USENIX Association

Proceedings of the
Oth USENIX Security Symposium

Denver, Colorado, USA
August 14-17, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




DetectingBackdoors

Yin Zhang
Department of Computer Science
Cornell University
Ithaca, NY 14853

yzhang@cs.cornell.edu

Abstract

Backdoors are often installed by attaclers who have
compromised systemto easetheir subsequenteturn
to the system. We considerthe problem of identify-
ing a large classof backdoorspamelythoseproviding
interactve accesson non-standargorts, by passiely
monitoring a site’s Internetaccesdink. We develop a
generalalgorithmfor detectinginteractie traffic based
on paclet size and timing characteristicsand a set of
protocol-specifi@algorithmsthatlook for signatureslis-
tinctive to particular protocols. We evaluatethe al-
gorithmson large Internetaccessracesand find that
they perform quite well. In addition, someof the al-
gorithmsare amenablao prefiltering using a stateless
pacletfilter, which yieldsa major performancéncrease
atlittle or nolossof accurag. However, the succes®f
the algorithmsis temperedby the discovery that large
siteshave mary userswho routinely accessvhatarein
factbenignbackdoorssuchassenersrunningon non-
standardportsnot to hide, but for mundaneadministra-
tive reasons. Hence, backdoordetectionalso requires
a significantpolicy componenfor separatingllowable
backdooraccesd$rom surreptitiousaccess.

1 Intr oduction

A backdoor is a mechanisnsurreptitiouslyintroduced
into acomputersystemto facilitateunauthorizegccess
to the system.While backdoorsanbeinstalledfor ac-
cessinga variety of services,of particularinterestfor
network security are onesthat provide interactve ac-
cess. Theseare often installedby attaclerswho have
compromisea systento easeheir subsequeneturnto
thesystem.

*Also with the LawrenceBerkeley NationalLaboratory

VernPaxsori

AT&T Center for Internet Research at ICS
International Computer Science Institute

Berkeley, CA 94704
vern@aciri.org

Fromanetwork monitoringperspectie,suchbackdoors
frequentlyrun over protocolssuchas Telnet[PR833,
Rlogin [Ka91], or SSH[YKSRL99]. An example of
a non-interactie backdoorwould be an unauthorized
SMTP sener [P0o87, say to facilitate relaying email
spam;andonesomeavhatin betweenwould be an FTP
[PR8] backdoomusedto provideaccesso illicit content
suchaspiratedsoftware,or aNapstersener[NA99] run
in violation of a site’s policy.

Backdoorsare,by design difficult to detect. A common
schemdor maskingtheir presences to run a senerfor
a standardservicesuchas Telnet, but on an undistin-
guishedport ratherthanthe well-known port associated
with the service,or perhapsn a well-known port asso-
ciatedwith adifferent service.In this papemnwe examine
the problemof detectingbackdoorsparticularly inter-
active ones,by inspectingnetwork traffic usingan in-
trusiondetectionsystem(IDS), wherewe presumehat
thereis a large volumeof legitimatetraffic which must
be distinguishedfrom the illegitimate traffic. To our
knowledge, this problem has not beenpreviously ad-
dressedn theliterature.

Our generalapproachs to develop a setof algorithms
for detectingdifferenttypesof interactive traffic. These
algorithmscan then be appliedto a traffic streamand
wheneer they detectinteractive traffic using a non-
standaraerviceport,we have foundsomeform of back-
door.

Therestof the paperis organizedasfollows. In § 2, we
discusghedesignconsiderationandexaminethetrade-
offs of differentapproachesin § 3, we developagen-
eral algorithmfor detectinginteractie traffic basedon
its timing characteristicsandin § 4 we presenta num-
ber of protocol-specifialgorithms.In § 5, we evaluate
the algorithmsusingtracesof Internettraffic. We sum-
marizein § 6.



