
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Smartcard Integration with Kerberos V5

Naomaru Itoi and Peter Honeyman
University of Michigan, Ann Arbor

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Smartcard Integration with Kerberos V5

Naomaru Itoi and Peter Honeyman

Center for Information Technology Integration

University of Michigan

Ann Arbor

itoi@eecs.umich.edu, honey@citi.umich.edu

Abstract

We describe our design and implementation of
smartcard integration with Kerberos V5. Au-
thentication is among the most important ap-
plications for smartcards and is one of the crit-
ical requirements for computer security. By
augmenting Kerberos V5 with tamper-resistant
hardware, we enhance the security of Kerberos
V5 and o�er a potential \killer application"
leading to wider adoption of smartcard tech-
nology.

1 Introduction

Smartcards are a rapidly emerging technology
that have received much attention both from
industry and academia. Smartcards can make a
signi�cant impact on current computer systems
because of their inherent security and mobility.

According to market researcher Dataquest, the
smartcard market will grow from 544 million
units in 1995 to 3.4 billion units by 2001. How-
ever, the vast majority of smartcards are used
in Europe; 90 percent of worldwide smartcard
shipments went to Europe in 1995. Only 2 per-
cent were shipped to the Americas [4].

Smartcards are not popular in the United
States because there is no \killer application"
for smartcards here. Smartcards were intro-
duced to Europe by government telecommuni-
cations monopolies in the form of phone cards,

but the telecommunications industry in the US
is private and decentralized.

These cultural and economic di�erences are
common to other smartcard applications preva-
lent worldwide, such as health care and bank-
ing. In addition, credit cards are more success-
ful in the US than in Europe, in part due to
online veri�cation, which is universally avail-
able in the US. This keeps fraud rates low
{ reportedly 0.07% [11] { which allows card
issuers to indemnify customers for any loss
over 50 USD. Consequently, issuers, customers,
and merchants are equipped and satis�ed with
magstripe cards and readers, which feature low
cost and broad familiarity [3].

The information technology business sector
might provide the killer application for the
smartcard industry in the United States be-
cause the demand for secure computer environ-
ments is huge and growing. There is an increas-
ing fear of hackers attacking sensitive informa-
tion on the Internet. Smartcards can provide
a secure authentication system when combined
with sound authentication protocols, and can
signi�cantly improve computer system security
wherever authentication plays a critical role in
the computer security scheme, i.e., everywhere.

At the University of Michigan, smartcards are
already deployed and used for storing a small
amount of cash. Thus, we have a good setting
for extending the deployment of smartcards in
the computer environment:

� Students and faculty are familiar with us-
ing smartcards.



� An infrastructure is well established, e.g.,
many vending machines and shops have
smartcard readers.

� There is a serious security problem that
can be solved by integrating smartcards
into the computer environment.

� University technologists, especially at the
Center for Information Technology Inte-
gration (CITI), have skill sets and re-
sources to develop smartcard applications.

The goal of our project is to develop, build,
and deploy a smartcard-integrated computer
environment. We want to provide a smartcard
in everyone's pocket that handles computer
authentication, computer pro�les, electronic
cash, banking, identi�cation, course registra-
tion, paying rents, submitting resume, copy
machines, etc. [6].

The centrally administered computing environ-
ment at the University of Michigan is pro-
tected by Kerberos, the most widely used net-
work authentication protocol [21, 13]. Kerberos
is also key to the security infrastructure at
MIT (where Kerberos was invented), Cornell,
Carnegie-Mellon, and Stanford, as well as in
mainstream commercial product o�erings from
IBM, Microsoft, and Oracle.

Kerberos su�ers from some inherent security
pitfalls, principally its reliance on passwords
selected by users. In recent years, CITI sta�
have used password guessing attacks [6, 7] on
the University of Michigan Kerberos servers
with (disappointing) success, quickly obtaining
thousands of passwords on each occasion. To
improve the security of Kerberos and the in-
frastructure it protects, we intend to replace
passwords with randomly generated Kerberos
keys stored on a smartcard.

