their behavior ex-
cept by the behavior demanded by their peers.

1 Introduction

Commodity PCs and broadband have enabled huge
numbers of users to connect to the Internet. Once con-
nected to the Internet, user-administered machines are
bombarded with attacks aimed at gaining control of their
physical resources. Compromised machines are used
to propagate worms and viruses, participate in DDoS
attacks, provide services such as spam relays or IRC
servers, and be part of organized botnets. Users do not
want their machines to be compromised and used for ma-
licious purposes, but they do not have the knowledge or
skill to prevent it. This work asks, can we leverage the
users’ non-malicious intentions to prevent their machines
from being used to generate unwanted traffic?

This work is driven by several key observations. First,
we accept that a machine will be compromised and at-
tempts will be made to use it to generate malicious net-
work traffic. Attackers use compromised machines to
amplify their ability to inflict damage; we can inhibit
their potential impact by reducing the benefits of incor-
porating these machines. Next, we believe that many
user-administrators do not want their machines to be

used to inflict damage, and they would be willing to
thwart such activity if they could. There is benefit to
preventing the injection of malicious traffic into the In-
ternet, rather than trying to deal with it once it is inside
the network. We can leverage users’ good intentions to
co-locate an enforcement mechanism with a host and use
it to prevent the injection of certain traffic into the net-
work. Finally, defining and identifying unwanted behav-
ior is difficult and often subjective; two hosts may not
classify the same traffic in the same way. Rather than
propose a universal definition of good or bad traffic, we
seek to provide a way for traffic recipients to request the
temporary cessation of traffic that they themselves deem
undesirable.

Our solution puts control of the network packet ex-
change between two hosts in the hands of both of the
endpoints in such a way that each endpoint has com-
plete control over it. We do this by constructing an
independent control plane that is co-located with each
well-meaning host. When one endpoint requests that the
other temporarily stops sending traffic to it, the control
plane prevents that second host from disregarding the ter-
mination request; all outgoing packets are immediately
dropped at the generating host and never enter the Inter-
net. This conversation “ripcord” is necessary because a
compromised host may have an altered networking stack
or operating system [11] which ignores all (if they exist)
standard termination requests. As long as both hosts be-
lieve that the conversation is well-behaved, there is min-
imal impact on the conversation.

2 Approach

Computers connected to the Internet continue to be
attacked and compromised. User-administered machines
are especially vulnerable to compromise as they often
run unpatched computer programs that allow attack-
ers to capitalize upon well-documented software flaws.
Symantec [23] found that several popular unpatched
desktop operating systems were compromised within 1.5
hours of being connected to the Internet. Once compro-
mised, the physical resources of a machine may be used
to further propagate an attack or may be incorporated
into a network of attack machines.

We seek to prevent well-intentioned machines from

1
SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the InternetUSENIX Association 55



being compromised and used to amplify an attacker’s
ability to inflict damage on the Internet. To do this, we
make it possible for a host to tell a machine from which
it is currently receiving packets to temporarily stop send-
ing packets, and to reasonably expect that the request
will be honored. Thus, if a compromised host is send-
ing network attack traffic, a receiving host can stop the
incoming packets to protect itself. While this work fo-
cuses on enabling endhosts to request the cessation of
an attack, this mechanism could be used by overloaded
hosts to temporarily delay incoming traffic.

