
USENIX Association

Proceedings of the
9th USENIX Security Symposium

Denver, Colorado, USA
August 14 –17, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

DetectingBackdoors

Yin Zhang
Department of Computer Science

Cornell University
Ithaca, NY 14853

yzhang@cs.cornell.edu

VernPaxson
�

AT&T Center for Internet Research at ICSI
International Computer Science Institute

Berkeley, CA 94704
vern@aciri.org

Abstract

Backdoors are often installed by attackers who have
compromiseda systemto easetheir subsequentreturn
to the system. We considerthe problemof identify-
ing a large classof backdoors,namelythoseproviding
interactive accesson non-standardports, by passively
monitoringa site’s Internetaccesslink. We develop a
generalalgorithmfor detectinginteractive traffic based
on packet size and timing characteristics,and a set of
protocol-specificalgorithmsthatlook for signaturesdis-
tinctive to particular protocols. We evaluate the al-
gorithmson large Internetaccesstracesand find that
they perform quite well. In addition, someof the al-
gorithmsare amenableto prefilteringusing a stateless
packetfilter, whichyieldsa majorperformanceincrease
at little or no lossof accuracy. However, thesuccessof
the algorithmsis temperedby the discovery that large
siteshave many userswho routinelyaccesswhatarein
factbenignbackdoors,suchasserversrunningon non-
standardportsnot to hide,but for mundaneadministra-
tive reasons.Hence,backdoordetectionalso requires
a significantpolicy componentfor separatingallowable
backdooraccessfrom surreptitiousaccess.

1 Intr oduction

A backdoor is a mechanismsurreptitiouslyintroduced
into a computersystemto facilitateunauthorizedaccess
to thesystem.While backdoorscanbeinstalledfor ac-
cessinga variety of services,of particular interestfor
network securityare onesthat provide interactive ac-
cess. Theseareoften installedby attackerswho have
compromisedasystemto easetheirsubsequentreturnto
thesystem.

�
Also with theLawrenceBerkeley NationalLaboratory.

Fromanetwork monitoringperspective,suchbackdoors
frequentlyrun over protocolssuchas Telnet [PR83a],
Rlogin [Ka91], or SSH [YKSRL99]. An exampleof
a non-interactive backdoorwould be an unauthorized
SMTP server [Po82], say to facilitate relaying email
spam;andonesomewhat in betweenwould bean FTP
[PR85] backdoorusedto provideaccessto illicit content
suchaspiratedsoftware,or aNapsterserver[NA99] run
in violationof a site’spolicy.

Backdoorsare,by design,difficult to detect.A common
schemefor maskingtheir presenceis to run a server for
a standardservicesuchas Telnet, but on an undistin-
guishedport ratherthanthewell-known port associated
with theservice,or perhapson a well-known port asso-
ciatedwith adifferent service.In thispaperweexamine
the problemof detectingbackdoors,particularly inter-
active ones,by inspectingnetwork traffic usingan in-
trusiondetectionsystem(IDS), wherewe presumethat
thereis a largevolumeof legitimatetraffic which must
be distinguishedfrom the illegitimate traffic. To our
knowledge, this problemhas not beenpreviously ad-
dressedin theliterature.

Our generalapproachis to developa setof algorithms
for detectingdifferenttypesof interactive traffic. These
algorithmscan then be appliedto a traffic streamand
whenever they detect interactive traffic using a non-
standardserviceport,wehavefoundsomeformof back-
door.

Therestof thepaperis organizedasfollows. In
�

2, we
discussthedesignconsiderationsandexaminethetrade-
offs of differentapproaches.In

�
3, we developa gen-

eral algorithmfor detectinginteractive traffic basedon
its timing characteristics,andin

�
4 we presenta num-

berof protocol-specificalgorithms.In
�

5, we evaluate
thealgorithmsusingtracesof Internettraffic. We sum-
marizein

�
6.

2 DesignSpace

A basicprinciple for backdoordetectionis to find dis-
tinctive featuresindicative of theactivity of interest,be
it generalinteractiveaccess,or useof aspecificprotocol
suchasSSH.Themorepowerful a featureis for distin-
guishingbetweengenuineinstancesof the activity and
falsealarms,thebetter.

Candidatesfor suchfeaturesinclude the specificcon-
tentsof the datastream,the sizeandtransmissionrate
of thepacketsin the stream,andtheir timing structure.
This lastis potentiallyverypowerful for detectinginter-
active traffic: studiesof Internettraffic have found that
theinterarrivalsof userkeystrokeshaveastrikingdistri-
bution [DJCME92, PF95], namelya Paretowith infinite
variance.Thereis alsothepossibilitythatacombination
of featureswill prove to have greaterdistinctive power
thanany onefeatureby itself.

We now turn to a discussionof varioustradeoffs that
arisewhenconsideringhow to develop detectionalgo-
rithms.

2.1 Openvs.evasive attackers

In general,network intrusiondetectionbecomesmuch
more difficult when the attacker actively attemptsto
evadedetectionby themonitor [PN98, Pa98]. Much of
the difficulty comesfrom the ability of attackersto ex-
ploit ambiguitiesin a traffic stream.Froma monitoring
perspective,heuristicsmightwork well for “open” (non-
evasive) attackers,but completelyfail in the faceof an
actively evasiveattacker.

While ideally any detection algorithms we develop
would of courseberesistantto evasive attackers,ensur-
ing suchrobustnesscansometimesbeexceedinglydiffi-
cult, andwe proceedhereon theassumptionthat there
is utility in “raising the bar” even whena detectional-
gorithmcanbedefeatedby a sufficiently aggressive at-
tacker. We furthernotethat if anattacker fully controls
both the remoteandthe local host,andin particularif
they arepatientand/orableto deploy arbitrarysoftware,
thenall sortsof deviouscovert channelsbecomepossi-
ble1 [Gl93], andbackdoordetectionbecomesessentially
hopeless.We do not attemptto addresstheproblemof
detectingcovertchannels.

1See[Ra00] for adiscussionof experienceswith runningNFSover
emailby tunnelingIP packetsovermessagesdeliveredby SMTP.

Thus, we proposethe algorithmsin this papernot as
solutions, but merely as waystationsin the ongoing
“arms race” betweenattackersand intrusiondetection.
One form of arms race we anticipateis particularly
likely is betweenthedevelopersof Napster[NA99] (and
Gnutella[GN00]) andourcorrespondingdetectionalgo-
rithm. Napsterhasa historyof sitesattemptingto con-
trol its use,andof usersattemptingto circumventthese
restrictions[We00], andour algorithmgivessitesa new
tool for detectingsurreptitioususeof Napster.

2.2 Passive vs.active monitoring

One tradeoff is whetherwe only allow the monitor to
performpassive monitoring,or if it canactively inject
traffic into thenetwork. Passive monitoringhasthead-
vantagethat it cannotdisturb the normal operationof
thenetwork. On theotherhand,anactivemonitorcould
augmentits backdoordetectionby trying to connectto
suspectedbackdoorsin orderto probetheserver listen-
ing on theport to determineits service.However, doing
so could in principle tip off the attacker asto the pres-
enceof themonitorandthediscoveryof thebackdoor.

In this paperwe confineourselvesto monitorsthatonly
usepassivemonitoring.