The remainder of this paper is organized as
follows. In Section 2, we describe why and
how smartcards can enhance the security of
Kerberos. In Section 3, we explain the pro-
tocol we use to integrate Kerberos with smart-
cards. Section 4 contains implementation de-
tails for those who want to port our program

to other operating systems or to use other types
of smartcards. (Readers who are not interested
in implementation details may want to skip the
section.) Performance is evaluated in Section
5. Section 6 discusses related work and smart-
cards we have examined. Future directions are
described in Section 7, followed by concluding
remarks in Section 8.

2 How can smartcards help Ker-
beros?

Bellovin and Merritt enumerate problems of
Kerberos that \are not solvable without em-
ploying special-purpose hardware, no matter
what the design of the protocol." [2] The prob-
lems include:

� Need for secure encryption device

� Need for secure key storage

� Dictionary attack on passwords

We explain these problems, and describe coun-
termeasures that take advantage of strong se-
curity feature of smartcards.

2.1 Need for secure encryption de-
vice

In the Kerberos protocol, a user key, Ku, is
shared between a user and a Key Distribution
Center (KDC), a trusted third party. Ku is
derived from a password: a workstation reads
the password from a user, converts it to Ku,
and uses it to decrypt a ticket granting ticket
(TGT), an initial credential in Kerberos. The
protocol is shown in Figure 1.

1) When a user attempts to login to a work-
station, the workstation sends a request to the
KDC. 2) KDC generates a TGT, encrypts it
with Ku, and sends it back to the workstation.
3) The workstation asks the user for a pass-
word, hashes it into key Ku, and uses the key



password

User

Workstation

Kerberos 
KDC1) username

2) {TGT}

Ku

Ku

Ku

3) Decrypt TGT

Figure 1: Kerberos authentication proto-
col without a smartcard

to decrypt the TGT. If the TGT decrypts prop-
erly, the user is authenticated and is allowed to
login.

In this protocol,Ku is exposed to two parties, a
user and a workstation. A key memorized by a
user can be vulnerable because she can tell it to
another person, or an adversary might \shoul-
der surf" it when she types it. If she is using a
window manager, her keystrokes may even be
snooped remotely without her knowledge.

A key in a workstation can be vulnerable if the
workstation is not securely protected or cannot
be trusted for other reasons. For example, if
an adversary can scan the entire physical mem-
ory of the workstation, he can obtain the key.
Along the same lines, if someone has admin-
istrative access rights to the workstation, it is
straightforward to install a rogue login program
in the workstation that stores a user's password
in the adversary's directory. (This is called a
Trojan horse attack.)

To solve these problems, it is desirable to de-
crypt the TGT outside a workstation. There-
fore, an external encryption device is required.

2.2 Need for secure key storage

Kerberos stores some keys in computers, e.g.,
session keys in a workstation and user keys in
KDC. However, typical computers cannot store
information securely. Information in a com-
puter system is stored either in memory or on a
hard disk, but neither is su�ciently secure. A
secret stored on a hard disk is hard to protect

because:

� A powerful adversary can access (read and
write) it.

� It is usually backed up in mass storage de-
vices, which may lack su�cient physical or
cryptographic protection.

A secret in memory is also hard to protect be-
cause :

� Memory can be physically scanned by a
powerful adversary.

� It may be paged out to hard disks, which
can be scanned.

Therefore, secure storage outside a workstation
and KDC is an important goal.

2.3 Dictionary Attack

When a user chooses a poor password, the de-
rived user key Ku, is subject to dictionary at-
tack. Dictionary attack is performed as follows:

1. Create a list of commonwords, names, etc.

2. Derive keys from the words in the list.

3. Obtain a <plaintext, ciphertext> pair.

4. Decrypt the ciphertext with the derived
keys.

5. If the plaintext is recovered correctly, the
key used for decryption is revealed.

For example, if the password is a short English
word, an adversary can try all English words
in the dictionary and quickly discover the pass-
word.