2 DesignSpace

A basicprinciple for backdoordetectionis to find dis-
tinctive featuresndicative of the activity of interest,be
it generalnteractive accessor useof a specificprotocol
suchasSSH.The morepowerful a featureis for distin-
guishingbetweengenuineinstanceof the actvity and
falsealarmsthebetter

Candidatedor suchfeaturesinclude the specificcon-
tentsof the datastream,the size andtransmissiorrate
of the pacletsin the stream,andtheir timing structure.
Thislastis potentiallyvery powerful for detectingnter-

active traffic: studiesof Internettraffic have found that
theinterarrivalsof userkeystrokeshave a striking distri-

bution[DJCME92 PF9§, namelya Paretowith infinite

variance.Thereis alsothe possibilitythatacombination
of featureswill prove to have greaterdistinctve power
thanary onefeatureby itself.

We now turn to a discussionof varioustradeofs that
arisewhen consideringhow to develop detectionalgo-
rithms.

2.1 Openvs.evasive attackers

In general,network intrusion detectionbecomesmuch
more difficult when the attacler actively attemptsto
evadedetectionby the monitor[PN98 Pa9g. Much of
the difficulty comesfrom the ability of attaclersto ex-
ploit ambiguitiesin atraffic stream.Froma monitoring
perspectie, heuristicanightwork well for “open” (non-
evasve) attaclers, but completelyfail in the faceof an
actively evasive attacler.

While ideally ary detection algorithms we develop
would of courseberesistanto evasive attaclers,ensuf
ing suchrobustnesgansometimebe exceedinglydiffi-
cult, andwe proceedhereon the assumptiorthatthere
is utility in “raising the bar” even whena detectional-
gorithmcanbe defeatedy a sufficiently aggressie at-
taclker. We furthernotethatif anattacler fully controls
both the remoteandthe local host,andin particularif
they arepatientand/orableto deploy arbitrarysoftware,
thenall sortsof devious covert channelshecomepossi-
ble! [GI193], andbackdoodetectiorbecomesssentially
hopeless We do not attemptto addresshe problemof
detectingcovertchannels.

1sedRa0q for adiscussiorof experiencesvith runningNFSover
emailby tunnelinglP pacletsover messagedeliveredby SMTP

Thus, we proposethe algorithmsin this papernot as
solutions, but merely as waystationsin the ongoing
“arms race” betweenattaclers and intrusion detection.
One form of arms race we anticipateis particularly
likely is betweerthedevelopersf Napste[NA99] (and
GnutellaGNOQ]) andourcorrespondingletectioralgo-
rithm. Napsterhasa history of sitesattemptingto con-
trol its use,andof usersattemptingto circumwentthese
restrictiondWe0d, andour algorithmgivessitesa nev
tool for detectingsurreptitioususeof Napster

2.2 Passie vs.active monitoring

Onetradeof is whetherwe only allow the monitor to
performpassie monitoring, or if it canactiely inject
traffic into the network. Passve monitoringhasthe ad-
vantagethat it cannotdisturb the normal operationof
thenetwork. Ontheotherhand,anactive monitorcould
augmentits backdoordetectionby trying to connectto
suspectedbackdoorsn orderto probethe sener listen-
ing onthe portto determindts service.However, doing
so couldin principletip off the attacler asto the pres-
enceof themonitorandthediscovery of the backdoor

In this paperwe confineoursehesto monitorsthatonly
usepassve monitoring.

2.3 Contentvs.timing

A naturalapproachfor detectingconnectionso com-
mandshell senersis to monitorthe keystrokeslooking
for commonshellcommandsSucha content-basedp-
proachhasseveraldravbacks however:

e Scanningeachbytein eachincomingpacletis very
expensve, especiallyif we mustfirst reassemble
TCP streamdo defeatthe sort of evasionscharac-
terizedin [Pa9§. The intrudercanthenoverload
the monitorby generatinga large amountof legiti-
matetraffic.

e Many commandshells allow the userto define
aliasesand editing characters,which can eas-
ily defeatthis approachunlessthe monitor per
formsaliasandeditingexpansiorof thecommands
(such as also required for “bottleneck” analysis
[LWWWG9Y). Note that this problemcanarise
eitherinadwertently becausehe attacler asa mat-
ter of courseusesaliasesor redefinesthe editing



sequencesyr deliberatelywhenthe attacler is at-
temptingto evadedetection.The formercasemay
be amenabldo heuristicanalysis;the latter likely
is not.

e The intruder can easily evade the monitor by
encrypting their content either through some
application-leel encryptionrmethod or directly us-
ing encryptedorotocolssuchasSSH.