There are a few key requirements for achieving our
goals. 1) Upon receiving unwanted network traffic, a
host must be able to identify the source of the traffic to
which it can send a termination request. Any host that
voluntarily adopts our mechanism must therefore be pre-
vented from spoofing its packets’ source address. 2) We
only honor requests to temporarily terminate an exist-
ing packet stream. We do not allow hosts to proactively
blacklist traffic that they have not yet received; nor do we
honor termination requests for packet streams that have
been inactive for a long duration. 3) Only a recipient of
unwanted network traffic can request that a packet stream
be terminated; malicious hosts should not be able to use
this mechanism to force a well-intentioned host into si-
lence. 4) Our enforcement mechanism must be voluntar-
ily adopted by endhosts. We cannot rely upon the intro-
duction of new mechanism within the network itself. We
cannot impose undue restrictions upon the network ser-
vices used by the host simply to accommodate our mech-
anism. 5) Upon receiving a termination request, we must
be able to terminate a packet stream without the receiving
machine’s cooperation. Once a well-intentioned machine
has been compromised, rootkits [9] can be used to gain
superuser privileges on a machine; the machine’s net-
working stack and OS can then be modified, replaced, or
subverted [11]. Typically, a machine’s OS and network-
ing stack enforce well-established “good behavior;” once
these modules are compromised, a machine is able to bla-
tantly disregard all standard networking conventions.

We leverage the good intentions of non-malicious
users to co-locate an enforcement mechanism with each
host. The mechanism itself must be independent, not
network-addressable, and able to interpose on all traffic
in to and out of the host. Provided it can meet all of these
specifications, the mechanism itself can be implemented
in either hardware, software, or a combination of both.

Although each mechanism only enforces our require-
ments for an individual host, in aggregate these mech-
anisms create an independent control plane. This plane
ensures that all traffic that it allows to enter the Internet
can be summarily terminated at a recipient’s request. Re-
cipients of unwanted network traffic now have a course
of action by which they can protect themselves without

requiring the cooperation of their ISP.

3 Design

Our control-plane enforcement mechanisms must en-
sure that potential victims can accurately identify their
attackers from the offending packet stream, determine
the validity of requests to temporarily stop an existing
packet stream, and enforce valid network traffic termi-
nation requests without endhost cooperation. A combi-
nation of control plane signalling and our enforcement
mechanism make this possible.

3.1 Control plane signalling

To leverage users’ good intentions, our approach must
be able to provide significant benefits without introduc-
ing a system administration burden on the users. Once a
user allows us to interpose on all network traffic in to and
out of their machine, all necessary information should be
gleaned from the traffic that we observe. From the stream
of packets, we must be able to identify the co-located
host’s unique identifier, the start and end of a conversa-
tion between two hosts, and a termination request.

Unique Identifier Ideally, the Internet would pro-
vide each host with a unique non-forgeable identifier that
could be used to provide accountability for actions taken
by a networked host. In practice, hosts have the ability to
transmit arbitrary network packets; they can assume an-
other host’s identity by transmitting packets with spoofed
source addresses. Additionally, rather than having a sin-
gle assigned static IP address, many hosts dynamically
acquire their IP address for a short period of time.

Accountability is a necessary element of our solution.
A recipient of unwanted traffic must be able to identify
and contact the host that sent the traffic; at the same time,
that host should not be penalized for spoofed packets sent
by other machines. We must ensure that well-intentioned
hosts cannot send packets with spoofed source addresses,
but we must also monitor the packets that our host did
send to deny accountability for others’ actions.

A host’s unique identifier is therefore the source IP
address that it used to send a stream of packets during a
specific time period. This approach, while not perfect, is
sufficient for our purposes because we only honor valid
termination requests for active traffic streams.

Our enforcement mechanism can determine a host’s
unique identifier from the consistent source address of
the packets that it sends. We can leverage events that
signify an expected change in IP address to recognize
valid IP address changes. For example, hosts that dy-
namically acquire IP addresses tend to exhibit lulls in
their network activity before they acquire a new IP ad-
dress. Alternatively, if the control mechanism is directly
connected to the host’s network card, it can detect when

2
SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet USENIX Association56



a card is reset by the link going down. These events
occur over a period of seconds. In contrast, many net-
work attacks rapidly send packets with quickly changing
spoofed source addresses; our mechanism should char-
acterize these as spoofed packets and drop them.