Kerberos is vulnerable to dictionary attack be-
cause:



1. It is a password-based authentication pro-
tocol.

2. It easily gives up a <plaintext,
ciphertext> pair to the adversary.

Test runs of dictionary attack in the University
of Michigan Kerberos realm have yielded pass-
words for more than 5% of the user accounts,
i.e., over 4,000 accounts [6].1

To solve problem (2), pre-authentication is in-
troduced in Kerberos V5. The Kerberos au-
thentication protocol with pre-authentication
is depicted in Figure 2.

password

User

Workstation

Kerberos 
KDC

1) {username,timestamp}

3) {TGT}

Ku

Ku

Ku

Ku

2) CheckKu

4) Decrypt TGT

Figure 2: Kerberos authentication proto-
col with pre-authentication

In this scenario, the KDC ensures that the
client knows Ku before issuing a TGT. 1)
When the client requests the TGT, it sends
a username and a timestamp encrypted with
Ku. 2) If the KDC can successfully decrypt
with Ku and recover the username and a valid
timestamp, it is sure that the client knows
Ku. If not, the KDC assumes someone is im-
personating the client to obtain a <plaintext,
ciphertext> pair and rejects the request. 3)
After pre-authentication, the KDC sends the
TGT encrypted by Ku to the workstation and
the protocol continues as depicted in Figure 1.

Pre-authentication prevents an adversary from
getting a <plaintext, ciphertext> pair just by
requesting it, and thus raises the bar of se-
curity to the adversary. However, the adver-
sary can still eavesdrop a network to obtain a
<plaintext, ciphertext> pair. Also note that
it is very easy for the adversary to recognize a

1The most common password was \love". Go �gure.

plaintext because it includes well known entries
such as a user name and a realm name.

As long as Kerberos uses passwords for secure
information, dictionary attack cannot be solved
completely. Therefore, it is desirable to replace
passwords with randomly generated bits stored
in tamper-resistant hardware [17].

A smartcard is an ideal device to solve the
problems outlined here. The countermeasures
are described in the next section.

3 Design

In this section, we describe a method intended
to enhance the security of Kerberos. It takes
advantage of a smartcard to solve the problems
stated in Section 2.

From the discussion in Section 2, our design
goals are:

� Use randomly generated bits for Ku.

We can prevent dictionary attack by us-
ing a random key instead of a user chosen
password. However, we then require a way
for users to store their keys, as it is impos-
sible (and insecure!) to expect anyone to
remember a random string of any substan-
tial size.

� Store a user key in a smartcard.

A smartcard can serve as an external
key store because it is designed to be
tamper-proof with restricted communica-
tion mechanisms.

� Decrypt TGT in a smartcard.

A smartcard can perform decryption as an
external encryption device because it has
DES en(de)cryption mechanisms.2

� Do not modify KDC.

2Or claims to. Many smartcards claim to o�er DES

but they in fact do not. We discuss this further in

Section 6.2



If KDC must be modi�ed to implement the
smartcard augmentations, then our e�orts
will o�er enhanced security in our local
Kerberos realm, but nowhere else. We also
want our improvements to enhance the se-
curity of Kerberos realms beyond our ad-
ministrative control.

3.1 Protocol

Figure 3 shows our Kerberos authentication
protocol with a smartcard. Steps 1) and 2)
are identical to the original protocol (Figure 1).
3) When the workstation receives the TGT, it
does not decrypt it by itself. Instead, it sends
the TGT to a smartcard. 4) The smartcard
then decrypts the TGT, and returns the TGT
in plaintext to the workstation. 5) If the work-
station con�rms that the decrypted TGT is cor-
rect, the protocol is �nished and the user is au-
thenticated.

Workstation

Kerberos 
KDC

2) {TGT}

Ku

Ku

4) Decrypt TGT

Ku

User

1) username

3) {TGT}Ku

5) TGT

Figure 3: Kerberos authentication proto-
col with a smartcard

The protocol satis�es the goals we stated
above; TGT is decrypted in the smartcard, Ku

never leaves the smartcard, Ku can be random
bits, and KDC is not modi�ed.3 Furthermore,
use of a smartcard obviates the requirement for
preauthetication; even if <plaintext, ciphertext>
pairs are obtained through network snooping,
the keys are selected at random, so are immune
to dictionary attack

3In fact, KDC in Kerberos V5-1.0.5 must be mod-

i�ed by one line to run the protocol due to a bug in

Kerberos. However, this modi�cation will not be nec-

essary in later version of Kerberos. We discuss it in

Section 4.1.