In contrasttiming-basedalgorithmscanbe completely
unperturbedby the use of encryption. However, tim-

ing information can becomedistorted due to clock

skew, propagatiordelays,loss, and pacletizationvari-

ations. Making timing-basedalgorithm robust against
suchnoiseis challenging.

2.4 Filtering

An importantfactorfor the succes®f real-timeback-
door detectionis filtering. The moretraffic thatcanbe
discardedon a perpaclket basisdue to patternsin the
TCP/IPheadersthebetter asthis cangreatlyreducethe
processingoadonthemonitor. As wewill seein subse-
guentsectionsfiltering cansometimede highly effec-
tive in winnowing down a large traffic streamto just a
few pacletsof interest.

However, thereis clearly a tradeof betweenreduced
systemoadandlostinformation. First, if a monitorde-
tectssuspiciousactivity in a filtered stream,often the
filtering hasremoved sufficient accompaying context

thatit becomegjuitedifficult to determindf theactiity

is indeedan attack. In addition, the existenceof filter-

ing criteriamalesit easierfor the attaclersto evadede-
tectionby manipulatingtheir traffic sothatit no longer
matcheshe filtering criteria. For example,an evasion
againstfiltering basedon paclet size (seebelaw) is to

usea Telnetclient modifiedto senda large numberof

do-nothingTelnetoptionsalongwith eachkeystroke or

line of input.

In addition, relianceon filtering cansignificantlymag-
nify the problemof “chaff,” i.e., attaclers generating
bogustraffic that matcheghe filtering criteriain order
to overwhelmthemonitor’sanalysidoad,and/orto gen-
eratea hugenumberof falsepositives,in orderto mask
atrueattack.

Threepossiblefiltering criteria for backdoordetection
are:

e Packet size. Keystroke paclets are quite small.
Evenwhenentirelines of input aretransferredus-
ing “line mode”[Bo9(], paclet payloadswill tend
to bemuchsmallerthanusedfor bulk-transferpro-
tocols. Therefore by filtering pacletsto only cap-
turesmallpaclets,themonitorcansignificantlyre-
duceits paclet capturdoad.

¢ Directionality. In general,an interactve connec-
tion suchas Telnetis initiated by the client rather
than the sener, unlessthe attacler setsup some
sort of callback mechanism.This makesit possi-
ble to filter connectionshasedon their direction-
ality (inboundvs. outbound).If we aremonitoring
aninternetacces$ink andareonly interestedn de-
tectingbackdoorsatthelocal site,we canlimit our
monitoringto justinboundconnectionswhich can
significantlyreducethepacletcapturdoad (for ex-
ample,by filtering out outboundweb surfingcon-
nections).

Notethatthereis alsoa “cold start” problemwhen
the monitor startsrunningandneedgo analyzean
existingtraffic stream.n thiscasejt generallycan-
not determinewhetherthe traffic wasinitiated in-
boundor outbound andaccordinglycannoffilter it
out.

e Packet contents. Whenwe areinterestedn identi-
fying specificinteractve protocols,it is sometimes
possibleto filter incoming paclets basedon pat-
ternsspecificto the protocol. An exampleis SSH,
discussedh § 4.1 below.

2.5 Accuracy

As with intrusiondetectionin generalwe facetheprob-
lem of false positives (non-backdooiconnectionserro-
neouslyflaggedasbackdoorsandfal se negatives (back-
doorconnectionshemonitorfailsto detect). Theformer
can make the detectionalgorithm unusable becauset
becomesmpossible(or atleasttoo tedious)to examine
all of the alertsmanually and attaclerscanexploit the
latterto evadethemonitor.

We would of courselike to have both the falsepositive

rateandthefalsenegativeratebeaslow aspossible But

particularly for thoseof our algorithmsthat are based
on overalltraffic characteristicsatherthansharpsigna-
tures, we frequentlywill have to choosetradeofs be-

tweenthetwo.