We can prevent our host from being penalized for
spoofed packets sent by other machines by tracking the
packets that were actually sent by the host. Rather than
log each individual packet transmitted, we can track the
fact that we sent packets associated with a particular net-
work conversation (defined below) during a certain time
frame. When presented with a termination request for a
packet that the host did not send, the enforcement mech-
anism simply discards the request. Because termination
requests are only honored for active packet streams, the
amount of state required is bounded by the number of
currently active streams.

Defining a network conversation A network conver-
sation defines both the criteria and the granularity that
we use to track sequences of network packets; it dic-
tates which packets will be dropped when a termina-
tion request is received. Hosts receiving unwanted traffic
must weigh the cost of receiving those incoming packets
against the cost of terminating the network conversation.

We can provide the ability for a host to summarily ter-
minate a conversation for many different definitions of a
network conversation provided we are able to uniquely
identify the principals of a conversation from each packet
sent by the host, identify the start and stop of a conver-
sation by observing the packet stream, and identify the
termination request associated with a conversation.

Conversation principals Traditionally, IP source and
destination addresses have been the basis for identifying
network conversations. Additional properties such as IP
protocol and source and destination ports have been used
to refine these principals. We can extend this set to in-
clude more coarse grained principals. IP prefixes could
be used instead of IP addresses; thus, our enforcement
mechanism can honor requests to drop all UDP port 666
traffic destined for 10.10.10.*. Alternatively, a host can
request that it no longer be sent any TCP traffic.

Conversation start/stop The enforcement mechanism
must know exactly what indicates that a conversation is
active and inactive. Ideally, we can identify the start
and stop of a conversation simply by observing the con-
tents of network packets and maintaining internal state.
For example, TCP uses explicit start, stop, and termi-
nation sequences for maintaining connections. We can
use this protocol signalling to restrict and terminate way-
ward conversations; a prototype for TCP is outlined in
Section 4.

However, for many conversations there is no explicit
signalling indicating the conversation delimiters, and we
must infer the start and stop of the conversation by ob-

serving patterns of network activity. Correctly inferring
these endpoints can be difficult; although we can use the
existence of network traffic between two principals to
recognize that a conversation is active, for many long-
lived conversations we cannot use the absence of network
traffic to determine that a conversation has been stopped.

Termination requests Hosts require an explicit sig-
nalling mechanism for terminating a network conversa-
tion. In addition to indicating which network conversa-
tion is being terminated, these requests must either indi-
cate or imply the amount of time during which packets
must not be sent; we do not allow network conversations
to be terminated indefinitely.

Certain protocols may have existing support for ter-
minating a conversation; for example, TCP uses RST
packets to reset a conversation. However, if we must in-
fer active conversations based upon the existence of net-
work traffic between two principals, it is unlikely that
there will already be an existing explicit signal for termi-
nating the conversation. To accommodate these ad-hoc
definitions of conversations and enable hosts to reliably
terminate them, it may be necessary to provide a new
signalling mechanism.

Termination requests must demonstrate that the re-
quest is being sent by the recipient of the unwanted net-
work traffic; spoofed termination requests should be dis-
carded. The requesting host can be authenticated through
the exchange of a large random nonce with the enforce-
ment mechanism. If the nonce cannot be overlaid on top
of a network conversation’s existing protocol, then an
explicit authenticating nonce exchange may be required.
Once successfully exchanged, the nonce can be injected
into a termination request to establish its authenticity.

3.2 Enforcement mechanism

To convince well-intentioned users to allow our en-
forcement mechanisms to interpose on their machine’s
network traffic, we must be unobtrusive yet effective at
preventing their machines from attacking other hosts.

The enforcement mechanism cannot be bypassed or
subverted by attackers The enforcement mechanism
must interpose on all traffic in to and out of a machine,
and it must remain completely isolated and independent
from that machine. If the enforcement mechanism is
not independent, when the host machine is compromised
the attacker can simply “turn off” all packet-restricting
components. Incapacitating the enforcement mechanism
should require physical access to the host machine to pre-
vent it being silently disabled by anonymous attackers.