4 Implementation

We implemented the smartcard integrated Ker-
beros protocol described in Section 3. We now
detail the modi�cations we made to the Ker-
beros library, the DES library, and the Ker-
beros client.

TGT decryption is implemented with two
smartcards:

� STARCOS version 2.1 from Giesecke &
Devrient

� Cyber
ex Access from Schlumberger

Both cards provide native cipher block chain-
ing (CBC) for long messages. (A Kerberos V5
TGT is over 200 bytes long.) Cyber
ex Access
is a Java programmable card. STARCOS is not
programmable.

The development platform is OpenBSD-2.4 on
Pentium 400MHz PC. The code base is Ker-
beros version 1.0.5 released by MIT.

4.1 Adding an encryption system in
Kerberos library

Kerberos V5 uses a look-up table to provide for
easy replacement and development of encryp-
tion systems [12]. The look-up table associates
an encryption type to cryptographic functions,
such as encryption, decryption, and checksum
functions, and data structures, such as a key
structure. It is simple to add a new encryption
system entry by adding an entry to the look-up
table.

There are several encryption system types de-
�ned in the RFC[12] and implemented in Ker-
beros V5-1.0.5 including:

� No encryption

� DES in CBC mode with a CRC-32 check-
sum (des-cbc-crc)



� DES in CBC with MD5 (des-cbc-md5)

We created a new encryption system,
DES in CBC with MD5 with a smart-
card (des-cbc-md5-sc). We added a new
entry des-cbc-md5-sc in the look-up table.
The entry is de�ned in des md5.c (Figure 4).

krb5_cryptosystem_entry
mit_des_md5_sc_cryptosystem_entry {
EncryptionType ENCTYPE_DES_CBC_MD5_SC;
DecryptionFunc mit_des_md5_sc_decrypt_func();
// Other members are identical to des-cbc-md5

};

Figure 4: Smartcard cryptosystem entry

mit des md5 sc decrypt func() is a new
function that uses a smartcard for decryption.
The other members of the entry are not modi-
�ed.

Although the default hash method in Kerberos
V5-1.0.5 is CRC, implementationof des-cbc-crc
in Kerberos V5-1.0.5 has a bug. In the Ker-
beros 5 speci�cation, the initialization vector
(IV) of DES-CBC mode is de�ned to be 0 [12].
However, des-cbc-crc uses the key as the IV.
This error can not be �xed easily because Ker-
beros 5 is already deployed widely and several
commercial o�erings use the key as the IV as
well. The G&D smartcard cannot use the key
as an IV without passing it as an argument to
the card, which defeats our goal of eliminating
the key on the workstation.

To our relief, des-cbc-md5 uses 0 as the IV,
complyingwith the RFC. Rumor has it that the
next version of Kerberos will use des-cbc-md5
by default.

4.2 Modifying DES library

mit des md5 sc decrypt func() calls the
DES CBC encryption function in f cbc.c.
We created a new DES CBC function
mit des cbc sc encrypt() that calls a DES
function in a smartcard instead of a Kerberos
DES library. STARCOS version 2.1 can handle
up to 112 bytes in one command. The TGT,

whose length is approximately 200 bytes,
is divided into two pieces, decrypted in a
smartcard piece by piece, and combined into
one TGT in the workstation.

The speci�c commands, or APDUs in ISO
7816-4, sent to the smartcard are as follows.
(Readers not familiar with smartcard APDUs
are advised to consult the ISO 7816-4 speci�ca-
tion [8] or Guthery and Jurgensen's book [5].)

� Send \decrypt" APDU with 112 (0x70)
bytes of encrypted data.

0x80 0xf8 0x81 0x81 0x70 data ...

� Send \get response" APDU to upload 112
bytes of plaintext data.