2.6 Responsieness

Anotherimportantdesignparameteis the responsie-
nessof thedetectioralgorithm. Thatis, afterabackdoor
connectionstarts,how long doesit take for the moni-
tor to detectthe backdoor? Clearly it is desirableto
detectbackdoorsas quickly aspossible,to enabletak-
ing additionalactionssuchasrecordingrelatedtraffic or
shuttingdown the connection.However, in mary cases
waiting longerallows the monitor to gathermoreinfor-
mationandconsequentlgandetectbackdoorsnoreac-
curately resultingin atradeof of responsieness/ersus
accurag.

Another considerationrelated to responsienesscon-
cernsthe systemresourcesonsumeddy the detection
algorithm. If we wantto detectbackdoorgjuickly, then
we musttake carenotto requiremoreresourceshanthe
monitorcandevoteto detectioroverashorttime period.
Ontheotherhand,if off-line analysisis sufficient, then
we canusemoreresource-intenge algorithms.

3 A General Algorithm for Detecting In-
teractive Backdoors

In this sectionwe presentigenerahlgorithmfor detect-
ing interactve backdoordasedon keystroke character
istics. The algorithmincorporateghreetypesof char

acteristicsdirectionality pacletsizes,andpacletinter-

arrival times. We alsofind we needto exclude exces-
sively shortflows (commonin our tracesdueto theuse
of scanningby automatedmonitoringsoftware),which

do not provide enoughtraffic to analyzesoundly The
criterion we useis to skip analysisof ary flows com-
prisedof fewer than8 pacletsor lastinglessthan?2 sec-
onds,wherea flow is one direction of a bidirectional
TCPconnection.

3.1 Exploiting connectiondir ectionality

As notedabove, aninteractve connectioris mostlikely
initiated by the client, unlessthe sener has some
callback mechanism. Therefore, when looking for
keystrokeswe needonly considettraffic sentby theini-
tiator of a connection.However, if the monitordoesnt
seethe establishmentf theconnectionthatis, the con-
nectionis a partial connectionthereis no way to tell
whois theactualinitiator. In this casewe mustconsider

bothflows.

If we aremonitoringan accesdink andareonly inter-
estedn detectingbackdoorswvithin thelocal site,we can
further exploit the connectiondirectionalityandignore
all outboundlows, evenif theconnections partial.

3.2 Exploiting packet length characteristics

3.2.1 The sizeof keystroke packets

Keystroke pacletsare likely to be very small, even if

sentin line mode, becausenost commandsare short.
To verify this assumptionye analyzedseveral Internet
traffic traceswith atotal of 2.1million TelnetandRlogin
clientdatapaclets. Of these,79%carrieda singlebyte,
97%carried3 bytesor less,and99.7%carried20 bytes
orless.

For atraceof SSH1.x and2.x connectiongvery heavily

skewed towards1.x), we found that 28% of the 150K

client data paclkets had length 20 or less. (Note that
thoseSSHconnectionsvith predominantlybig paclets
arelikely to befile transfers.)

Consequentlywe use20 bytesasour cutoff for “small”
paclets.

3.2.2 Characterizing the fr equencyof small packets

Since most keystroke paclets are quite small, we can
excludethoseconnectionghatdon'’t have enoughsmall
paclets. More specifically we can devise a metric to
measurehefrequeng of smallpacletsin aconnection,
which we thenuseto determinewhetherwe shouldex-
cludetheconnection.

The simplestmetricis the ratio of the numberof small
pacletsover the total numberof paclets,for a suitable
definitionof “small paclet; which pertheprevioussec-
tion we defineas 20 bytesor lessof payload. Unfor-
tunately this metric doesnt work well in practice. Al-
though,asstatedin the previoussection,over 99.7%of
keystrokesarevery small, suchstatisticsarebasedon a
large numberof connectionsFor a specificconnection,
we find thattheratio canbe aslow as30-40%.Conse-
guently in orderto preventfrequentfalsenegatives,we
have to choosea conserative thresholdaslow as 20—
30%. But with sucha low threshold,the metricshave
little discriminatingpower and canintroducetoo mary



falsepositives.