The enforcement mechanism must actively participate
in each conversation that it may need to forcibly termi-
nate. This work aims to reduce attack traffic that is gener-
ated by a compromised host; in this scenario, both sides
of the enforcement mechanism are controlled by the at-

3
SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the InternetUSENIX Association 57



tacker. If the enforcement mechanism does not inject it-
self into a packet stream, the compromised machine can
collude with an external attacker to prevent a conversa-
tion’s termination.

Actively injecting a nonce into a packet stream en-
ables the enforcement mechanism to independently au-
thenticate an endpoint. Only hosts directly on the path
taken by outgoing network packets will be able to reli-
ably establish, maintain, or terminate a conversation.

The enforcement mechanism cannot be undermined
by replaying a previous conversation through the mech-
anism This is especially important as many hosts acquire
their IP addresses dynamically; an attacker could try to
replay a previous conversation to inflict damage on the
host now allocated a specific IP address. Therefore, the
enforcement mechanism must require proof of “liveness”
for all conversations flowing through it. The nonces used
to authenticate endpoints should be randomly generated
at the time they are needed.

The enforcement mechanism can be deployed incre-
mentally by end users and removed as needed, which
should be extremely rare. The enforcement mechanism
must be effective at reducing unwanted network traffic as
it is incrementally deployed. Not all user-administered
machines are going to immediately install a mecha-
nism that prevents their machines from being used to
attack others; indeed, not all users will want to install
such a mechanism. The enforcement mechanism must
not rely upon upgraded hardware within the network
or widespread deployment and adoption of new proto-
cols. By co-locating the enforcement mechanism with
the hosts that they are potentially restricting, our solu-
tion can be deployed by individual users without requir-
ing ambitious network hardware or software upgrades.

4 TCP Prototype

We describe a prototype implementation of our so-
lution for TCP. Because TCP is a connection-oriented
protocol, we were able to use its existing characteristics
to develop a prototype that is virtually invisible to end-
hosts. Our enforcement mechanism executes on a sep-
arate physical machine whose sole purpose is to act as
a gateway between our user-administered host and the
larger network. All traffic to and from the host must pass
through our enforcement mechanism over the dedicated
Ethernet connection.

The system “learns” the host’s IP address by observ-
ing the source IP address in all outgoing network pack-
ets. If the network link goes down or if there is a sus-
tained period of network inactivity, the system re-learns
the IP address when outgoing packets are observed. All
outgoing packets using a different source IP address are
dropped.

We define our network conversation to be the connec-
tion established between two (IP:port) pairs using TCP’s
three-way handshake protocol. We leverage TCP’s hand-
shake protocol to determine the start of a network con-
versation. TCP also contains two distinct techniques for
closing a connection: a FIN-ACK sequence initiated by
each half of the connection, and a RST packet sent by
either side of the connection. As with TCP’s connection
establishment, we simply leverage this explicit signalling
to track the end of a conversation.

As long as neither host is compromised or misbehav-
ing, TCP’s built-in control signalling ensures that hosts
can terminate any undesired connection. The true merit
of our enforcement mechanism is observed when one of
the hosts is ignoring the TCP termination messages that
it receives.

Imagine that a remote host establishes a TCP connec-
tion with our local host, and the local host starts flood-
ing the remote host with network packets. The remote
host may send a RST packet to stop the packet flood,
but the local host may simply ignore the RST packet and
continue to send high rates of unwanted packets. Our
enforcement mechanism monitors each established con-
nection to prevent this type of scenario. Once it observes
a valid incoming RST packet, the enforcement mecha-
nism drops all outgoing network packets associated with
this connection.