2.3 Content vs. timing

A naturalapproachfor detectingconnectionsto com-
mandshellserversis to monitor thekeystrokeslooking
for commonshellcommands.Sucha content-basedap-
proachhasseveraldrawbacks,however:

� Scanningeachbytein eachincomingpacketis very
expensive, especiallyif we must first reassemble
TCPstreamsto defeatthesortof evasionscharac-
terizedin [Pa98]. The intrudercanthenoverload
themonitorby generatinga largeamountof legiti-
matetraffic.

� Many commandshells allow the user to define
aliases and editing characters,which can eas-
ily defeat this approachunlessthe monitor per-
formsaliasandeditingexpansionof thecommands
(such as also required for “bottleneck” analysis
[LWWWG98]). Note that this problemcan arise
eitherinadvertently, becausetheattacker asa mat-
ter of courseusesaliasesor redefinesthe editing

sequences,or deliberately, whentheattacker is at-
temptingto evadedetection.Theformercasemay
be amenableto heuristicanalysis;the latter likely
is not.

� The intruder can easily evade the monitor by
encrypting their content either through some
application-levelencryptionmethod,or directlyus-
ing encryptedprotocolssuchasSSH.

In contrast,timing-basedalgorithmscanbecompletely
unperturbedby the useof encryption. However, tim-
ing information can becomedistorted due to clock
skew, propagationdelays,loss,andpacketizationvari-
ations. Making timing-basedalgorithm robust against
suchnoiseis challenging.

2.4 Filtering

An importantfactor for the successof real-timeback-
doordetectionis filtering. Themoretraffic thatcanbe
discardedon a per-packet basisdue to patternsin the
TCP/IPheaders,thebetter, asthiscangreatlyreducethe
processingloadonthemonitor. As wewill seein subse-
quentsections,filtering cansometimesbehighly effec-
tive in winnowing down a large traffic streamto just a
few packetsof interest.

However, there is clearly a tradeoff betweenreduced
systemloadandlost information.First, if a monitorde-
tectssuspiciousactivity in a filtered stream,often the
filtering hasremoved sufficient accompanying context
thatit becomesquitedifficult to determineif theactivity
is indeedan attack. In addition,the existenceof filter-
ing criteriamakesit easierfor theattackersto evadede-
tectionby manipulatingtheir traffic so that it no longer
matchesthe filtering criteria. For example,an evasion
againstfiltering basedon packet size(seebelow) is to
usea Telnetclient modifiedto senda large numberof
do-nothingTelnetoptionsalongwith eachkeystroke or
line of input.

In addition,relianceon filtering cansignificantlymag-
nify the problemof “chaff,” i.e., attackers generating
bogustraffic that matchesthe filtering criteria in order
to overwhelmthemonitor’sanalysisload,and/orto gen-
eratea hugenumberof falsepositives,in orderto mask
a trueattack.

Threepossiblefiltering criteria for backdoordetection
are:

� Packet size. Keystroke packets are quite small.
Evenwhenentirelinesof input aretransferredus-
ing “line mode”[Bo90], packet payloadswill tend
to bemuchsmallerthanusedfor bulk-transferpro-
tocols. Therefore,by filtering packetsto only cap-
turesmallpackets,themonitorcansignificantlyre-
duceits packetcaptureload.

� Directionality. In general,an interactive connec-
tion suchasTelnet is initiated by the client rather
than the server, unlessthe attacker setsup some
sort of callback mechanism.This makesit possi-
ble to filter connectionsbasedon their direction-
ality (inboundvs.outbound).If we aremonitoring
anInternetaccesslink andareonly interestedin de-
tectingbackdoorsat thelocal site,wecanlimit our
monitoringto just inboundconnections,which can
significantlyreducethepacketcaptureload(for ex-
ample,by filtering out outboundWebsurfingcon-
nections).

Notethatthereis alsoa “cold start” problemwhen
themonitorstartsrunningandneedsto analyzean
existingtraffic stream.In thiscase,it generallycan-
not determinewhetherthe traffic wasinitiated in-
boundor outbound,andaccordinglycannotfilter it
out.

� Packet contents. Whenwe areinterestedin identi-
fying specificinteractiveprotocols,it is sometimes
possibleto filter incoming packets basedon pat-
ternsspecificto theprotocol. An exampleis SSH,
discussedin

�
4.1below.

2.5 Accuracy

As with intrusiondetectionin general,wefacetheprob-
lem of false positives (non-backdoorconnectionserro-
neouslyflaggedasbackdoors)andfalse negatives (back-
doorconnectionsthemonitorfailstodetect).Theformer
canmake the detectionalgorithmunusable,becauseit
becomesimpossible(or at leasttoo tedious)to examine
all of the alertsmanually, andattackerscanexploit the
latterto evadethemonitor.

We would of courselike to have both the falsepositive
rateandthefalsenegativeratebeaslow aspossible.But
particularly for thoseof our algorithmsthat are based
on overall traffic characteristicsratherthansharpsigna-
tures,we frequentlywill have to choosetradeoffs be-
tweenthetwo.

2.6 Responsiveness

Another importantdesignparameteris the responsive-
nessof thedetectionalgorithm.Thatis, afterabackdoor
connectionstarts,how long doesit take for the moni-
tor to detectthe backdoor? Clearly, it is desirableto
detectbackdoorsasquickly aspossible,to enabletak-
ing additionalactionssuchasrecordingrelatedtraffic or
shuttingdown theconnection.However, in many cases
waiting longerallows themonitor to gathermoreinfor-
mationandconsequentlycandetectbackdoorsmoreac-
curately, resultingin a tradeoff of responsivenessversus
accuracy.

Another considerationrelated to responsivenesscon-
cernsthe systemresourcesconsumedby the detection
algorithm. If we want to detectbackdoorsquickly, then
wemusttakecarenot to requiremoreresourcesthanthe
monitorcandevoteto detectionoverashorttimeperiod.
On theotherhand,if off-line analysisis sufficient, then
wecanusemoreresource-intensivealgorithms.

3 A General Algorithm for Detecting In-
teractive Backdoors

In thissectionwepresentageneralalgorithmfor detect-
ing interactive backdoorsbasedon keystroke character-
istics. The algorithmincorporatesthreetypesof char-
acteristics:directionality, packetsizes,andpacket inter-
arrival times. We alsofind we needto excludeexces-
sively shortflows (commonin our tracesdueto theuse
of scanningby automatedmonitoringsoftware),which
do not provide enoughtraffic to analyzesoundly. The
criterion we useis to skip analysisof any flows com-
prisedof fewer than8 packetsor lastinglessthan2 sec-
onds,wherea flow is one direction of a bidirectional
TCPconnection.

3.1 Exploiting connectiondir ectionality

As notedabove,aninteractiveconnectionis mostlikely
initiated by the client, unless the server has some
callback mechanism. Therefore, when looking for
keystrokesweneedonly considertraffic sentby theini-
tiator of a connection.However, if themonitordoesn’t
seetheestablishmentof theconnection,thatis, thecon-
nectionis a partial connection,thereis no way to tell
whois theactualinitiator. In thiscase,wemustconsider

bothflows.

If we aremonitoringan accesslink andareonly inter-
estedin detectingbackdoorswithin thelocalsite,wecan
further exploit the connectiondirectionalityandignore
all outboundflows,evenif theconnectionis partial.

3.2 Exploiting packet length characteristics

3.2.1 The sizeof keystrokepackets

Keystroke packets are likely to be very small, even if
sent in line mode,becausemost commandsare short.
To verify this assumption,we analyzedseveral Internet
traffic traceswith atotalof 2.1million TelnetandRlogin
client datapackets.Of these,79%carrieda singlebyte,
97%carried3 bytesor less,and99.7%carried20 bytes
or less.

