
Optimizing Data Analysis with a Semi-structured Time Series Database

Ledion Bitincka, Archana Ganapathi, Stephen Sorkin and Steve Zhang
Splunk Inc.

Abstract

Most modern systems generate abundant and diverse log
data. With dwindling storage costs, there are fewer rea-
sons to summarize or discard data. However, the lack
of tools to efficiently store and cross-correlate heteroge-
neous datasets makes it tedious to mine the data for an-
alytic insights. In this paper, we present Splunk, a semi-
structured time series database that can be used to in-
dex, search and analyze massive heterogeneous datasets.
We share observations, lessons and case studies from
real world datasets, and demonstrate Splunk’s power and
flexibility for enabling insightful data mining searches.

1 Introduction

There is tremendous growth in the amount of data gen-
erated in the world. With decreasing storage costs and
seemingly infinite capacity due to cloud services such as
Amazon S3 [3], there are fewer reasons to discard old
data, and many reasons to keep it. As a result, challenges
have shifted towards extracting useful information from
massive quantities of data.

Mining a massive dataset is non-trivial but a more
challenging task is to cross-correlate and mine multiple
datasets from various sources. For example, a datacen-
ter monitors data from thousands of components; the log
format and collection granularities vary by component
type and generation. The only underlying assumption we
can make is that each component has a notion of time,
either via timestamps or event sequences, that is cap-
tured in the logs. As the quantity and diversity of data
grow, there is an increasing need for performing full text
searches to mine the data.

Another challenge is that a large fraction of the world’s
data is unstructured, making it difficult to index and
query using traditional databases. Even if a dataset is
structured, the specifics of the structure may evolve with
time, for example, as a consequence of system upgrades

Figure 1: Overview of the Splunk platform

or more/less restrictive data collection/retention policies.
In this paper, we make a case for using a semi-

structured time series database to analyze massive
datasets. We describe Splunk, a platform for indexing
and searching large quantities of data. Splunk accepts
logs in any format and allows full text searches across
various data sources with no preconceived notions of
schemas and relations. Figure 1 shows an example of
the wide variety of data Splunk can accept from a het-
erogenous set of components.

We share observations from real world deployments
with heterogeneous datasets in Section 2 and evaluate
existing solutions to store and analyze these datasets.
In Section 3 we provide a detailed overview of Splunk,
specifically describing formatting and storage consider-
ations for heterogeneous data. We also describe char-
acteristics of a search language that simplifies cross-
correlating and mining these datasets. In Section 4, we
show examples from real case studies that use simple
Splunk searches for gaining insights from data and also
discuss common machine learning tasks that are easy to
express as Splunk searches. Section 5 concludes.

2 Background and Related Work

In this section, we describe key observations that led
to our decision to use a semi-structured time series
database. We then describe existing solutions that at-
tempt to address these observations.

2.1 Observations from Heterogeneous
Data Sources

We made three key observations from our experiences
with a wide variety of data sources and customer
deployments, described below.

Observation 1: Massive datasets are almost always
timestamped, heterogeneous, and difficult to fit into tra-
ditional SQL database.

Traditionally, datasets represent state information.
They snapshot properties of real-world or virtual objects
at some point in time. Some well-known examples of
such stateful datasets include store inventories, airline
reservations, and corporate personnel data. While these
datasets often grow as large as billions of entries, they
are bounded in size by real-world limits on the objects
they represent. For example, a personnel database cannot
grow larger than 7 billion entries as there are fewer than
7 billion people in the world. In addition, there is usually
a set of properties (e.g. name, address, salary) for each
entry in the database. While the values for each property
vary from entry to entry and can evolve over time, the set
of properties themselves is effectively fixed at the time
the database is designed. Therefore, we refer to these as
structured datasets. The general techniques for analyz-
ing structured data are well established and the database
community has provided a wealth of specialized tools for
this purpose [8]. SQL-query based relational databases
have served these structured datasets well.

In contrast, most machine generated logs, such as
syslog and web-server logs, are unstructured text files.
While the text may have some loosely implied structure,
the specific structure varies across systems and is always
subject to frequent and unexpected changes. This type
of data typically represents a complete history of events
over time rather than a snapshot in time. Consequently,
machine generated logs are commonly several orders of
magnitude larger than structured datasets. In addition,
each entry is usually characterized by a timestamp of
when the associated event occured. As an example,
popular web services such as Google and Facebook
generate billions of web-server log records each day.
Each record captures a single HTTP request and contains
a timestamp of when each request was received and/or
processed. Due to the large scale and temporal organi-
zation of log entries, traditional analysis techniques are

often unsuitable for these datasets. Thus despite being
goldmines of information, these logs are rarely explored
and often deleted to free up storage space.