In its efforts to restrict unwanted outgoing traffic, the
enforcement mechanism must be careful not to allow
spoofed RST packets to cause it to incorrectly termi-
nate TCP connections. Additionally, it must prevent a
compromised host and a colluding remote attacker from
spoofing a connection establishment sequence and using
it to attack a third network host. TCP uses the exchange
of sequence numbers to provide reasonably good authen-
tication of each endpoint during connection establish-
ment and teardown. This approach, however, relies upon
the belief that at least one of the participating hosts is
well-behaved and trustworthy. Because both sides of our
enforcement mechanism are potentially compromised, it
cannot rely upon the validity of TCP’s authentication.

Our enforcement mechanism must provide its own
endpoint authentication; it does this by adding a random
32-bit nonce to the initial sequence number (ISN) pro-
vided by each host during connection establishment. By
adding this random value to each host’s sequence num-
ber, the enforcement mechanism authenticates each end-
point when the modified sequence number is returned.
This is the same authentication technique used by stan-
dard TCP, but when used by the enforcement mechanism
it ensures that two untrusted, colluding hosts cannot sub-
vert the enforcement mechanism using pre-established
ISNs. The random nonces are individually generated for
each connection establishment seen by the enforcement

4
SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet USENIX Association58



mechanism; thus the nonce provides the “liveness” prop-
erty necessary for thwarting replay attacks.

Adding the authenticating nonce to TCP’s sequence
number requires the enforcement layer to continue mod-
ifying all subsequent packets’ sequence numbers. It must
add the nonce to all outgoing packets’ sequence numbers
and remove the nonce from all incoming packets’ se-
quence numbers. The enforcement mechanism must also
recalculate the checksum for each modified packet; the
checksum does not need to be completely recalculated
but can simply be updated by the difference between the
old and new fields.

The enforcement mechanism maintains per-
connection state to track the status of each TCP
connection. Our implementation required 108 bytes of
connection state for each active connection. Because
our mechanism enforces conversation termination for a
single host, the number of active connections that we
are monitoring should remain small, as will our overall
storage requirements.

5 Related Work

A diverse set of techniques and mechanisms have
been proposed to address the widespread, damaging na-
ture of modern Internet attacks.

A variety of projects have attempted to character-
ize network traffic; these characterizations can then
be used to filter or identify unwanted network traf-
fic. Network connectivity patterns have been used to
characterize both normal and abnormal network traffic
( [3], [25], [22], [24]) including the propagation pat-
terns of individual worms ( [15], [14], [28].) Stud-
ies have quantified denial-of-service [16] activity and
spyware [19] seen on the Internet. Worms signatures
( [10], [17], [21]) can be used in the identification of traf-
fic containing worms. Other work has focused on the
characteristics of “normal” traffic ( [12], [27]) for de-
tecting or rate-limiting anomalous behavior.

Our proposed solution is orthogonal to this work in
that we require an endhost to determine for itself whether
or not a particular stream of network traffic is unwanted.
We provide a mechanism whereby the host can request
that a packet stream be halted; a host can leverage any of
these characterization techniques to decide if the stream
is unwanted.

Existing research has proposed introducing new
mechanism in the network to identify, account for, and
eliminate unwanted traffic. IP Traceback [20] uses net-
work state to identify the path taken by unwanted DoS
traffic. Pushback [8] and AITF [2] install packet filters
at routers within the network to filter out unwanted traf-
fic. Capability-based networks [1] use packet processing
hardware at trust boundaries to enable hosts to commu-

nicate while network attacks occur. In the face of con-
gestion, network hardware may selectively mark [6] or
drop packets associated with high packet rates.

In contrast with these network-based mechanisms,
this work proposes a mechanism that is co-located with
a host to prevent unwanted network traffic from being
injected into the Internet. We deploy our enforcement
mechanisms at potentially malicious traffic sources so
that we can drop unwanted traffic before it can impact
other hosts. This principle is similarly embraced by net-
work ingress filtering [5], reverse firewalls [13], and IP
throttling [26]. Although we allow hosts to push cessa-
tion requests upstream like Pushback [8] and AITF [2],
we depend upon users’ willingness to have mechanism
co-located with their hosts to eliminate their need for in-
creased mechanism in the network. By leveraging hard-
ware mechanism at the source of network traffic, our so-
lution can be incrementally deployed at the endhosts. No
large-scale network hardware or software upgrades are
required before benefits can begin to accrue.