For atraceof SSH1.x and2.x connections(veryheavily
skewed towards1.x), we found that 28% of the 150 K
client datapackets had length 20 or less. (Note that
thoseSSHconnectionswith predominantlybig packets
arelikely to befile transfers.)

Consequently, weuse20 bytesasourcutoff for “small”
packets.

3.2.2 Characterizing the fr equencyof small packets

Sincemost keystroke packets are quite small, we can
excludethoseconnectionsthatdon’t have enoughsmall
packets. More specifically, we can devise a metric to
measurethefrequency of smallpacketsin a connection,
which we thenuseto determinewhetherwe shouldex-
cludetheconnection.

Thesimplestmetric is the ratio of thenumberof small
packetsover the total numberof packets,for a suitable
definitionof “small packet,” whichpertheprevioussec-
tion we defineas 20 bytesor lessof payload. Unfor-
tunately, this metric doesn’t work well in practice.Al-
though,asstatedin theprevioussection,over 99.7%of
keystrokesarevery small,suchstatisticsarebasedon a
largenumberof connections.For a specificconnection,
we find that theratio canbeaslow as30–40%.Conse-
quently, in orderto preventfrequentfalsenegatives,we
have to choosea conservative thresholdas low as20–
30%. But with sucha low threshold,the metricshave
little discriminatingpower andcanintroducetoo many

falsepositives.

To avoid suchproblems,we deviseda metric � , defined
in termsof � , thenumberof smallpackets, � , thetotal
numberof packets,and � , thenumberof gapsbetween
small packets. A gapoccursany time two small pack-
etsareseparatedby at leastonelargepacket. We then
evaluate:

�	� ��
��

��� �
The intuition behind � is that consecutive small pack-
etsarestrongindicatorsthataconnectionhasinteractive
traffic. If the small packetsareall spreadthroughouta
connection,thenwe will have ������
�� , so ����� . If
they areall groupedtogether, then ����� and � will re-
flect therelativeproportionof smallpacketsin thetrace.

In ourfinal algorithm,wesetthethresholdto ����� �
�
.

3.3 Exploiting timing characteristics

As mentionedabove, keystroke interarrival timescome
in a striking Paretodistribution,exhibiting a very broad
range [PF95]. We can then exploit the tendency of
machine-driven, non-interactive traffic to sendpackets
back-to-back,with a very short interval betweenthem,
to discriminatenon-interactive traffic from interactive.
We do soby examiningeachpair of back-to-backsmall
packet arrivalsandcomputingthe ratio � of how many
of theseinterarrival timesfall within therange10 msec
through2 sec. (We needto take care not to include
retransmittedpackets in this computation.) The upper
boundof 2 secis fairly arbitrary;using100secdoesnot
appreciablychangetheperformance.

We thendefinea metric � to quantifyhow oftenthein-
terarrival betweentwo consecutivesmallpacketsfalls in
thisrange.In ourfinal algorithm,wesetthethresholdto
����� �

�
.

It might appearthat the criteria of ����� �
�

and ���
� �
�

aretoo lax, andsingularly, they are;but jointly, they
provehighly effective,asweshow in

�
5.7.

3.4 Making the algorithm run in real-time

In this sectionwe discusstwo considerationsin using
thealgorithmin real-time.First,weobservethatwecan
reducethe packet captureload a greatdealby filtering
on the datapayloadlengthof the packetsto only cap-
turesmallpackets.tcpdump [JLM91] doesn’t actually

have an easyway to specifya particularrangeof pay-
load sizes,but the following will filter out all packets
with morethan20bytesof payload:

(packet length -
ip header length -
tcp header length) <= 20.
That is, data length <= 20.
(ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) <= 20

wherethe bit-shifting is requiredto extract the IP and
TCPheaderlengths,whichcanbevariablelengthdueto
thepresenceof IP or TCPoptions.

Introducingfiltering doesnot affect the evaluationof
� for a flow, since � is only computedfor packets
thatareconsecutive in theTCPsequencespace(

�
3.3).

However, we must take carewhenevaluating � , since
now that we only seesmall packets, we can’t accu-
rately tell the total number of packets � transmit-
ted by a given flow. To solve this problem, when-
ever we seea gap in the sequencenumber, we esti-
matethenumberof missinglargepacketsin thegapas�
gap LARGE PKT SIZE! , whereLARGE PKT SIZE

is a guessat themostcommonsizefor full-sizedpack-
ets.Thissizevarieswith pathcharacteristicssuchasthe
Maximum TransmissionUnit, andalsodependson the
particularTCPimplementation,but asa roughapproxi-
mationwesimplyuseLARGE PKT SIZE �#"$�$� .

Theotherconsiderationfor real-timedetectionconcerns
how quickly the algorithmcan determineit hasfound
a backdoor. For off-line analysis,it suffices to check
whetheraconnectionhasbackdoorcharacteristicswhen
theconnectionterminates(or whenthetraceends),and
aswe have defined� and � above, they arein termsof
statisticscomputedoveraconnection’s total lifetime.

The simplestway to adaptthe algorithmto run in real
time is to reevaluate� and � on eachincomingpacket.
Alternatively, we canhave a timer for eachconnection
andtesttheconnectionwheneverthetimergoesoff. Un-
fortunately, neitherapproachworkswell in practice.The
majorproblemis thatwhenweclassifyaconnectionasa
non-backdoorconnection,we can’t just ignorethecon-
nectionlateron,becauseit’shardto tell whetherthecon-
nectionis indeeda non-backdoorconnection,or instead
actuallyabackdoorconnectionwith apreamblethathas
non-backdoorcharacteristics(suchasthe Telnetoption
negotiationsthatprecedea Telnetlogin dialog). Conse-
quently, we have to keepre-testingeachnon-backdoor
connection,which is clearlyveryexpensive.

We addressthis problemby exponentiallybackingoff
thereevaluationtimer. We initially choosea smalltime-
out value for the timer (30 seconds). Subsequently,
whenever a connectionappearsto be a non-backdoor,
we increasethe timeoutvalueby a factorof 1.5,which
spreadsthe computationalload over the lifetime of the
connection.

4 Special-PurposeDetectionAlgorithms

In thissectionweexplorealgorithmsthatlook for signa-
turesreflectingtheuseof particularprotocols.If wethen
find servers for thoseprotocolsrunningon portsother
thantheirstandardones,suchinstancesmayindicatethe
presenceof a backdoor.

Comparedto the general-purposedetectionalgorithm,
special-purposealgorithms can better benefit from
protocol-specificinformation,andhencearelikely to be
moreaccurateor moreefficient. Ontheotherhand,rely-
ing on protocol-specificinformationcanmake thealgo-
rithm susceptibleto evasion,if the attacker canperturb
thesignature.

Therearetwo majorapplicationsfor special-purposede-
tectionalgorithms. First, they canbe usedasbaseline
algorithmsto evaluatethe performanceof the general-
purposealgorithmdescribedin

�
3, allowing us to un-

derstandhow much performancewe lose by making
thealgorithmmoregeneral(andhencemoredifficult to
evade). Second,the special-purposealgorithmsthem-
selvescanbeusedeitherindividually or in combination
with thegeneral-purposealgorithmto detectbackdoors.