Observation 2: Time is the best correlator for heteroge-
neous data sources.

Large computing environments, ranging from cor-
porations to governmental and academic institutions,
generate tens to hundreds of different types of log data
collected from thousands of components (data sources).
Due to the unstructured nature of this data, there is
usually no unique identifer (primary key) that can be
used to join entries across different logs. For example,
application server logs often contain Java stacktraces
that are directly or indirectly triggered by requests from
a web-server. However, these logs contain no explicit
identifiers to associate the stacktrace with a specific
web-server request. Each event is usually timestamped
and thus the time at which each event occurs is often the
only piece of information we can use to correlate various
types of unstructured log data. Traditional relational
database semantics are ineffective for temporal corre-
lation because related events merely have timestamps
that are “close” to one another and rarely have the exact
same timestamp across various logs.

Observation 3: Time is of the essence.

In addition to being the best correlater of unstructured
timestamped data sources, time is also essential for data
management and search optimization. Analysis is often
constrained to data from a particular time range rather
than exhaustively across all data. In addition, data from
more recent time ranges are typically prioritized over
older data. Therefore, it is important to optimize for
computation on more recent data. Although declining
storage costs make it economical to keep many terabytes
and even petabytes of data, fast storage technology,
such as SSD or ultra-fast disks, are relatively more
expensive. Therefore, a time-sensitive data store should
preferentially store more recent data on faster storage,
when available, and push older data onto cheaper
storage devices. Traditional databases can easily store
timestamps, but the value of the timestamp field is not
considered when storing the entry and thus it is difficult
to optimize for more recent data. Furthermore, analysis
over any bounded time range is more efficient if the
underlying data is segregated by time.

The above observations, in addition to many other
compelling usage scenarios, advocate the need for a
semi-structured time series database such as Splunk.

2

2.2 Related Work

2.2.1 Relational database management solutions
(RDBMS)

Converting from the semi-structured format of machine
generated data to the dense and homogeneous structure
demanded by traditional relational database tables is typ-
ically achieved by an Extract, Transform and Load (ETL)
procedure. This procedure is often problematic for ad
hoc analysis tasks in machine generated data sets. The
designer of the ETL procedure must anticipate the gamut
of questions to be asked of the data and correctly extract
the rows and columns of the table. Such pre-planning
is infeasible for two reasons. First, in many systems,
there is no complete catalog of all the messages that may
be recorded. That is, never-seen-before messages may
present themselves exactly when new problems occur.
Second, the number of distinct messages in a large sys-
tem can be prohibitively large and correctly extracting
them all up front is often impractical.

By using a flexible retrieval-time schema, these two
problems are largely avoided. A new parsing rule can be
added as and when a new message is discovered. More-
over, the system’s operator has more context when deter-
mining how to parse the message.

Another common problem encountered when using a
traditional RDBMS for storing machine generated time
series data is defining a retention policy. This is impor-
tant both from the storage footprint perspective and for
legal and compliance reasons. Oracle provides a tech-
nique called partitioning to segment data into mutually
exclusive and jointly exhaustive segments that behave as
a monolithic structure [7]. Using partitioning in Oracle
allows the operator to specify time ranges to segment the
data into. However, this approach requires apriori under-
standing of how data will arrive.

2.2.2 Map Reduce implementations for data mining

The Apache Hive project [1] also seeks to put a gen-
eral purpose, scalable interface on a semi-structured
data warehouse. Hive provides ETL (Extract, Trans-
form and Load), schematization and analysis of massive
amounts of data stored in a Hadoop distributed filesys-
tem (HDFS). Similar to Splunk, Hive uses the MapRe-
duce paradigm, with Hadoop as the job management en-
gine. Hive is designed primarily as a batch processing
system and thus queries are not expected to be real-time
for the operator. According to the Hive project, even the
smallest jobs can take on the order of several minutes.
Such lengthy job execution times are unattractive for IT
and operations troubleshooting use cases where the time
taken to solve a specific problem is very important. Ad-
ditionally, reducing the cycle time for iterating on query

Figure 2: The MapReduce paradigm as used by Splunk

design is very helpful for non-expert users of a system
like Splunk.