Unlike many source-limiting approaches, our solu-
tion does not merely enforce a well-established defini-
tion of good behavior, such as limiting the rates of out-
going connections, packets, or source IP addresses. Our
work leverages techniques that use feedback mechanisms
to indicate when a host is behaving poorly. RED [6]
and ECN Nonce [4] use network mechanisms to inform
a host that there is network congestion; and TCP uses
packet drops to scale back its transmission rate. Our
work differs from these approaches in that we only rely
upon endhosts to provide negative feedback in the form
of requests to terminate malicious conversations.

Finally, a key property of our solution is the indepen-
dence of our enforcement mechanism. Our enforcement
mechanism assumes that it is surrounded by untrustwor-
thy, malicious entities that will try to subvert or disable
it. Therefore, the enforcement mechanism must be ac-
tive in its efforts to prevent malicious traffic. This is in
direct contrast to many firewalls [7] and intrusion detec-
tion systems [18] which assume that at least one side of
the enforcement mechanism is trustworthy.

5.1 Summary

We have argued that we can leverage the good inten-
tions of users to reduce unwanted traffic on the Internet.
User-administrated machines are frequently vulnerable
to compromise, and once compromised their physical re-
sources can be used to attack other hosts. By co-locating
an enforcement mechanism with these well-intentioned
hosts, recipients of unwanted traffic can summarily ter-
minate streams of incoming packets from these hosts. If
a host has been compromised and is attacking other ma-
chines, the victims have the ability to, at least temporar-
ily, terminate the attack.

5
SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the InternetUSENIX Association 59



References
[1] Tom Anderson, Timothy Roscoe, and David Wether-

all. Preventing internet denial-of-service with capabili-
ties. SIGCOMM Comput. Commun. Rev., 34(1):39–44,
2004.

[2] Katerina J. Argyraki and David R. Cheriton. Active inter-
net traffic filtering: Real-time response to denial of ser-
vice attacks. CoRR, cs.NI/0309054, 2003.

[3] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and
Scott D. Tenaglia. A behavioral approach to worm de-
tection. In WORM ’04: Proceedings of the 2004 ACM
workshop on Rapid malcode, pages 43–53, New York,
NY, USA, 2004. ACM Press.

[4] David Ely, Neil Spring, David Wetherall, Stefan Savage,
and Tom Anderson. Robust congestion signaling. In
ICNP, 2001.

[5] Paul Ferguson and Daniel Senie. Network Ingress Filter-
ing: Defeating Denial of Service Attacks which employ
IP Source Address Spoofing RFC 2267. IETF RFC Pub-
lication, January 1998.

[6] Sally Floyd and Van Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM Transac-
tions on Networking, 1(4):397–413, 1993.

[7] Michael B. Greenwald, Sandeep K. Singhal, Jonathan R.
Stone, and David R. Cheriton. Designing an academic
firewall: Policy, practice, and experience with surf. In
SNDSS ’96: Proceedings of the 1996 Symposium on
Network and Distributed System Security (SNDSS ’96),
page 79, Washington, DC, USA, 1996. IEEE Computer
Society.

[8] John Ioannidis and Steven M. Bellovin. Implementing
pushback: Router-based defense against ddos attacks. In
NDSS, 2002.

[9] Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and
William A. Arbaugh. Copilot - a coprocessor-based ker-
nel runtime integrity monitor. In USENIX Security Sym-
posium, pages 179–194, 2004.

[10] Hyang-Ah Kim and Brad Karp. Autograph: Toward auto-
mated, distributed worm signature detection. In USENIX
Security Symposium, pages 271–286, 2004.