0x00 0xc0 0x00 0x00 0x70

We repeat these steps with the second half of
the TGT, using an IV taken from the �rst half.

4.3 Modifying kinit

In the authentication function get in tkt(),
an encryption system can be chosen as an ar-
gument. We modi�ed kinit.c so that it does
not request a password from the user, and spec-
i�ed encryption type des-cbc-md5-sc instead
of des-cbc-md5.

5 Performance Evaluation

Here we evaluate the performance of our Ker-
beros modi�cations.

5.1 Performance Evaluation

We ran the authentication protocol described
in Section 3.1 by executing the modi�ed kinit



program �ve times and logged salient perfor-
mance data. The authentication time 
uctu-
ates within a relatively small range (about 0.1
sec.), averaging 1.14 sec. with STARCOS and
2.96 sec. with Cyber
ex. STARCOS commu-
nicates at 115 Kbps, and Cyber
ex at 56 Kbps.
We analyze performance in detail in the follow-
ing sections.

5.2 Time line

Figure 5 shows a time line of the kinit program.

Start
kinit

Reset
Card

(time)

Start
decryption

End
decrypt

Complete
kinit

Start
RPC

Complete
RPC

Figure 5: Time line
1) start kinit program, 2) start RPC to
Kerberos KDC, 3) end RPC, do some
host pre-processing, 4) initialize smart-
card (reset, set baud rate, select key �le),
5) call decryption routine in smartcard, 6)
store a ticket in a �le, and do some post-
processing.

5.3 Breakdown

Table 1 shows how much time is spent in each
part of the protocol. Time is in seconds.

part STARCOS Cyber
ex
pre-processing (1,2,3) 0.158 0.307
smartcard time (4,5) 0.944 2.617
{ initialize card (4) 0.243 0.358
{ data transfer 0.053 0.100
{ decryption 0.323 1.047
{ misc 0.325 1.113
post-processing (6) 0.039 0.037
total 1.139 2.961

Table 1: Authentication time breakdown

Total time to authenticate with the STARCOS
card is 1.139 sec. (2.961 sec. for CyberFlex
Access). Smartcard-related tasks { initializa-
tion, communication, and decryption { domi-

nate, taking 83% (88%) of the total time. With
an 8-bit data path and a 3.5 MHz clock, a
smartcard is much slower than a workstation.

The rest of time, including RPC communica-
tion with KDC, is 0.197 sec. (0.344 sec.). Of
the 0.944 sec. (2.617 sec.) of smartcard time,
decryption takes 0.323 sec. (1.047 sec.), ini-
tialization (card reset, set baud rate, select key
�le) takes 0.243 sec. (0.358 sec.), data transfer
takes 0.053 (0.100) sec., and miscellaneous part
takes 0.325 (1.113) sec. The miscellaneous part
includes APDU handling overhead.

As a non-programmable card, STARCOS
shows better performance than Cyber
ex Ac-
cess, but not dramatically so. For STARCOS,
we send APDUs that invoke the built-in DES-
CBC method, while for Cyber
ex, we coded
and loaded a Java applet that receives a re-
quest APDU and then calls a built-in DES-
CBC routine. We think these two cases il-
lustrate the tradeo� between performance and

exibility available to smartcard developers.

6 Discussion

6.1 Related Work

Here we relate this e�ort to secure computer
systems, secure bootstrapping, smartcard au-
thentication, and smartcard integration with
Kerberos.

Secure computer system

We refer to two e�orts that share our goal of
building a secure computer environment.

In the Dyad system [22], Tygar and Yee build
an operating system for a tamper-proof copro-
cessor that has the ability to process and store
secrets. The coprocessor provides secure boot-
strapping, secure logging, and copy protection.

The Dyad approach is top-down: unlike most



security protocols, Tygar and Yee do not as-
sume security of components of computers such
as operating systems because an adversary can
reload the kernel. To address this problem,
they build special purpose hardware and an
operating system for it. This approach di�ers
markedly from ours.