2.2.3 Processing semi-structured data

Our work is closely related to two research projects.
The LearnPADS tool automatically generates parsers

and mining tools specific to a dataset [6]. However, a
major drawback to their approach is that the user must
provide per-dataset initial descriptions. Requiring a pri-
ori knowledge of data formats prevents PADS from scal-
ing to hundreds, let alone thousands, of data sources.

The IBM autonomic computing toolkit’s correlation
engine allows users to correlate data from two differ-
ent sources [10]. However, two major limitations of this
work are that it only accommodates IBM proprietary log
formats, such as Websphere and DB2 logs, and does not
scale to correlate more than two data sources at a time.

The Splunk platform can provide the functionality of
both these tools and simultaneously scale to thousands of
data sources, requiring no prior knowledge/assumptions
about data formats. As a result, we can easily build appli-
cations on top of Splunk to monitor and provide insights.

3 Semi-structured Time Series Database

Splunk provides users the ability to aggregate and an-
alyze large quantities of data by implementing the
MapReduce divide and conquer mechanism on top of an
indexed datastore [13]. Figure 2 summarizes how Splunk
searches are partitioned into map and reduce phases.
Each node (search peer) first partitions the data into mu-
tually exclusive time spans (as opposed to application
specific or arrival-based chunks in traditional MapRe-
duce implementations [5]). The map function is applied
per time span. The statistics output from these map func-
tions are written to disk. Upon analyzing the entire data
set, the reduce function is run on each set of statistics to
produce the search result. To generate previews for re-
altime analysis, we can periodically run the reduce stage
without waiting to receive statistics from all mappers.

3

Whereas traditional MapReduce implementations [5]
require the end user to write custom code to leverage
their dataset (expressing processing in terms of map and
reduce functions or writing queries in SQL like format),
Splunk provides an easy-to-use search language, further
facilitating realtime data analytics.

Within Splunk, time based partitioning is a first class
concept. Without specialized configuration, data loaded
into Splunk is automatically partitioned by time so that
searches over small time ranges are faster (I/O operations
are only performed against the partitions that intersect
the query target time) and data can be aged out to sec-
ondary or archival storage.

3.1 Optimizing Data Format

In this section, we describe elements of the Splunk data
format that have been optimized to address the observa-
tions in Section 2.1.

3.1.1 De-normalize to enable better MapReduce

To work around expensive disk space, data normalization
effectively minimizes disk usage by eliminating repeti-
tive information. In traditional relational databases, nor-
malization involves removing repeated fields from a ta-
ble and creating a separate table for that data. However,
minimizing data duplication while improving update per-
formance comes at a high data retrieval cost, primarily
because related data is stored in different locations. The
decrease in storage costs has prompted leading database
vendors to promote data structure de-normalization as a
way to avoid costly table joins and dramatically improve
data retrieval speed. De-normalization typically lever-
ages data redundancy and/or spatial locality to achieve
improved read performance.

The massive amount of available data coupled with
tremendous growth in data generation rates will unques-
tionably require distributed data warehousing and pro-
cessing. MapReduce has proven to be an easy to un-
derstand and highly scalable approach to massive dis-
tributed data processing. A major drawback of a nor-
malized schema is that it makes distributed processing
via MapReduce nearly impossible or ineffective. For
instance, with normalized records, each map node in a
MapReduce implementation must have access to exclu-
sive work units that no other map node uses. Alternately,
if these work units are constructed by accessing multiple
data stores shared among all map nodes, a bottleneck will
be introduced into the system, making the entire imple-
mentation dependent on the performance of the shared
system. On the other hand de-normalized records do not
impose such limitations and lend themselves naturally to
MapReduce distributed data processing.

3.1.2 Timestamp and break data into events

To provide maximum flexibility we have chosen to min-
imze the amount of data processing we perform at index-
ing time. The two most important types of data process-
ing during indexing time are (i) event boundary detection
and (ii) event timestamping.

There are numerous tools that process single line data
including, most notably, text processing commands in
UNIX. However, many applications’ log events span
multiple lines. For example, Java stack traces, Win-
dows application/system/security events, and some mail
servers generate multi-line log entries. Event bound-
ary detection enables us to create minimal working
units, which are then stored in a time based proprietary
database. Splunk provides automatic event boundary
detection that uses timestamps to break the text stream
into separate events. Users can also define custom event
boundaries through configuration changes.