In the rest of this section,we introduce15 algorithms
for detectingvariousinteractive protocolsandthe like.
Basedondifferentdesignpurposes,wecandivide these
algorithmsinto thefollowing two classes:

� Optimal algorithmsaredesignedto identify back-
doorsasaccuratelyaspossible,without worrying
aboutefficiency. Suchalgorithmsareintendedfor
useasbaselinealgorithmsandfor off-line analysis.

� Efficient algorithmsincorporateprotocol-specific
filtering mechanismsinto the optimal algorithms
to reducetheir expense,at the cost of a degree
of accuracy. The tradeoff here varies a great
deal—sometimesit is even possibleto usea sim-
ple packet filter to achieve accuracy in the same
leagueasfor muchmoreexpensivealgorithms(see

�
4.1 below)—andthe gain is algorithmsefficient

enoughto usefor real-timedetection.

Table1 summarizesthealgorithmsdiscussedin therest
of thissection.

Backdoortype Optimalalgorithm Efficientalgorithm

SSH ssh-sig, ssh-len ssh-sig-filter
Rlogin rlogin-sig rlogin-sig-filter
Telnet telnet-sig telnet-sig-filter
FTP ftp-sig ftp-sig-filter
Rootprompt root-sig root-sig-filter
Napster napster-sig napster-sig-filter
Gnutella gnutella-sig gnutella-sig-filter

Table1: Summaryof thespecial-purposebackdoorde-
tectionalgorithms.

4.1 SSH

SecureShell (SSH) encryptstransmittedcontentwith
strongcryptography. It is increasinglyusedfor both in-
teractiveandbulk transfertraffic. While all in all its de-
ploymentrepresentsa major advancefor Internetsecu-
rity, it presentssignificantdifficulties for content-based
intrusiondetectionpreciselybecauseit rendersthemon-
itor blind to thespecificsof eachconnection.It is thus
particularlyattractive for backdooruse.

Our first algorithm for detectingSSH, ssh-sig, uses
the SSH version string as the signature for SSH.
When an SSH connectionhas beenestablished,both
sides send an identifying string of the form “SSH-
protoversion-softwareversion comments”,followed by
carriage-returnandnewline (ASCII 13 and10, respec-
tively) [YKSRL99]. Themaximumlengthof thestring
is 255characters,includingthecarriage-return/newline.
Versionstringscontainonly printablecharacters,not in-
cludingspaceor “ - ”.

Currently, the SSH protocol versionis either “1.x” or
“2.x”. Therefore,it sufficesfor ssh-sigto look for text
“SSH-1.” or “SSH-2.” at thebeginningof thefirst data
packetsentin eachdirectionof a connection.

Wecanreplacessh-sigwith thefollowing tcpdumpfilter
(denotedasssh-sig-filter) for veryefficientdetection:

1st 4 bytes are ’SSH-’ and
bytes 5 and 6 are ’1.’ or ’2.’

tcp[(tcp[12]>>2):4] = 0x5353482D and
(tcp[((tcp[12]>>2)+4):2] = 0x312E or

tcp[((tcp[12]>>2)+4):2] = 0x322E)

Our seconddetectionalgorithm, ssh-len, usesan im-
plicit signature,the packet length, to detectSSH ses-
sions.Accordingto theSSHspecification,SSH1.x will
(in theabsenceof TCPrepacketization)generatepacket
payloadsizesof the form %'&)(+* , that is, 4 morethan
a multiple of 8. SSH 2.x will generatepayloadsizes
of lengthat least16, andalsoa multiple of the cipher
block size, which is a multiple of 8 for all of the ci-
phersof whichweareaware.Therefore,for SSH,either
mostpacketswill have length %,&-(.* , or mostwill have
length %'& . Onedeviation occurswith the initial version
exchange,whichdoesnotconformwith theserules.

In light of thispattern,ssh-lendetectsSSHasfollows:

1. First test for an interactive connectionusing the
timing-basedalgorithm (

�
3). If it is interactive,

go to thenext step,otherwisestop.

2. If theproportionof packetswith length%,&/(0* or the
numberof packetswith length %'& exceedsathresh-
old, classifytheconnectionasSSH.

We need to be careful when choosingthe threshold,
becausepacket retransmissionand fragmentationcan
sometimesdistort suchcharacteristics.In our current
implementation,wesetthethresholdto 75%.

4.2 Rlogin

Upon connectionestablishment,an Rlogin client sends
four NUL-terminatedstringsto theserver in thefollow-
ing format[Ka91]:

<NUL>
client-user-name<NUL>
server-user-name<NUL>
terminal-type/speed<NUL>

The server then returnsa zero byte (NUL) to indicate
that it has received thesestrings and is now in data
transfermode. Algorithm rlogin-sig attemptsto detect
Rlogin sessionsusingthis negotiationasa signature.It
first appliesthefollowing analysisto a connection:

� For the flow towardsthe initiator of a connection,
checkif thefirst byteis aNUL.

� For theflow sentby theinitiator, keeptestingeach
byteuntil oneof thefollowing eventshappens:

- A gapin sequencenumberoccurs;

- four NUL’shavebeenseen;

- anemptystringor a non-7-bit-ASCIIbyte is
seen;or

- the numberof byteswe examinedreachesa
maximum bound (128 in the current algo-
rithm).

If theabove terminatesby finding four NUL’s, thenwe
checkto seewhethertheflow in theotherdirectionbe-
gins with a non-NUL byte, or whetherwe found any
empty stringsor non-7-bit-ASCII bytes. If neitherof
theselast two hold, thenthe connectionis classifiedas
anRloginconnection.

We cancombinerlogin-sig with thefollowing tcpdump
filter, resultingin a moreefficient algorithmrlogin-sig-
filter :

last byte is 0 and data len != 0 and
data length <= 128
(tcp[(ip[2:2]-((ip[0]&0x0f)<<2))-1]=0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) != 0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) <= 128)

Note that rlogin-sig testsfor whetherthe last byte in
the packet is NUL, rather than the first byte. This is
necessarybecausewefind thatclientstendto sendtheir
first NUL in its own packet, and the remainderof the
prologinformationin asecondpacket.

4.3 Telnet

The Telnet protocol [PR83a] includesa quite general
mechanismfor negotiatingoptions[PR83b]. Sincemost
Telnet sessionsbegin with a seriesof option negotia-
tions,we canattemptto detectthese,which have a dis-
tinct pattern,takingoneof thefollowing four 3-bytefor-
mats:

IAC WILL option-code
IAC WON’Toption-code
IAC DOoption-code
IAC DON’T option-code

The codevaluesfor WILL, WON’T, DO, DON’T, and
IAC are251,252,253,254,and255respectively. Note
thatsomeoptionshaveparameters,andsocanbelonger
thantheabovethreebytes.

telnet-sig tests the first two bytes of each incoming
packet to seeif they matchthebeginningof any of the
above. If a connectiondoesn’t involveany optionnego-
tiation,weclassifyit asanon-Telnetconnection.Other-
wise,we testthefollowing additionalconditions:

� At least75%of thebytesare7-bit-ASCII.

� At least50% of the lines are not longer than 80
bytes.

Theseaid in weedingout binary traffic that happensto
matchtheoptionpatternsabove.