Another related, top-down approch is de-
scribed by Lampson et. al. [14], who develop
a theory of authentication for distributed sys-
tems based on an access control model. They
build tools necessary for secure systems, such
as encrypted channels, boot strapping, nam-
ing, and program loading. Accompanying the
design of these tools are formal proofs of their
security. Finally, they build an operating sys-
tem to take advantage of the tools.

Both Dyad and TAOS take top-down ap-
proaches: they start with a well-developed the-
oretical framework, then design secure hard-
ware to support the theory, then build oper-
ating systems based on them.

Although these approaches are substantive and
technically sound, they are not practical for
most existing computer environment because
they build new operating systems from scratch.
We take a more pragmatic and experimental
approach and build from the bottom-up for
rapid implementation and deployment. We
employ currently available, secure, inexpensive
hardware in the form of commercial smart-
cards, integrate them with prevalent standards,
and �t them with minimal e�ort into our exist-
ing computer environment.

A disadvantage of our approach is that we still
rely on the security of hardware and operating
systems, of which we cannot be sure. (Often,
we have great doubts!) For example, if an oper-
ating system is completely replaced, it is quite
possible for an adversary to use stolen creden-
tials to access resources.

Our solution to this problem is to store all crit-
ical secrets in a smartcard. A smartcard is
tamper-resistant hardware, so no matter what
happens to the hardware and the operating sys-
tem, we can be con�dent that the secrets in

the smartcard remain safe. In the previous ex-
ample, even if the operating system is compro-
mised, critical information in a smartcard, such
as authentication keys, can not be accessed by
the adversary. Therefore, our approach signi�-
cantly \raises the bar" of security in a computer
system with relatively small cost.

Secure Bootstrap

Arbaugh et. al. introduce AEGIS, a secure
bootstrap process [1]. They add a small PROM
to commodity hardware. The PROM is as-
sumed to be secure, i.e., it is not replaced by
the adversary. The PROM contains execution
code to start bootstrapping and to check dig-
ital signatures. During the bootstrap process,
all execution code is veri�ed by a digital sig-
nature. At the end of the bootstrap process, a
commodity operating system, FreeBSD in their
example, starts up. As the execution code in
PROM and the bootstrap process are trusted,
the operating system is trusted when it starts.

AEGIS is similar to our approach in the sense
that both try to minimize components that
must be trusted: the added PROM in AEGIS,
and the smartcard in our case. Also, both
use commodity hardware and software. AEGIS
and our approach complement one another be-
cause AEGIS aims at starting an operating sys-
tem securely, and we aim at establishing a se-
cure computer environment built on top of op-
erating systems.

Authentication with Smartcards

Several authentication protocols that use
smartcards have been proposed. For exam-
ple, Rubin proposes one-time password [18],
Shoup and Rubin propose session key distribu-
tion in the third-party setting [20], Leach pro-
poses the use of zero knowledge authentication
[15], and Wang and Chang propose use of pub-
lic key authentication in smartcards [23]. Each
of these concentrates on one-to-one authentica-
tion, such as when a user logs in to a computer.
This di�ers from our approach in that we in-



tegrate a smartcard into a standard authenti-
cation protocol already in heavy use. Among
them, only Shoup and Rubin's protocol has ac-
tually been implemented with a smartcard [10].

Smartcard Integration with Kerberos

Looi et. al. describe smartcard integration
with SESAME, which is compatible with Ker-
beros V5 [16]. Their approach is very similar to
ours. They describe two ways of accomplishing
smartcard integration:

1. Store a user key in a smartcard, load the
key into a workstation, and use it for de-
crypting TGT instead of a derived key
from a password.

2. Decrypt TGT in a smartcard.

Method 1 is not as secure as method 2 because
the user key is loaded in a workstation. If the
workstation is not trusted, the key is vulner-
able. For example, a Trojan horse attack can
easily obtain the key. Method 2, identical to
our method, had not been implemented at the
time of their writing.

6.2 DES in Smartcards

Many vendors claim that their smartcards sup-
port DES, but we had a very hard time getting
a smartcard that meets our requirements, even
though all we need is pure, unadulterated DES.
Here we list some of the DES-capable smart-
cards that let us down when examined closely:

� Schlumberger CryptoFlex

Only custom-made cards have DES.