As time is usually the best and often only variable that
can be used to correlate events, it is extremely important
for Splunk to assign the correct timestamp to an event.
Splunk provides both automatic timestamp detection and
an extensive set of configurations for specifying a custom
format to assign event timestamps.

3.1.3 Structure and keyword indexes

A major advantage of Splunk is its ability to process
highly unstructured data while allowing users to effi-
ciently search and report on this data. However, even the
most unstructured logs have some very basic structure
which can be used to apply a retrieval time schema to the
data. All events in Splunk are guaranteed to have some
basic structure consisting of at least the following fields:
time, source, sourcetype, host and event text. Source-
type is a concept that is used in Splunk to group simi-
lar data sources, and is determined by looking at rules
on the source or via a clustering algorithm on data con-
tent. Based on the value of some of these fields users
can choose to rely on automatic field extraction or pro-
vide custom parsing rules including, but not limited to,
regular expression-based rules and delimiter-based rules.

The Splunk time series database is optimized to per-
form efficient retrieval based on time and keywords.
Although Splunk applies a schema at search time, the
schema is made accessible to users during the search. To
achieve this access we split our search into two phases -
retrieval and filtering. Before the search starts executing,
we determine the time range required for the search and
a set of keywords that all matching events must have.
The retrieval phase uses these parameters to query the
database for a superset of the required results. Upon
completion of the retrieval phase, we have enough infor-
mation to apply the schema and enter the filtering phase,

4

All Events:
 06-07-2010 12:49:21.955 INFO databasePartitionPolicy - No databases found starting fresh !
 06-08-2010 11:14:00.836 WARN pipeline - Exiting pipeline parsing gracefully: got eExit from processor sendOut
 06-10-2010 06:29:53.749 INFO Metrics - group=queue, name=typingqueue, max_size=1000, filled_count=0, empty_count=46, current_size=0, largest_size=2, smallest_size=0
 06-10-2010 06:30:24.449 INFO Metrics - group=pipeline, name=indexerpipe, processor=indexandforward, cpu_seconds=0.000000, executes=119, cumulative_hits=389000

Retrieval Results:
 06-08-2010 11:14:00.836 WARN pipeline - Exiting pipeline parsing gracefully: got eExit from processor sendOut
 06-10-2010 06:30:24.449 INFO Metrics - group=pipeline, name=indexerpipe, processor=indexandforward, cpu_seconds=0.000000, executes=119, cumulative_hits=389000

Filtering Results:
 06-10-2010 06:30:24.449 INFO Metrics - group=pipeline, name=indexerpipe, processor=indexandforward, cpu_seconds=0.000000, executes=119, cumulative_hits=389000

Figure 3: Example of keyword indexing.

which returns the required results.
An example best demonstrates how Splunk search

uses the keyword index. Assume that our database con-
sists of the four events seen in Figure 3. Note that these
events have been indexed using their timestamp and text
tokens in the database. A user then issues the following
search to be run for the month of June 2010:

search group = ”pipeline” | ...
Note that the field group is being used as a schema spe-
cific constraint.

During the retrieval phase, we query our database
using the following parameters:
Time range: 06-01-2010 00:00:00 to 07-01-2010
00:00:00
Keywords: pipeline

Since all four log entries satisfy the temporal con-
straints of the search, the retrieval phase returns two of
the four events that match the pipeline keyword criterion.
Subsequently, the filtering phase performs field extrac-
tion (in this example, automatic field extraction, as de-
scribed in Section 3.3, suffices), applies schema related
work such as aliasing, event typing and lookups, and fil-
ters the events using schema specific constraints. Our
final result for this example consists of a single event.

3.2 Splunk Search Language
A crucial component of Splunk for data analytics is the
ability to search across the various data sources. Splunk
has developed a search language which is aimed at being
powerful yet simple. The search language is based on
the UNIX concept of pipes and commands. Just like in
the UNIX environment, where users are allowed to ex-
tend the basic set of available commands in a shell, users
of splunk can extend the search language by introducing
their own custom search commands.

Figure 4 shows an example of a search to find all
events that contain the term “error” and then compute
a table with two columns - host, count.

The search commands can be logically grouped into
two major groups:

• streaming - operate on single events

• aggregating - operate on the entire event set

Figure 4: Search example finds all events that contain the
term “error” and computes a table with host and count
columns.