We cancombinethefollowing packet filter with telnet-
sig to form a moreefficientalgorithm,telnet-sig-filter:

1st byte is <IAC> (0xff),
2nd byte is <251> - <254>
(tcp[(tcp[12]>>2):2] > 0xfffa) and
(tcp[(tcp[12]>>2):2] < 0xffff)

4.4 FTP

In this sectionwe look at a somewhatdifferentform of
interactive protocol,theusercontrolportionof theFTP
file transferprotocol[PR85].FTPis arequest/replypro-
tocol in which requestsaresentin single,usuallyshort,
linesof ASCII text, andreplieshave a similar structure,
but canbelongerandmulti-line. SomeFTPrequestsare
sentin responseto useractivity, andaccordinglyhave
interactive-like timing. Othersaregeneratedmechani-
cally by theFTPclient,andarrivecloselyspaced.

Repliessent by FTP servers start with a statuscode
(a number),followed by any accompanying text. For
a day’s worth of FTP activity betweenthe Lawrence
Berkeley NationalLaboratoryandtherestof theInternet
(7,229connections),the distribution of the codein the
first reply returnedby the server is: code220 (“ready
for new user”)seen6,685times;code421 (“servicenot
available”)seen535times;code226 (“closingdatacon-
nection”)seen7 times;codes426 (“connectionclosed”)
and200 (“commandokay”) eachseenonce;no other
codesseen.

Of these,if wemissaserverthatreturns421 wehaven’t
actuallymissedanythingsignificant,sincetheserviceis
not available. All that really mattersis detecting220 ,
thoughwecaninclude421 , too,withouttoomuchextra
effort.

ForFTPserverreplies,thefourthbyteiseitherablankor
a hyphen,thelatter indicatinga multi-line reply. There-
fore, the ftp-sig algorithmlooks in the first four bytes
for either220 or 421 , followedby eithera blankor a
hyphen,asa signaturefor anFTPconnection.

We canalsocomposeftp-sig-filter :

1st three bytes are ’220’,
4th byte is blank or hyphen
tcp[(tcp[12]>>2):4] = 0x3232302d or
tcp[(tcp[12]>>2):4] = 0x32323020

with a similarfilter for 421 .

Onedifficulty with thisapproachis thatthesamesortof
statuscodesareusedby the popularSMTPmail trans-
fer protocol[Po82]. Code220 correspondsto “service
ready”and421 to “servicenotavailable,” justasit does
for FTP. This meansthat our algorithmsfor detecting
FTPbackdoorsshouldwork justaswell for SMTPback-
doors(which canactuallybebeneficial),which in

�
5.5

weexplorefurther.

4.5 Root Backdoor

Fromoperationalexperiencewehavefoundthatonepar-
ticular typeof backdoorinstalledby attackersis a Unix
root shell,andtheconnectionto it maynot involve any
Telnet option negotiation. For these,often the server
startsby sendinga packetwith a payloadof exactly two
bytes: “#<blank>”, which correspondsto one of the
formsof aUnix rootshellprompt.Thisgivesusasimple
algorithm,root-sig, which attemptsto detectroot back-
doorsby lookingfor thetwo bytesin thefirst packetsent
by theserversideof aconnection,andthecorresponding
root-sig-filter:

look for ’# ’ in a packet with
exactly 2 bytes of payload
tcp[(tcp[12]>>2):2] = 0x2320 and
(ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) == 2

which, given its conceptualsimplicity, works surpris-
ingly well (see

�
5.6below).

4.6 Napster

Napster is a distributed systemby which userscan
sharecopiesof music that hasbeendigitized in MP3
format [NA99]. Users run a client that connectsto
napster.com serversfor purposesof publishingthe
MP3’sthattheuserhasmadeavailableto thepublic,and
for searchingfor particularMP3’savailableelsewherein
thedistributeddatabase.Theserver redirectsthe client
to otherclientsthathave thedesiredMP3available,and
the client thenmakesa direct connectionto the source
of theMP3,bypassingtheserverat thispoint.

NapsterhasprovencontroversialbecauseoftentheMP3
trading is in violation of copyright laws, and also be-
causeMP3’s tend to be large files, so the enthusi-
asm of a site’s Napsteruserscan consumeconsider-
ableresources[NA00, Ha00]. Therefore,sitesmake ef-
forts to control Napstertraffic, for exampleby remov-
ing connectivity to the napster.com servers. Nap-
ster usershave taken counter-measuresto circumvent
such blocking [We00], including configuring Napster
serversto usenon-standardportsfor their communica-
tions. Open-sourceNapsterclients are also available
[GN99, ON00a], which will aid Napsterusersin mod-
ifying the client’s behavior to bettercircumvent detec-
tion.

DetectingNapstertraffic is thusin many wayssimilar to
detectingotherbackdoors,even thoughin this casethe
traffic doesnot reflect a securityaccessviolation, but
rathera policy violation (authorizationratherthan au-
thentication).

We focusedon the problemof detectingthe communi-
cationdirectly betweenNapsterclients(usedto transfer
theactualMP3’s). Onethoughtwasto developageneric
MP3 detector, thoughour preliminarywork on this has
shown theproblemto besomewhatdifficult, asthefor-
mat hasa short,binary headerthat doesnot suggesta
simple,distinctpatternto look for [Bo00].

TheNapsterclientcommunication,however, hasaquite
distinctive signature[ON00b]. Thecommunicationbe-
ginswith thestringSENDor GETfollowedimmediately
by the nameof the item (no intervening whitespace).
Furthermore,we have found that the SENDor GETdi-
rective is sentby the Napsterclient in its own packet,2

so our currentversionof napster-sig simply looks for
eitherof thesestringssentin their own packet andoc-

2Clearly, this is very easyfor the Napsterclient to change,and
the correspondingchangeto make to our detectoris looking for the
absenceof whitespacefollowing thedirective,whichwill addressmis-
takingNapsterGET’s for thoseusedby HTTP.

curring at the beginning of a connection.napster-sig-
filter doesthe same,but without the beginning-of-a-
connectioncontext:

look for "SEND" or "GET" in a
packet by itself (so payload of
4 or 3 bytes, respectively)
((ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) = 4 and
tcp[(tcp[12]>>2):4] = 0x53454e44) or

((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) = 3 and

tcp[(tcp[12]>>2):2] = 0x4745 and
tcp[(tcp[12]>>2)+2]=0x54)

4.7 Gnutella

Gnutellais adistributionsystemsimilar in spirit to Nap-
ster [GN00]. Its distinctive featuresarethat it is fully
opensource,it canbe usedto exchangearbitraryfiles
and not just MP3’s (althoughthere are now Napster
add-onsfor doing this, too), and it hasno centralized
component—Gnutellaclientssimply needto know the
nameof anotherGnutellaclientandthey canparticipate
in the distribution network. Consequently, Gnutellais
likely to proveharderfor sitesto controlthanNapster.

In its current form, however, Gnutellais very easyto
detect.EachGnutellasessionbeginswith theconnecting
client transmitting:

GNUTELLACONNECT/1 version 2-1 NL 2-1 NL 2

andreceiving in reply:

GNUTELLAOK1 NL 2-1 NL 2

where 1 NL 2 is thenewline character(ASCII 10).

Accordingly, gnutella-sig looks for the string
“GNUTELLA1 blank 2 ” at the beginning of a
connection.