� Schlumberger MultiFlex

DES is available in the form of an in-
ternal authentication command, which re-
turns only six the eight bytes of output
data.

� IBM MFC

The smartcard encrypts a ran-
dom number challenge presented by
SCT CMD AUTHENTICATE command,
but does not document a general-purpose
DES interface.

� MAOSCO MULTOS

The card supplied with the devel-
oper's kit encrypts with a �xed key,
0x41ad8223a90be2a1. According to the
manual, \for security reasons," DES uses
a \known cryptographic key." (!)

� General Information Systems OSCAR

The DES key is XOR'ed with a random
number before it is used. According to
their e-mail: \The keys are XOR'ed with
a random number for security reasons."
While this may help secure the serial link
between the terminal and the reader, it
makes the card useless for enterprise se-
curity deployment.

� Gemplus GPK

The key size is limited to 40 bit, a 
aw not
shared by Kerberos.

Eventually we found smartcards that satisfy
our needs: Giesecke & Devrient STARCOS and
Schlumberger Cyber
ex Access.

7 Future Direction

Comparison among several smart-
cards

We plan to implement the Kerberos authenti-
cation protocol in more smartcards, e.g. IBM
MFC, MULTOS, and so on.4 We expect to �nd
some di�erences in their performance because:

� Some of the smartcards have DES CBC
mode.

4If we receive smartcards with DES. See our discus-

sion in Section 6.2.



� Some of the smartcards have key schedul-
ing APIs.

� Communication speed di�ers among
smartcards.

We also expect to �nd di�erences in user friend-
liness and stability among smartcards and de-
veloper's kits.

Kerberos tickets in a smartcard

As we argued in Section 2, it is desirable to
store keys in a smartcard rather than in a work-
station. Therefore, storing session keys in ad-
dition to the user key in a smartcard adds se-
curity to the protocol. If tickets are stored on
a smartcard, it is secure to leave a worksta-
tion to have a cup of co�ee as long as the user
brings the smartcard with her. Although an
adversary can access the console, he cannot ac-
cess resources protected by Kerberos because
he does not have session keys.

Smartcard integration with PAM and
NT-PAM

We will address secure single sign-on. Com-
bined with PAM [19] or Windows NT-PAM [9],
smartcards can provide secure single sign-on [7]
because they can store keys and passwords se-
curely, and can be integrated into existing au-
thentication protocols, as we have shown in this
paper.

8 Conclusion

In this paper, we identi�ed certain limitation
of Kerberos and ways that a smartcard can
counter them. We suggested a protocol that
takes advantage of the secure features of a
smartcard to enhance security of Kerberos.
The protocol is implemented with a Giesecke &
Devrient STARCOS smartcard and Kerberos

V5-1.0.5. Performance evaluation shows the
protocol runs reasonably fast.

Acknowledgment

We thank Andrew Webb and Giesecke & Devri-
ent America, Inc. for providing us with STAR-
COS smartcards and the smarts to use them
e�ectively. Timothy M. Jurgensen, Dave Sims,
and K. Krishna at Schlumberger provided us
with Cyber
ex Access smartcards and answers
to many questions. Jim Rees and Kevin Co�-
man at CITI provided valuable technical assis-
tance.

This work was supported by Schlumberger's
Program in Smartcard Technology at CITI.

References

[1] WilliamA. Arbaugh, David J. Farber, and
Jonathan M. Smith. A secure and reli-
able bootstrap architecture. In 1997 IEEE
Symposium on Security and Privacy, Oak-
land, CA, May 1997.

[2] S. M. Bellovin and M. Merritt. Limi-
tations of the Kerberos authentication
system. In Proceedings of the Winter
1991 Usenix Conference, January 1991.
ftp://research.att.com/dist/internet security/
kerblimit.usenix.ps.

[3] Jorge Ferrari et al. Smart Cards:
A Case Study. IBM Redbook,
1998. http://www.redbooks.ibm.com/
SG245239/ sg245239.htm, Section 1.11.

