Stress Testing Traffic to Infer Its Legitimacy

Nick Duffield
Balachander Krishnamurthy

AT&T Labs-Research, Florham Park, NJ
{duffield, bala}@research.att.com
Impairment: a Fact of Network Life

- Impairment occurs in different protocol/application layers.
- Examples:
 - Transport: packet loss or delay due to congestion
 - SMTP: delayed delivery of email
 - HTTP: request timeout
Recovery from Impairment

- Protocols/Applications/Users routinely recover from impairments
- Examples:
 - Transport: packet loss or delay due to congestion
 - TCP retransmission
 - SMTP: delayed delivery of email
 - Application retry
 - HTTP: request timeout
 - User retrial after some interval (e.g. 1 second)
Adaptation to Impairment

- The nature of the adaptation can distinguish good from bad
 - "bad" can mean malicious or anti-social or misconfigured or ...

- Examples:
 - Transport: packet loss or delay due to congestion
 - TCP retransmission
 - Well-behaved TCP reduces congestion window as per standards
 - SMTP: delayed delivery of email
 - Application retry
 - User may retransmit mail after notification of delay
 - Spammer less likely to do so
 - HTTP: request timeout
 - User retry after some human-like interval (e.g. 1 second)
 - DoS attacker prefers to send requests more frequently
Stress Testing: Key Ideas

Assumptions

- Differentiation:
 - “Good” and “bad” network traffic responds differently to impairments

- Recovery
 - Good traffic can tolerate some degree of background impairment

- Leeway
 - Room to stress by impairment up to level set by SLA

Proposal

- Stress test traffic flows with artificial impairments
- Observe flow’s response: helps to classify as good/suspicious/bad
- Tune level of artificial impairments by cost-benefit analysis
- Proactive: potentially apply routinely to all traffic
Interpretation of Stress Tests

- **Combine results with other classifiers**
 - Not proposed as a standalone diagnostic
 - e.g. use stress test to move between existing white/gray/blacklist

- **Share test results across network**
 - Target other stress testers towards suspicious senders

- **Robustify classification with multiple tests**
 - Fixed horizon: flag as bad if suspicious at least m out on n times
 - Queue-based: flag as bad if suspiciousness is bursty
 - Sequential hypothesis testing
 - Etc..

- **Can adapt stress intensity to increase with suspicion level**
Stress Testing: Examples

- **Transport:**
 - Stress: Drop or delay some packets in target flow
 - Test: Observe whether flow response conforms to TCP standard
 - If not, then flag as suspicious

- **SMTP:**
 - Stress: Delay delivery of email from target mail relay
 - Test: Observe whether email is resent
 - If so, then flag as less suspicious (e.g. move from graylist to whitelist)

- **HTTP:**
 - Stress: respond with 408 Request Timeout, or 503 Service Unavailable
 - Test: Observe if request repeated at typical human timescales
 - If not, then flag as suspicious
Scales for Acceptable Stress

- **Ambient stress level**
 - Applications are robust to existing background impairments
 - Design artificial stress characteristics to resemble ambient stress
 - Need good characterization of ambient stress
 - From application level statistics, e.g. server logs
 - From network level statistics, e.g., granular loss, delay statistics

- **Service level agreements**
 - SLA = limit on total stress
 - Caveat: customers may be acclimated to better “effective” SLA

- **Default limit for total stress**
 - Stress acceptable if: Artificial Stress + Ambient Stress < SLA
How Much Stress Can the Traffic Take?

- Costs of impairment should not be prohibitive for good traffic
- In some cases, cost of any impairment may be too high: avoid
 - highly loss and delay sensitive applications e.g. online gaming
 - Identify (e.g. by application ports) and avoid
 - TCP handshake
 - Identify (by TCP flag) and avoid
- Stress characteristics
 - Frequency, Duration, Granularity
- May want to increase stress in certain circumstances
 - During overflow
 - During attacks
Balancing Total Costs of Stress and Impairment

- **Impairment costs**
 - Cost to user of impairment
 - Cost to service provider if SLAs violated

- **Identification Costs**
 - Costs of actions taken on basis of good/suspicious/bad classification
 - False positives (good misclassified as bad)
 - False negative (bad misclassified as good)

- **Tune both stress level and actions to minimize total cost**

- **Tuning of stress can vary spatially and temporally:**
 - Adaptive to target response
 - E.g. whitelist good traffic and remove/reduce its stress
 - Adapt to perceived threat level
 - E.g. increase frequency and scope of stress if attack rate increases
 - Stress can also be used as a control action
 - Turn up stress on bad traffic
Scope for Countermeasures

- Well-designed stress test difficult to detect
 - Stress conforms to ambient characteristics
 - Stress tester must use full spectrum of likely impairments
 - E.g. loss and delay in TCP case
 - Suitably randomized to leave no signature

- Method is potentially ubiquitous
 - Makes reverse blacklisting harder

- Aggressive response to impairment not good attack strategy
 - Make flagging as suspicious or bad more likely

- High cost for attacker to try to evade
 - Vs. low impairment cost of stress testing by defender
Relation to Existing Approaches (1)

- **Stress Testing originally proposed in TCP by Floyd/Fall (1999)**
 - Aim: identify misbehaving flows, penalize to restore fairness
 - Context: unintentional misbehavior due to bad implementation

- **Our focus is on deliberate attacks**
 - Surviving attacks takes precedence over fairness
 - as opposed to fairness for all
 - Advocate applying routine to any flow
 - Rather than waiting for an attack

- **Proposed methods for inference of TCP response**
 - Inference of TCP congestion window by Jaiswal et. al. (2004)
 - Uses passive measurements in middle network
 - Accommodates TCP variants
 - Potential to exploit for stress testing
 - Somewhat easier: measure at target, eliminate some uncertainty
Relation to Existing Approaches (2)

- **Honeypots**
 - Operating at various levels ranging from kernel to application
 - Operating in unadvertised address spaces:
 - any sender in this space is flagged as bad

- **Email:**
 - Puzzles used to distinguish human senders

- **P2P**
 - Impairment (tit-for-tat tailoring of upload bandwidth) popular in eMule/BitTorrent P2P networks to prevent freeloaders
Further Work

- So far: framework with potential applications
- First planned evaluation:
 - TCP case
 - Controlled TCP senders configured to act on good or bad manner
 - Stress testing by loss/delay of packets at receiver
 - Classification based on inferred congestion window
Stress Testing: Summary

- Stress testing of traffic
 - Stress test traffic with artificial impairments
 - Help classify as good/bad based on response
 - Stress level comparable with ambient stress and SLAs
 - Stress within expected limits to which good traffic can adapt
 - Tune/adapt stress level, according to
 - Costs of misclassification
 - Perceived threat level
 - Historical response of traffic entity to stress testing

- Potential ubiquitous use
 - Applicable at different application/protocol levels
 - E.g. TCP, SMTP, HTTP, P2P
 - Low cost routine application
 - Difficult to detect and counter