To avoid suchproblemswe deviseda metricT", defined
in termsof .S, thenumberof smallpaclets, NV, thetotal
numberof paclets,andG, the numberof gapsbetween
small paclets. A gapoccursary time two small pack-
etsareseparatedby at leastonelarge paclet. We then
evaluate:
S-G-1

N .
The intuition behindT is that consecutie small pack-
etsarestrongindicatorsthata connectiorhasinteractive
traffic. If the small pacletsareall spreacthroughouta
connectionthenwe will haveG = S —1,sol’ = 0. If
they areall groupedogetherthenG = 0 andI” will re-
flecttherelative proportionof smallpacletsin thetrace.

I'=

In our final algorithm,we setthethresholdo " = 0.2.

3.3 Exploiting timing characteristics

As mentionedabore, keystroke interarrival timescome
in a striking Paretodistribution, exhibiting a very broad
range[PF95. We can then exploit the tendeng of
machine-dnen, non-interactie traffic to sendpaclets
back-to-backwith a very shortintenal betweenthem,
to discriminatenon-interactie traffic from interactve.
We do soby examiningeachpair of back-to-baclsmall
paclet arrivalsand computingthe ratio o of how mary
of theseinterarrival timesfall within therange10 msec
through2 sec. (We needto take carenot to include
retransmittedpacletsin this computation.) The upper
boundof 2 secis fairly arbitrary;using100secdoesnot
appreciablychangehe performance.

We thendefinea metrica to quantify how oftenthein-
terarrival betweerntwo consecutie smallpacletsfallsin
thisrange.In ourfinal algorithm,we setthethresholdo
a=0.2.

It might appearthat the criteriaof I' = 0.2 anda =
0.2 aretoolax, andsingularly they are;but jointly, they
prove highly effective,aswe shav in § 5.7.

3.4 Making the algorithm run in real-time

In this sectionwe discusstwo considerationsn using
thealgorithmin real-time.First, we obsene thatwe can
reducethe paclet captureload a greatdeal by filtering
on the datapayloadlength of the pacletsto only cap-
turesmallpaclets.tcpdump [JLM91] doesnt actually

have an easyway to specifya particularrangeof pay-
load sizes,but the following will filter out all paclets
with morethan20 bytesof payload:

# (packet length -

# ip header length -

# tcp header length) <= 20.

# That is, data length <= 20.
(ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) <= 20

wherethe bit-shifting is requiredto extractthe IP and
TCPheadetengthswhich canbevariablelengthdueto
thepresencef IP or TCPoptions.

Introducingfiltering doesnot affect the evaluation of
a for a flow, since a is only computedfor paclets
thatare consecutie in the TCP sequencespace(§ 3.3).
However, we musttake carewhen evaluatingI’, since
now that we only see small paclets, we cant accu-
rately tell the total number of paclets N transmit-
ted by a given flow. To solwe this problem, when-
ever we seea gap in the sequencenumber we esti-
matethe numberof missinglarge pacletsin the gapas
[gap LARGE_PKT_SIZE], where LARGE_PKT_SIZE
is a guessat the mostcommonsizefor full-sized pack-
ets.This sizevarieswith pathcharacteristicsuchasthe
Maximum TransmissiorlJnit, andalsodependon the
particularTCP implementationput asa roughapproxi-
mationwe simply useLARGE_PKT_SIZE = 500.

Theotherconsideratiorior real-timedetectionconcerns
how quickly the algorithm can determineit hasfound
a backdoor For off-line analysis,it sufiicesto check
whethera connectiorhasbackdoorcharacteristicavhen
the connectiorterminateqor whenthetraceends),and
aswe have definedl” anda above, they arein termsof
statisticscomputedver a connectiorstotal lifetime.

The simplestway to adaptthe algorithmto run in real
time is to reevaluatel’ anda on eachincomingpaclet.
Alternatively, we canhave atimer for eachconnection
andtesttheconnectiorwhene&erthetimergoesoff. Un-
fortunately neitherapproachworkswell in practice.The
majorproblemis thatwhenwe classifyaconnectiorasa
non-backdooconnectionwe can't justignorethe con-
nectionlateron,becausd’ s hardto tell whetherthecon-
nectionis indeeda non-backdooconnectionpr instead
actuallyabackdoorconnectiorwith apreamblehathas
non-backdoocharacteristicgsuchasthe Telnetoption
negotiationsthat precedea Telnetlogin dialog). Conse-
guently we have to keepre-testingeachnon-backdoor
connectionwhichis clearlyvery expensve.