Thecorrespondinggnutella-sig-filter is:

look for "GNUTELLA " as first
9 characters of payload
tcp[(tcp[12]>>2):4] = 0x474e5554 and
tcp[(4+(tcp[12]>>2)):4] = 0x454c4c41
and tcp[8+(tcp[12]>>2)] = 0x20

5 Performanceevaluation

In this sectionwe evaluatethe algorithmsdevelopedin�
3 and

�
4. Theevaluationsweredoneby addingimple-

mentationsof thealgorithmsto theBro intrusiondetec-
tion system[Pa98].

Our generalframework for evaluationis asfollows. To
assessan algorithm’s accuracy, we first run it against
known interactive traffic of theparticulartype it is sup-
posedto detect(Telnet,Rlogin,SSH;or, for thegeneral
algorithm, a combinationof Telnet and Rlogin, since
SSHtraffic is sometimesbulk-transfer)andanalyzehow
oftenit fails to flag a connectionin the traceasinterac-
tive. This evaluatesthe false negative rate.We thenrun
the algorithmagainstpacket tracesof a site’s Internet
traffic (thesehavehigh-volumeprotocolssuchasHTTP,
NFS,andX11 removed,becauseotherwisewecouldnot
capturethetracesreliably)toseewhichconnectionsthey
mark as interactive, and thenmanuallyassesswhether
theconnectiondoesindeedappeartobeinteractive.This
evaluatesthefalse positive rate.

Note, we do not assessthe Napsterand Gnutellade-
tectors,asthe traceswe useherewerecapturedbefore
thoseapplicationsexisted. However, our informal as-
sessmentbasedon correlatingtraffic to known Napster
andGnutellaportsandservicesis that they work very
well.

5.1 Tracedescription

We usedfour tracesto evaluatethe performanceof the
algorithms:

� ssh.trace (194MB,380Kpackets,905connec-
tions),a half-hoursnapshotof all theSSHconnec-
tions seenlate at night on the Internetaccesslink
(DMZ) of theUniversityof Californiaat Berkeley
(UCB).

� lbnl.mix1.trace (54MB,134Kpackets,4.6K
connections)and lbnl.mix2.trace (421MB,
863Kpackets,14.7Kconnections).Eachtracecon-
tainsonehour of aggregatetraffic collectedat the
DMZ of the LawrenceBerkeley NationalLabora-
tory (LBNL), thefirst in themiddleof thenight,the
secondin the middle of the afternoon.The traces
havehadhighvolumeprotocols(HTTP, SSH,NFS,
X11, NNTP, FTPdata)filteredout.

Note that we might well apply suchfiltering for
operationaluse,too, decidingto tradeoff missing
backdoorson thoseports for the reducedpacket
captureload.

� lbnl.inter.trace (389MB, 3.5M packets,
5.5K connections),oneday’s worth of Telnetand
Rlogin traffic collectedatLBNL.

5.2 Performanceof SSHalgorithms

Weranssh-sigontracessh.trace toevaluateits false
negativeratio. Clearly, ssh-sigonly workswhenthebe-
ginningof a connectionis present.Altogether, thereare
546completeSSHconnectionsin ssh.trace , noneof
which is missedby ssh-sig. This demonstratesthat the
falsenegative ratio of ssh-sigis extremely low, which
is to be expectedsincethe presenceof the signatureis
requiredby thespecification.

We then ran ssh-sig on lbnl.mix1.trace ,
lbnl.mix2.trace and lbnl.inter.trace
to evaluateits falsepositive ratio. Among the 16,938
completenon-SSHconnections,noneis mis-classified
asSSHby ssh-sig. Therefore,thefalsepositive ratio of
ssh-sigis closeto 0.

ssh-sig-filterhasexactly thesamegoodperformanceon
the traceswe have, which is not surprising,astheonly
apparentopportunityfor error is unusualpacketization
splittingtheSSHversiontext acrossmultiplepackets.In
addition,the filtering gain is tremendous,becauseonly
thosepacketsthat containthe SSHversionstring need
to befurtherprocessed.For ssh.trace , thealgorithm
needsonly inspect111 KB of packets ratherthan the
194MB presentin theentiretrace.

Themajorlimitation of ssh-sigandssh-sig-filter is that
they only work whenthebeginningof anSSHconnec-
tion is present.

SinceSSH canbe usedfor both interactive traffic and
bulk transfer, it is difficult to soundlyevaluatethe false
negativeratioof ssh-len, which is designedto detectin-
teractive SSHbackdoors.Consequently, weonly evalu-
atethefalsepositive ratiohere.

Again, we ran ssh-len on the three traces with-
out ssh connections: lbnl.mix1.trace ,
lbnl.mix2.trace and lbnl.inter.trace .
Among the 16,938non-SSHconnections,only 5 are
classifiedasSSHby ssh-len, yielding a very low false
positiverate.

Comparedwith ssh-sigandssh-sig-filter, ssh-lendoes
not requirethe presenceof the beginning of a connec-
tion. However, it is lessrobust for SSH1.x over highly
lossylinks,wheretwo SSHblocksof length%,&3(4* could
becoalesceddueto packet retransmission,resultingin a
singlepacketof %657&98:(�&,;<(=�?> bytes.Consequently, we
only usessh-lenwhenthebeginningof a connectionis
missing.

5.3 Performanceof Rlogin algorithms

Altogetherthereare175completeRloginconnectionsin
thetraces,noneof which is missedby rlogin-sig.

We begin with evaluating the false positive ratio of
rlogin-sig. In thefour traces,altogetherthereare17,306
non-rloginconnections,noneof which is mis-classified
asanRloginconnection.Thismeansrlogin-sig alsohas
anextremelylow falsepositiveratio.

After addingfiltering into rlogin-sig, we foundthat the
falsenegative ratio remainsthe same(0/175). Mean-
while, theincreasein thefalsepositiveratio is marginal:
altogetherthereare4 out of 17,306non-Rloginconnec-
tions that are mis-classifiedas Rlogin connectionsby
rlogin-sig-filter .

The filtering gain of rlogin-sig-filter is significant.
Among the 1 GB datawe have in the four traces,only
16MB dataneedsto beprocessedby rlogin-sig.

Themajor limitation of rlogin-sig andrlogin-sig-filter
is similar to ssh-sig—they only work when the begin-
ningof a connectionis seenby themonitor.

5.4 Performanceof Telnetalgorithms

Again,we first evaluatethefalsenegative ratio of algo-
rithm telnet-sig. Unfortunately, it turnsout that many
Telnetconnectionsin our tracesareveryshort.For such
short connections,telnet-sig fails becausethe connec-
tions do not includeoption negotiations. On the other
hand,if a connectionis thatshort,evenif it is indeeda
backdoor, it is not likely to causesignificantdamage.

To make the evaluationmeaningful,we only consider
thoseconnectionssatisfying:

� theclientsendsat leasttwo linesof data;
� theserversendsat leastoneline of data;and

� thedurationof theconnectionis at least1 second.

After eliminating connectionsnot satisfying thesere-
quirements,1,526 Telnet connectionsremain, 18 of
which are missedby telnet-sig. Further inspection
shows that 17 out of the18 involve the samepublic li-
brary catalogserver, which performspasswordlesslo-
ginswithoutany optionnegotiation.

We further find that of the 12,708non-Telnetconnec-
tions in the traces,noneis mis-classifiedasTelnetcon-
nections. This demonstratesthat telnet-sig hasa very
low falsepositiveratio.

After addingfiltering into telnet-sig to form algorithm
telnet-sig-filter, thefalsepositive andfalsenegative ra-
tios areunaffectedfor the traceswe have studied. The
filtering gain, however, is significant: telnet-sig-filter
hasto processlessthan 1.5 MB out of over 1 GB of
packetdata.