[11] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Ver-
bowski, Helen J. Wang, and Jacob R. Lorch. Subvirt: Im-
plementing malware with virtual machines. In SP ’06:
Proceedings of the 2006 IEEE Symposium on Security
and Privacy, page 65, Washington, DC, USA, 1997. IEEE
Computer Society.

[12] John McHugh and Carrie Gates. Locality: a new
paradigm for thinking about normal behavior and outsider
threat. In NSPW ’03: Proceedings of the 2003 workshop
on New security paradigms, pages 3–10, New York, NY,
USA, 2003. ACM Press.

[13] Jelena Mirkovic, Gregory Prier, and Peter L. Reiher. At-
tacking ddos at the source. In ICNP ’02: Proceedings
of the 10th IEEE International Conference on Network
Protocols, pages 312–321, Washington, DC, USA, 2002.
IEEE Computer Society.

[14] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stani-
ford, and N. Weaver. The spread of the sapphire/slammer
worm. Technical report, CAIDA, ICSI, Silicon Defense,
UC Berkeley EECS and UC San Diego CSE, 2003.

[15] D. Moore, C. Shannon, and J. Brown. Code-Red: a case
study on the spread and victims of an Internet worm.
In Proc. of Internet Measurement Workshop 2002, Nov
2002.

[16] David Moore, Geoffrey M. Voelker, and Stefan Savage.
Inferring Internet denial-of-service activity. In USENIX
Security Symposium, 2001.

[17] James Newsome, Brad Karp, and Dawn Song. Poly-
graph: Automatically generating signatures for polymor-
phic worms. In IEEE Symposium on Security and Pri-
vacy, 2005.

[18] Vern Paxson. Bro: a system for detecting network in-
truders in real-time. Computer Networks (Amsterdam,
Netherlands: 1999), 31(23–24):2435–2463, 1999.

[19] Stefan Saroiu, Steven D. Gribble, and Henry M. Levy.
Measurement and analysis of spyware in a university en-
vironment. In NSDI, pages 141–153, 2004.

[20] Stefan Savage, David Wetherall, Anna Karlin, and Tom
Anderson. Practical network support for ip traceback. In
SIGCOMM ’00: Proceedings of the conference on Ap-
plications, Technologies, Architectures, and Protocols for
Computer Communication, pages 295–306, New York,
NY, USA, 2000. ACM Press.

[21] Sumeet Singh, Cristian Estan, George Varghese, and Ste-
fan Savage. Automated worm fingerprinting. In OSDI,
pages 45–60, 2004.

[22] S. Staniford-Chen et al. GrIDS—A graph based intrusion
detection system for large networks. In Proceedings of the
19th National Information Systems Security Conference,
volume 1, pages 361–370, October 1996.

[23] Symantec. Symantec internet security threat report, vol-
ume ix, Mar 2006.

[24] Godfrey Tan, Massimiliano Poletto, John Guttag, and
Frans Kaashoek. Role Classification of Hosts within En-
terprise Networks Based on Connection Patterns. In The
USENIX Annual Technical Conference 2003, San Anto-
nio, TX, June 2003.

[25] T. Toth and C. Kruegel. Connection-history based
anomaly detection, 2002.

[26] J. Twycross and M.M. Williamson. Implementing and
testing a virus throttle. In USENIX Security Symposium,
2003.

[27] Matthew M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. In ACSAC
’02: Proceedings of the 18th Annual Computer Secu-
rity Applications Conference, page 61, Washington, DC,
USA, 2002. IEEE Computer Society.

[28] Cynthia Wong, Stan Bielski, Jonathan M. McCune, and
Chenxi Wang. A study of mass-mailing worms. In
WORM ’04: Proceedings of the 2004 ACM workshop on
Rapid malcode, pages 1–10, New York, NY, USA, 2004.
ACM Press.

6
SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet USENIX Association60