Figure 5: Splunk search in distributed environments.

Before explaining how the streaming and aggregat-
ing commands fit in the MapReduce like implementa-
tion we briefly describe the components of a splunk dis-
tributed deployment. Note that a simple Splunk deploy-
ment has all functions in a single binary on a single ma-
chine. The distributed environments generally comprise
of three components:

• forwarders - responsible for gathering event infor-
mation and forwarding it to the indexers

• indexers - responsible for indexing received events
and servicing queries from search head(s)

• search head(s) - responsible for providing a single
query point(s) for the entire deployment

Figure 5 shows a schematic of how these three com-
ponents interact with one another. During a search only
the search head and indexers are involved. The search
head is responsible for analyzing the given search to de-
termine what part can be delegated for execution by in-

5

dexers (also known as search peers) and what part needs
to be executed by the search head. Streaming commands
can be trivially delegated to the indexers. Conversely, ag-
gregating commands are more complex to distribute. To
achieve better computation distribution and minimize the
amount of data transferred between search peers and the
search head, many aggregating commands implement a
map operation which the search head can delegate to
the search peers while executing the reduce operation lo-
cally.

Figure 6 shows how the original search in Figure 4 is
split into two parts: one to be executed by peers and one
to be executed by the search head.

Figure 6: Example of a search being split into two parts.

In the above example the search peers are responsible
for counting the results by host and sending their results
to the search head for merging - achieving both compu-
tation distribution and minimal data transfer.

3.3 Logging Best Practices

Logging formats vary considerably among different ap-
plications as well as between different components of a
single application. Syslog [11] has brought some stan-
dardization to logging, but it falls short in recommenda-
tions on how to effectively format the log message body.
Over the last decade there have been many proposals for
standardizing the format of the log message body, how-
ever for a number of reasons none of them have gained
industry wide support yet. One of the most compelling
reasons hindering industry from adopting a logging stan-
dard is the high cost associated with changing the for-
mat. A log format change will invariably break a major-
ity of the tools that are in place for parsing and process-
ing those logs. There have been several proposals for log
message standardization [12, 4, 9, 2].

Although Splunk can perform keyword searches on
any data format that it has indexed, it processes data for-
matted in a certain way better than others. As we de-
scribe in Section 3.1.3, Splunk is able to apply automatic
and user configured schema to events at retrieval time. In
this section, we describe the logging format for which the
automatic schema is optimized as well as present some
tips on how to format log messages.

Splunk automatically parses events that contain fields
of the form: < fieldname >= “ < fieldvalue > ”
The quotes can be dropped if the field value does not con-
tain any breaker characters, that is one of “\n\t,&; | ”.

The last line of the example in Figure 3 shows one
such log message emitted by Splunk’s metrics collec-
tion subsystem. Using a logging format as described
above relieves the user from the task of maintaining the
schema they apply to their events. This logging format
is human readable yet flexible enough for applications to
add/remove fields from log messages without triggering
schema changes.

Although machine generated data is primarily in-
tended for use by machines it is important to use a
logging format that is human readable where each event
contains enough information to allow an operator to
make sense of the message. Here are some common tips
to improve logging readability and simplify parsing.

1. Include field names in the message. For example:

“06-09-2010 03:34:54 PST INFO src ip=10.5.36.5
src port=2256 dst id=10.25.36.38 dst port=5586
bytes=1236584”

is much easier to read than

”06-09-2010 03:34:54 INFO 10.5.36.5:2256 10.25.36.38:5586
1236584”

2. Ensure each event contains an unambiguous time
stamp, preferably also containing timezone information.

3. Include any unique ids that the event relates to, such
as transaction id, user id, product id, message id.

4. To cross-correlate multiple data sources standardize
on variable names across different components. For ex-
ample, standardize on using either of: s ip, source ip,
src ip across all the logging applications to denote a
source IP.

4 Real World Search Examples

In this section, we present two case studies from real cus-
tomers who solved critical IT operational problems using
a Splunk search, and also discuss more general data min-
ing searches that Splunk facilitates.

4.1 Case Studies
Modern IT organizations are faced with the non-trivial
task of managing thousands of diverse components in-
teracting in complex ways. These operational challenges
are rooted in three ground truths:

6

1. change is unpredictable. IT operations are
severely affected by unanticipated load spikes and
must quickly detect and handle them to avoid down-
time. Periodic changes to workload volume and dis-
tribution may also be attributed to diurnal patterns
of daily, weekly or seasonal activity.