Themajorlimitation of telnet-sigandtelnet-sig-filter is
similar to ssh-sigandrlogin-sig—they only work when
the connectionasseenby the monitor includesoption
negotiations,which tendsto only occurat thebeginning
of a connection.

5.5 Performanceof FTP algorithms

As notedin
�

4.4,ourFTPdetectionalgorithmwill also
detectSMTP, so herewe note this limitation and then
treatthetwo protocolstogether.

We have altogether5,629FTP/SMTPsessionsin which
the server sentat least4 bytesof data. Of these,29
are missedby ftp-sig. Further inspectionshows that
theseconnectionsarealmostall partial connectionsfor
which theinitial dialog(which is far andaway themost
likely placefor oursignatureto trigger)is missing.This
demonstratesthatftp-sig hasa low falsenegativeratio.

Among20,135non-FTP/SMTPconnections,only oneis
classifiedasFTP/SMTP. Furtherinspectionshows that
this is actuallyanFTPserver runningvia WinSock—so
thereis no falsepositiveafterall!

After addingfiltering, ftp-sig-filter enjoys thesameac-
curacy, aswell asa terrific filtering gain: only 1.2 MB
out of over 1 GB dataneedbe processedby ftp-sig-
filter .

Again,thelimitation for ftp-sig andftp-sig-filter is that,

exceptfor rareexceptions,they only work whenthebe-
ginningof a connectionis seenby themonitor.

5.6 Root shell algorithms

As far aswe cantell, our tracesdo not includeany root
shells,so we cannotsoundlyevaluatethe performance
of root-sigandroot-sig-filter. But seethenext section
for preliminaryexperiencesindicating that they (root-
sig-filter, in particular)arequitepowerful.

5.7 Performanceof the generaldetectionalgo-
rithm

To assessthefalsenegativeratioof thealgorithm,weran
it on tracelbnl.inter.trace , which consistsonly
of TelnetandRloginconnections.Amongthe150com-
plete Rlogin connections,26 are missedby the algo-
rithm. Furtherinspectionshows that23 areexcessively
short(lessthan2 secondsin duration,or only onecom-
mandexecuted),andtheother3 areuserlogin failures.
Amongall 1,450Telnetconnectionsthatarenot exces-
sively short, 22 are missedby the timing-basedalgo-
rithm. Therefore,thefalsenegativeratio is at leastcom-
parableto telnet-sig. Furtherinspectionshows that the
algorithmfoundall 18connectionsmissedby thetelnet-
sig, but 22connectionsdetectedby telnet-sigaremissed
by thetiming-basedalgorithm.

To evaluate the false positive ratio of the algorithm,
we ran the algorithm on lbnl.mix1.trace and
lbnl.mix2.trace with all the Telnet/Rlogin/FTP/
SSH/SMTP connectionsfiltered out. Among over
12,000 connections,the timing-basedalgorithm re-
ported 57 backdoors. Further inspectionshows that
45areIMAP [Cr94] andPOP[MR96] mail serversused
interactively, and thereforeare not in fact false posi-
tives.3

5.8 Experiencewith production use

We only recentlybegun operationaldeploymentof the
backdoordetectionalgorithmsfor productionuseonthe
LBNL DMZ. One of the most surprising(and, in ret-
rospect,obvious)findingshasbeenthelargenumberof
legitimatebackdoors.

3Thealgorithmhasalsodetectedinteractive SMTPsessions,nom-
inally anon-interactive protocol.

For example,whenanalyzing20 minutesof traffic from
theUCB DMZ (comprising4.9GB of dataafterfiltering
out thehigh volumetraffic), theprotocol-specificalgo-
rithmsreport334backdoorson non-standardports. Of
these,326areFTPserverson non-standardports,7 are
interactivegames,andtheremainingoneis alibrarycard
catalogserver. In contrast,the timing-basedalgorithm
reports220backdoors.Fromvisualinspectionsof 75of
these,wefound:17areinteractiveAOL sessions,19are
interactive games,14 arechatsessions,3 arecardcata-
log servers,7 areFTP sessions,andwe wereunableto
identify theother15.

Runningon thelive traffic stream,theSSHdetectional-
gorithmshaveturnedupSSHserversrunningonport80
(nominallyHTTP—theserverranonthatportto provide
tunnelingthroughfirewalls); port 110(nominallyPOP);
port32(usedto runanolderversionof SSHthantheone
onport22,duetocompatibilityproblems);ports44320–
44327(a NAT server with SSHaccessto thecollection
of hostsbehindit via a numberof differentports); as
well asahostof variantsof 22 (222,922,2222, �@�@�).

For productionuse it is unsafeto filter out the high-
volume protocols. Running the signature-basedtcp-
dump filters on full traffic streamsdoes not present
any performanceproblemswhen using a kernel-based
packet filter, as the filters are highly selective. For
the otherprotocol-specificdetectors,it appearswe can
alsorun themon good-sizedfull traffic streams,asrun-
ning all of themagainsta 10 GB traceonly takesabout
20CPUminutesona 400MHz PentiumII.

Werunall of theprotocol-specificdetectorsdailyagainst
tracesof LBNL traffic otherthanthehigh-volumeports.
(We will shortlybeconfiguringourmonitorto run them
in real-time.) We currently run with a set of five fil-
tersto remove legitimatebackdoors:theNAT front-end
mentionedabove; two hoststhatruna documentupload
servicethat triggersftp-sig (theprotocolis not FTP
or SMTP, but hasa similar structure);a host that runs
a serviceon TCP port 497 that involves an exchange
that looks like Telnetoptionnegotiation(but isn’t); and
a popularFTP server that sometimesservesfiles with
binarydatathatlookslikeembeddedTelnetoptions.

TheNapsterandGnutelladetectorshavebecomeimpor-
tant tools in enforcingLBNL’s appropriateusepolicy,
and,for example,havedetecteda remoteNapsterserver
runningon port 21 (FTP)in anapparentattemptto hide
or circumventa firewall.

The root backdoorfilter, root-sig-filter, hasuncovered
root backdoorsrunningon UCB traffic. However, these

have not beenin theform originally intended(in which
theconnectionbeginsdirectlywith “#<blank>”), which
we know from experienceare a rare, albeit striking,
signature. Instead,becausethe filter versionof the al-
gorithmdetects“#<blank>” anywhere in a connection,
providing it is sentasa prompt(by itself with no new-
line), root-sig-filter is quite powerful at detectingboth
sometransitionsto root via theUnix su command,and
sessionsfor whichthepromptseenafterthelogin prolog
is indeed“#<blank>”.

Part of the appealof root-sig-filter is that it generates
very few candidateconnections,soeventhoughits false
hit rateon generaltraffic is fairly high, theconnections
it flagsarenot burdensometo check,andit is anexcep-
tionally cheapalgorithmin termsof computation.

We do not yet run the generalalgorithmoperationally.
As discussedabove, it detectslargenumbersof interac-
tive services,requiring time-consumingeffort contact-
ing themanagersfor thevariousmachinesto determine
that in fact thebackdoorsarelegitimate.But thepoten-
tial of theapproachseemsclearalready.