We addresghis problemby exponentiallybackingoff
thereevaluationtimer. We initially choosea smalltime-
out value for the timer (30 seconds). Subsequently
wheneer a connectionappeardo be a non-backdoar
we increasahe timeoutvalueby afactorof 1.5, which
spreadghe computationaload over the lifetime of the
connection.

4 Special-PuiposeDetectionAlgorithms

In this sectionwe explorealgorithmsthatlook for signa-
turesreflectingtheuseof particularprotocols.If wethen
find senersfor thoseprotocolsrunningon ports other
thantheir standardnes suchinstancesnayindicatethe
presencef abackdoor

Comparedto the general-purposéetectionalgorithm,
special-purposealgorithms can better benefit from
protocol-specifiégnformation,andhencearelikely to be
moreaccurater moreefficient. Ontheotherhand rely-
ing on protocol-specifignformationcanmake the algo-
rithm susceptiblé¢o evasion,if the attacler canperturb
thesignature.

Therearetwo majorapplicationgor special-purposde-
tectionalgorithms. First, they canbe usedasbaseline
algorithmsto evaluatethe performanceof the general-
purposealgorithmdescribedn § 3, allowing usto un-
derstandhow much performancewe lose by making
thealgorithmmoregeneralandhencemoredifficult to
evade). Second,the special-purposalgorithmsthem-
selhescanbeusedeitherindividually or in combination
with the general-purposalgorithmto detectbackdoors.

In the rest of this section,we introducel5 algorithms
for detectingvariousinteractve protocolsandthe like.
Basedon differentdesignpurposeswe candivide these
algorithmsinto thefollowing two classes:

¢ Optimal algorithmsare designedo identify back-
doorsas accuratelyas possible,without worrying
aboutefficiency. Suchalgorithmsareintendedfor
useasbaselinealgorithmsandfor off-line analysis.

o Efficient algorithmsincorporateprotocol-specific
filtering mechanismsnto the optimal algorithms
to reducetheir expense,at the cost of a degree
of accurag. The tradeof here varies a great
deal—sometimed is even possibleto usea sim-
ple paclet filter to achieve accurag in the same
leagueasfor muchmoreexpensve algorithms(see

§ 4.1 belov)—andthe gainis algorithmsefficient
enoughto usefor real-timedetection.

Tablel summarizeshealgorithmsdiscussedh therest
of this section.

| Backdoortype || Optimalalgorithm | Efficientalgorithm |
SSH ssh-sig ssh-len ssh-sig-filter
Rlogin rlogin-sig rlogin-sig-filter
Telnet telnet-sig telnet-sig-filter
FTP ftp-sig ftp-sig-filter
Rootprompt root-sig root-sig-filter
Napster napstersig napstersig-filter
Gnutella gnutella-sig gnutella-sig-filter

Table1l: Summaryof the special-purposbackdoorde-
tectionalgorithms.

41 SSH

SecureShell (SSH) encryptstransmittedcontentwith
strongcryptography |t is increasinglyusedfor bothin-
teractve andbulk transfertraffic. While all in all its de-
ploymentrepresents major advancefor Internetsecu-
rity, it presentsignificantdifficulties for content-based
intrusiondetectiorpreciselybecauséd renderghemon-
itor blind to the specificsof eachconnection.lt is thus
particularlyattractve for backdooruse.

Our first algorithm for detecting SSH, ssh-sig uses
the SSH version string as the signature for SSH.
When an SSH connectionhas beenestablishedpoth
sides send an identifying string of the form “SSH-

protoversion-softvaresersicn comments”,followed by

carriage-returrand newline (ASCII 13 and 10, respec-
tively) [YKSRL99]. The maximumlengthof the string
is 255 charactersincludingthe carriage-return/ngline.