2. upgrades are inevitable. Hardware and software
components are periodically upgraded and/or re-
configured to accommodate new features and grow
the system. Furthermore, new metrics may need to
be extracted from existing components to accom-
modate protocol upgrades, from IPv4 to IPv6 for
example.

3. failures are a fact of life. Hardware ages, software
is buggy, and humans make mistakes. Therefore,
failures cannot be prevented but at best be detected
quickly, masked or mitigated.

In both case studies below, Splunk helped the cus-
tomers aggregate and mine data to cross correlate and
search for insights across various data sources. We
demonstrate simplicity and powerfulness of these cus-
tomers’ Splunk searches. We abstract away the original
names of these customers due to privacy considerations.

4.1.1 IT powerhouse for a major industry

This organization provides the infrastructure for all the
transaction processing needs of a major industry. They
maintain records of every element of every end user
transaction to each of their customer websites, collect in-
formation per request received and response sent. They
also log telemtry about when, where and how each trans-
action was processed. They use Splunk to index 35 to
50 GB of data per day. Data is aggregated from about
50 components and the data formats include, but are not
limited to, raw XML logs, < key, value > pairs, ASCII
logs, system logs and database transaction logs from Or-
acle and MySQL.

Since each transaction passes through multiple sub-
systems, a major challenge faced by this organization is
to identify the statistical and transactional data it leaves
behind on each component in its path. The organization
can use Splunk to obtain a comprehensive map of
each transaction’s imprint on the infrastructure and
consequent system load and health metrics as follows:

Example customer search: “List my top 100 customers
in terms of CPU time consumed:”

search ∗
| stats sum(cpu seconds)AS totalcpuBY customer
| sort 100 − totalcpu

Due to the ease of searching historical data per customer
or end-user, the organization can also develop more accu-
rate predictive models to assist with business intelligence
and provisioning.

4.1.2 IT organization at a University

This university IT organization provides infrastructure
and support for tens of thousands of students and thou-
sands of faculty campus-wide. They manage about 600
devices and index 40 GB of data daily using Splunk.
Their data sources include firewall events, kerberos and
LDAP authentication logs and antivirus logs, to name a
few.

A compelling use case of Splunk for this organization
is the ability to search for all events associated with a
single IP address. In the event that a machine acquires a
virus and is generating malicious traffic, the IT organiza-
tion can use Splunk to cross-correlate server events and
network traffic with anti-virus logs and identify which
IP address is the culprit.

Example customer search: “Get the login action server
events for the IP addresses mentioned in the last 100 anti-
virus alert messages:”

search sourcetype = server
action = login [search sourcetype = antivirus

ALERT | head 100 | fields ip]

This example utilizes a subsearch, denoted within square
brackets, to first obtain the last 100 antivirus alert mes-
sages. Subsequently, the subsearch results are searched
for login action server events.

Using nested subsearches, this organization can also
look up the owner who registered the infected node and
convey corrective actions or repremand malicious intent.

4.2 Data Mining using Splunk
We demonstrated how simple it is to cast the above two
organizations’ pain point problems as Splunk searches.
Additionally, we believe Splunk is valuable for general
data mining beyond the realm of IT. Splunk provides
simple mathematical and statistical operations such as
averages, variance, and order statistics. Many business
intelligence mining use cases can be satisfied using sim-
ple combinations of these primitives.

Perhaps more importantly, Splunk provides a platform
for easy, efficient data cleaning and munging. Even when
researchers are exploring novel machine learning tech-
niques, one of the most difficult and time consuming
tasks is preparing the data. For example, most cluster-
ing algorithms require a dense table of continuous met-
rics. Categorical data must be recast to be continuous

7

and rows with missing data point usually need to be dis-
carded or interpolated. On the other hand, learning al-
gorithms like decision trees and naive-Bayes often re-
quire their input be categorical instead of continuous.
Regardless of the technique, Splunk provides a simple
way of preparing massive data sets for analysis. Fur-
thermore, Splunk can normalize variable names at search
time, requiring no manual preprocessing before cross-
correlating datasets from multiple sources.

Below, we demonstrate a few examples of data mining
and preparation tasks that are easily expressed using
Splunk.