6 Summary

Theproblemof findingabackdoorconnectionin aflood
of otherwiselegitimatenetwork traffic initially appears
daunting. But becauseinteractive traffic hascharacter-
istics quite different from most machine-driven traffic
(smallerpacket sizes,longeridle periods),it is possible
to searchefficiently for suchtraffic. We have presented
a generalalgorithm for doing so, and also protocol-
specificalgorithmsthat look for signaturesparticularto
differentprotocols,bothof whichweimplementedin the
Bro intrusiondetectionsystem.

One unexpectedbenefit of developing the protocol-
specificalgorithmswas to realizehow it is frequently
possibleto fingerprinta particularapplicationprotocol
by uniqueor nearlyuniquetext it includes. This lead
to the developementof successfulalgorithmsfor Nap-
sterandGnutella,whichcanbeimportanttodetectgiven
thattheirusesometimesviolatesasite’s policy, andthat
theirusersoftenattemptto evadedetection.

Thealgorithmsarefrequentlyamenableto prefilteringin
which a statelesspacket filter discardsnearlyall of the
traffic streambeforeit is even consideredby the algo-
rithm. Suchfiltering yieldsmajorperformanceincreases
in termsof reducedCPUprocessing,for little or some-

timesno decreasein accuracy. A relatedline of future
work thatmayprovefruitful is to explorethepossibility
of combiningthe generalalgorithmwith the protocol-
specificalgorithms,which is likely to yield betteraccu-
racy.

While thealgorithmswork verywell, amajorstumbling
block we failed to anticipateis the largenumberof le-
gitimate“backdoors”thatusersroutinelyaccess.These
arenot backdoorsin thesurreptitioussense,but only in
the moregeneralsenseof standardprotocolsbeingrun
onnon-standardports.Wehaverecentlybegunusingthe
algorithmsoperationally, whichwill necessitateboththe
developmentof refinedsecuritypoliciesaddressingthe
many legitimatebackdoors,andhoningour algorithms
asa mechanisticway to eliminatecertainclassesof be-
nign backdoors.But evengiven thesehurdles,we find
the utility of the detectionalgorithmsclear and com-
pelling,andanaturalnext stepis to now investigatetheir
applicationto detectingcustombackdoorprotocolssuch
asLOKI [da97] andBackOrifice [CERT98].

7 Acknowledgments

We would like to thank Ken Lindahl and Cliff Frost
for their greatlyappreciatedhelpwith gainingresearch
accessto UCB’s traffic, andTaraWhalenandtheanony-
mousreviewersfor their feedbackon the work and its
presentation.

References

[Bo90] D. Borman, “Telnet Linemode Option,”
RFC 1184, Network Information Center, SRI
International,MenloPark,CA, Oct.1990.

[Bo00] G. Bouvigne, “MPEG Audio Layer
I/II/III frame header,” http://www.mp3-tech.org/
programmer/frameheader.html,2000.

[CERT98] CERT Vulnerability Note VN-98.07,http://
www.cert.org/vul notes/VN-98.07.backorifice.html,
Oct1998.

[Cr94] M. Crispin,“InternetMessageAccessProtocol-
Version4,” RFC1730,Network InformationCenter,
DDN Network InformationCenter, Dec.1994.

[da97] daemon9route@infonexus.com , “LOKI2
(the implementation),” Phrack Magazine, 7(51),

Sep.01,1997.http://www.infowar.com/iwftp/phrack/
Phrack51/P51-06.txt.

[DJCME92] P. Danzig,S.Jamin,R.Cáceres,D. Mitzel,
and D. Estrin, “An Empirical Workload Model for
DrivingWide-areaTCP/IPNetworkSimulations,” In-
ternetworking: Research and Experience, 3(1),pp.1-
26,1992.

[Gl93] V. Gligor, “A Guide to UnderstandingCovert
ChannelAnalysis of TrustedSystems,” NCSC-TG-
030,version1, http://www.radium.ncsc.mil/tpep/lib-
rary/rainbow/NCSC-TG-030.html, National Com-
puterSecurityCenter, Nov. 1993.

[GN99] Gnapster, http://www.faradic.net/̃jasta/
gnapster.html,1999.

[GN00] Gnutella,http://gnutella.wego.com,2000.

[Ha00] J. Harrow, “The ConsumerInternet Steam-
roller,” The Rapidly Changing Face of Computing,
http://www.compaq.com/rcfoc/20000417.html
Toc480185377,April, 2000.

[JLM91] V. Jacobson,C. Leres,andS.McCanne,“tcp-
dump,” ftp://ftp.ee.lbl.gov/tcpdump.tar.Z,1991.

[Ka91] B. Kantor, “BSD Rlogin,” RFC 1282, Net-
work Information Center, SRI International,Menlo
Park,CA, Dec.1991.

[LWWWG98] R. Lippmann,D. Wyschogrod,S. Web-
ster, D. Weber, and S. Gorton, “Using Bottleneck
Verificationto Find Novel New Attackswith a Low
FalseAlarm Rate,” Proc.RecentAdvancesin Intru-
sion Detection,Sept.1998; http://www.zurich.ibm.
com/̃ dac/ProgRAID98/Talks.html#Lippmann21 .

[MR96] J. MyersandM. Rose,“PostOffice Protocol-
Version3,” RFC1939,Network InformationCenter,
DDN Network InformationCenter, May 1996.

[NA99] Napster, http://www.napster.com,1999.

[NA00] Napster (Press Room), http://www.napster.
com/press.html,2000.

[ON00b] “Napster protocol specification,” http://
opennap.sourceforge.net/napster.txt, June2000.

[ON00a] OpenNap, http://opennap.sourceforge.net,
2000.

[PF95] V. Paxsonand S. Floyd, “Wide-Area Traffic:
TheFailureof PoissonModeling,” IEEE/ACM Trans-
actions on Networking, 3(3),pp.226-244,June1995.

[Pa98] V. Paxson,“Bro: A Systemfor DetectingNet-
work Intrudersin Real-Time,” Proc. USENIX Secu-
rity Symposium, Jan.1998.

[Po82] J. Postel, “Simple Mail Transfer Protocol,”
RFC821,Network InformationCenter, SRI Interna-
tional,MenloPark,CA, Aug. 1982.

[PR83a] J. Postel and J. Reynolds, “Telnet Protocol
Specification,” RFC854,Network InformationCen-
ter, SRI International,MenloPark,CA, May 1983.

[PR83b] J.PostelandJ.Reynolds,“TelnetOptionSpec-
ifications,” RFC 855, Network Information Center,
SRI International,MenloPark,CA, May 1983.

[PR85] J. PostelandJ.Reynolds,“File TransferProto-
col (FTP),” RFC 959, Network InformationCenter,
SRI International,MenloPark,CA, Oct.1985.

[PN98] T. PtacekandT. Newsham,“Insertion,Evasion,
and Denial of Service: Eluding Network Intrusion
Detection,” SecureNetworks, Inc., http://www.aciri.
org/vern/Ptacek-Newsham-Evasion-98.ps,Jan.1998.

[Ra00] M. Ranum.“RE: Bypassingfirewall,” mailing
list firewall-wizards@nfr.net,Feb. 1, 2000.

[We00] D. Weekly, “How to get around a Nap-
sterblockade,” http://david.weekly.org/code/napster-
proxy.php3,2000.

[YKSRL99] T. Ylonen, T. Kivinen, M. Saarinen,T.
Rinne,andS.Lehtinen,“SSHTransportLayerProto-
col,” InternetDraft, draft-ietf-secsh-transport-07.txt,
May 2000.