Versionstringscontainonly printablecharacterspotin-

cludingspaceor “- .

Currently the SSH protocol versionis either“1.x” or
“2.x". Thereforejt sufiicesfor ssh-sigto look for text
“SSH-17 or “SSH-2? atthe beginning of thefirst data
pacletsentin eachdirectionof aconnection.

We canreplacessh-sigwith thefollowing tcpdumpfilter
(denotedasssh-sig-filter) for very efficientdetection:

# 1st
# bytes

4 bytes are 'SSH-" and
5 and 6 are 1.’ or 2.



tep[(tep[12]>>2):4]
(tcp[((tcp[12]>>2)+4):2]
tep[((tcp[12]>>2)+4):2]

= 0x5353482D and
= Ox312E or
= 0x322E)

Our seconddetectionalgorithm, ssh-len usesan im-
plicit signature,the paclet length, to detectSSH ses-
sions.Accordingto the SSHspecification SSH1.x will

(in theabsencef TCPrepacletization)generatgaclet
payloadsizesof the form 8% + 4, thatis, 4 morethan
a multiple of 8. SSH2.x will generatepayloadsizes
of lengthat least16, and alsoa multiple of the cipher
block size, which is a multiple of 8 for all of the ci-

phersof whichwe areaware. Thereforefor SSH,either
mostpacletswill have length8% + 4, or mostwill have
length8%. Onedeviation occurswith theinitial version
exchangewhich doesnot conformwith theserules.

In light of this pattern ssh-lendetectsSSHasfollows:

1. First test for an interactve connectionusing the
timing-basedalgorithm (§ 3). If it is interactve,
goto thenext step,otherwisestop.

2. If theproportionof pacletswith length8%+4 or the
numberof paclketswith length8% exceedsathresh-
old, classifythe connectiorasSSH.

We needto be careful when choosingthe threshold,
becausepaclet retransmissiorand fragmentationcan
sometimedistort such characteristics.In our current
implementationye setthethresholdo 75%.

4.2 Rlogin

Upon connectionestablishmentan Rlogin client sends
four NUL-terminatedstringsto the senerin thefollow-
ing format[Ka91]:

<NUL>
client-user-name<NUL>
server-user-name<NUL>
terminal-type/speed<NUL>

The sener thenreturnsa zero byte (NUL) to indicate
that it hasreceved thesestrings and is now in data
transfermode. Algorithm rlogin-sig attemptsto detect
Rlogin sessionalisingthis negotiationasa signature.lt
first appliesthefollowing analysiso a connection:

e For the flow towardsthe initiator of a connection,
checkif thefirst byteisaNUL.

o For theflow sentby theinitiator, keeptestingeach
byte until oneof the following eventshappens:

- A gapin sequenc@umberoccurs;
- four NUL's have beenseen;

- anemptystring or a non-7-bit-ASCllIbyteis
seenr

- the numberof byteswe examinedreachesa
maximum bound (128 in the currentalgo-
rithm).

If the above terminateddy finding four NUL's, thenwe
checkto seewhetherthe flow in the otherdirectionbe-
gins with a non-NUL byte, or whetherwe found ary
empty stringsor non-7-bit-ASClIbytes. If neitherof
theselasttwo hold, thenthe connectionis classifiedas
anRlogin connection.

We cancombinerlogin-sig with thefollowing tcpdump
filter, resultingin a moreefficient algorithmrlogin-sig-
filter:

# last byte is 0 and data len != 0 and
# data length <= 128
(tepl(ip[2:2]-((ip[0]&0x0f)<<2))-1]=0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) 1= 0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) <= 128)

Note that rlogin-sig testsfor whetherthe last byte in
the paclet is NUL, ratherthanthe first byte. This is
necessarpecausave find thatclientstendto sendtheir
first NUL in its own paclet, and the remainderof the
prologinformationin asecondpaclet.