[4] Smart Card Forum. factoids.
http://www.smartcrd.com / info /
more / Factoids.htm.

[5] Scott B. Guthery and Timothy M. Ju-
rgensen. Smart Card Developer's Kit.
MacMillan Technical Publishing, Indi-
anapolis, Indiana, December 1997.



[6] Peter Honeyman. Ubiquitous smart-
cards at the University of Michigan.
http://www.citi.umich.edu / projects
/ sinciti / smartcard / smartcard-
vision.html, 1997.

[7] Peter Honeyman, William A. Adamson,
and Jim Rees. Joining security realms: A
single login for Netware and Kerberos. In
Proceedings of Fifth USENIX UNIX Secu-
rity Symposium. USENIX, June 1995. Salt
Lake City.

[8] The International Organization for Stan-
dardization and The International Elec-
trotechnical Commission. ISO/IEC 7816-
4 : Information technology - Identi�cation
cards - Integrated circuit(s) cards with con-
tacts, 9 1995.

[9] Naomaru Itoi and Peter Honeyman. Plug-
gable authentication module for Windows
NT. In Proceedings of 2nd USENIX
Windows NT Symposium, Seattle, August
1998. USENIX.

[10] Rob Jerdonek, Peter Honeyman, Kevin
Co�man, Jim Rees, and Kip Wheeler.
Implementation of a provably secure,
smartcard-based key distribution proto-
col. In CARDIS'98, Louvain-la-Neuve,
Belgium, Sept. 1998. Third Smart Card
Research and Advanced Application Con-
ference.

[11] VISA Ken Ayer_ Standardization in chip
card security evaluations. Presentation in
SCIA workshop, November 1998.

[12] John T. Kohl and B. Cli�ord Neuman.
The Kerberos network authentication ser-
vice (V5), September 1993. Request For
Comments 1510.

[13] John T. Kohl, B. Cli�ord Neuman, and
Theodore Y. T'so. The evolution of the
Kerberos authentication system. Dis-
tributed Open Systems, pages 78{94, 1994.
IEEE Computer Society Press.

[14] Butler Lampson, Martin Abadi, Machael
Burrows, and Edward Wobber. Authen-
tication in distributed systems: Theory

and practice. In Operating Systems Re-
view, volume 27-5, pages 165{182. ACM,
December 1993.

[15] John Leach. Dynamic authentication
for smartcards. Computers & Security,
14(5):385{389, 1995.

[16] Mark Looi, Paul Ashley, Loo Tang Seet,
Richard Au, Gary Gaskell, and Mark Van-
denwauver. Enhancing SEMAME V4 with
smart cards. In CARDIS'98, Louvain-la-
Neuve, Belgium, Sept. 1998. Third Smart
Card Research and Advanced Application
Conference.

[17] Joseph N. Pato. Using pre-authentication
to avoid password guessing attacks, 1993.
OSF DCE Request For Comments 26.0.

[18] Aviel D. Rubin. Independent one-time
passwords. USENIX Journal of Computer
Systems, February 1996.

[19] V. Samar and R. Schemers. Uni�ed lo-
gin with pluggable authentication modules
(PAM), October 1995. OSF Request For
Comments 86.0.

[20] Victor Shoup and Avi Rubin. Session key
distribution using smart cards,. In Pro-
ceedings of Eurocrypt '96, pages 321{331,
Saragossa, Spain, May 1996.

[21] Jennifer G. Steiner, Cli�ord Neuman, and
Je�rey I. Schiller. Kerberos: An au-
thentication service for open network sys-
tems. In Proceedings of the Winter 1988
USENIX Conference. USENIX, February
1988.

[22] J. D. Tygar and Bennet Yee. Dyad: A
system for using physically secure copro-
cessors. Technical report, Carnegie Mellon
University, May 1991. CMU-CS-91-140R.

[23] Shiuh-Jeng Wang and Jin-Fu Chang.
Smart card based secure password authen-
tication scheme. Computers & Security,
15(3):231{237, 1996.