Data cleaning: remove data points that do not have a
score field.

search score = ∗

Data munging: combine two different sources that have
a different format for the score field. Source X scores are
based on a 0-100 scale, and source Y uses letter grades
and needs to be changed to a 0-100 scale.

search source = X OR source = Y
| eval score = if(source = “X”, score,

case(score = “A”, 100, score = “B”, 85,
score = “C”, 70, score = “D”, 60,
score = “F”, 0))

Outlier detection: find scores more than 3 standard de-
viations more or less than the average.

search score = ∗
| eventstats avg(score)AS avg stdev(score)AS stdev
| where (score > avg + 3 ∗ stdev)
OR (score < avg − 3 ∗ stdev)

Correlation: covariance of score and income. Note that
Splunk interprets the first line of the search below to use
an implicit AND to obtain all scores and all incomes.

search score = ∗ income = ∗
| stats avg(eval(score ∗ income)) AS avg prod

avg(score) AS avg score
avg(income) AS avg income

| eval cov = avg prod − avg score ∗ avg income

Clustering: simple kmeans of score, income, age.
Again, Splunk inserts an implicit AND to search all
scores, incomes and ages.

search score = ∗ income = ∗ age = ∗
| kmeans k = 10 score income age

5 Conclusions

In this paper, we presented Splunk, an analytics platform
for massive datasets. We discussed why and how a semi-
structured time series database is the most appropriate
mechanism for cross-correlating and mining heteroge-
neous datasets. We demonstrated the power and ease of
using the Splunk search language for solving IT opera-
tional problems.

Domain knowledge is crucial for successful data anal-
ysis. However, domain experts often lack familiarity
with statistical/machine learning techniques to leverage
them well. Splunk can abstract away the statistical exper-
tise and thus enables domain expertise, rather than statis-
tical/machine learning proficiency, to drive the analysis
of any particular dataset.

Many researchers have successfully leveraged statis-
tical machine learning techniques to gather system in-
sights from data. Such techniques require a dominant
fraction of our time to be spent on collecting, pars-
ing, and cleansing the data, and only a small fraction
is attributed to applying the algorithm itself. Further-
more, data mining research is often targeted at a specific
dataset, and may not generalize to other types of data,
let alone other systems. Thus, we feel it is important to
target future work to improve the infrastructure for per-
forming such data driven research rather than focus on al-
gorithmic improvements. This new direction would have
a broader impact on the research community and enable
easier and more insightful data mining.

Splunk can be the foundation for newer infrastruc-
tures, but also has the potential to serve as the overarch-
ing infrastructure to develop new data mining techniques.

References
[1] Apache Hive Project. http://wiki.apache.org/hadoop/Hive.

[2] WELF. http://www.m86security.com/kb/article.aspx?
id=10899cNode=5R6Q0N.

[3] AMAZON.COM. Amazon Simple Storage Service (Amazon S3).
http://aws.amazon.com/s3/.

[4] ARCSIGHT. CEF. http://www.arcsight.com/collateral/
CEFstandards.pdf.

[5] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM 51, 1 (2008), 107–
113.

[6] FISHER, K., WALKER, D., AND ZHU, K. Q. LearnPADS: au-
tomatic tool generation from ad hoc data. In SIGMOD ’08: Pro-
ceedings of the 2008 ACM SIGMOD international conference
on Management of data (New York, NY, USA, 2008), ACM,
pp. 1299–1302.

[7] FLINT, A., AND COOKSON, I. Data Warehousing on Oracle
RAC Best Practices. White paper, Oracle Corporation, October
2008.

[8] HELLERSTEIN, J. M., AND STONEBRAKER, M. Readings in
Database Systems: Fourth Edition. The MIT Press, 2005.

8

[9] IBM. CBE. http://www-128.ibm.com/developerworks/
webservices/library/ac-cbe1/.

[10] JACOB, B., LANYON-HOGG, R., NADGIR, D. K., AND
YASSIN, A. F. A Practical Guide to the IBM Autonomic Com-
puting Toolkit. IBM Redbooks, April 2004.

[11] LONVICK, C. The BSD Syslog Protocol, 2001.

[12] MITRE, SPLUNK AND LOGLOGIC. CEE. http://cee.mitre.org/
docs/Common Event Expression White Paper June 2008.pdf.

[13] SORKIN, S. Large-Scale, Unstructured Data Retreival and Anal-
ysis Using Splunk. Technical paper, Splunk Inc., 2009.

9