4.3 Telnet

The Telnet protocol [PR833 includesa quite general
mechanisnior negotiatingoptions[PR83K. Sincemost
Telnet sessionshegin with a seriesof option negotia-
tions, we canattemptto detectthese which have a dis-

tinct patterntakingoneof thefollowing four 3-bytefor-

mats:

IAC WILL option-code
IAC WON'Toption-code
IAC DOoption-code

IAC DON'T option-code



The codevaluesfor WILL, WON'T, DQ DON'T, and
IAC are251,252,253,254,and255respectiely. Note
thatsomeoptionshave parametersandsocanbelonger
thantheabovethreebytes.

telnet-sig teststhe first two bytes of eachincoming
pacletto seeif they matchthe beginning of ary of the
above. If aconnectiordoesnt involve any optionnego-
tiation, we classifyit asa non-Telnetconnection Other
wise,we testthefollowing additionalconditions:

o At least75%of thebytesare7-bit-ASCII.
e At least50% of the lines are not longer than 80
bytes.
Theseaid in weedingout binary traffic that happengo

matchtheoptionpatternsabove.

We cancombinethefollowing pacletfilter with telnet-
sig to form amoreefficientalgorithm,telnet-sig-filter:

# 1st byte is <IAC> (0xff),

# 2nd byte is <251> - <254>
(tep[(tep[12]>>2):2] > Oxfffa) and
(tep[(tcp[12]>>2):2] < Oxffff)

4.4 FTP

In this sectionwe look at a somevhatdifferentform of

interactve protocol,the usercontrol portion of the FTP
file transfemprotocol[PR85]. FTPis arequest/replyro-

tocolin which requestsaresentin single,usuallyshort,
linesof ASCII text, andreplieshave a similar structure,
but canbelongerandmulti-line. SomeFTPrequestare
sentin responsdo useractiity, and accordinglyhave

interactve-like timing. Othersare generatednechani-
cally by theFTPclient,andarrive closelyspaced.

Repliessentby FTP seners start with a statuscode
(a number),followed by any accompaying text. For
a day’'s worth of FTP actiity betweenthe Lawrence
Berkeley NationalLaboratoryandtherestof thelnternet
(7,229connections)the distribution of the codein the
first reply returnedby the seneris: code220 (“ready
for new user”)seer6,685times;code421 (“servicenot
available”)seerb35times;code226 (“closingdatacon-
nection”)seenv times;codes426 (“connectionclosed”)
and 200 (“commandokay”) eachseenonce; no other
codesseen.

Of thesejf wemissasenerthatreturns421 wehaven't
actuallymissedanything significant,sincethe serviceis
not available. All that really mattersis detecting220,
thoughwe caninclude421 , too, withouttoo muchextra
effort.

For FTPsenerreplies thefourthbyteis eitherablankor
a hyphenthelatterindicatinga multi-line reply. There-
fore, the ftp-sig algorithmlooks in the first four bytes
for either220 or 421, followedby eithera blankor a
hyphen,asasignaturegor anFTP connection.

We canalsocomposdtp-sig-filter :

# 1st three bytes are 220,

# 4th byte is blank or hyphen
tep[(tep[12]>>2):4] = 0x3232302d or
tep[(tep[12]>>2):4] = 0x32323020

with asimilarfilter for 421.

Onedifficulty with this approachs thatthe samesortof
statuscodesare usedby the popularSMTP mail trans-
fer protocol[P083. Code220 correspond$o “service
ready’and421 to “servicenotavailable] justasit does
for FTRP. This meansthat our algorithmsfor detecting
FTPbackdoorshouldwork justaswell for SMTPback-
doors(which canactuallybe beneficial) whichin § 5.5
we explorefurther

4.5 RootBackdoor

Fromoperationaéxperienceve havefoundthatonepar
ticular type of backdoorinstalledby attaclersis a Unix
root shell,andthe connectiorto it may notinvolve ary
Telnet option neyotiation. For these,often the sener
startsby sendinga paclet with a payloadof exactly two
bytes: “#<blank>", which correspondgo one of the
formsof aUnix rootshellprompt. Thisgivesusasimple
algorithm,root-sig, which attemptgo detectroot back-
doorsby lookingfor thetwo bytesin thefirst pacletsent
by thesenersideof aconnectionandthecorresponding
root-sig-filter:

# look for '# ' in a packet with
# exactly 2 bytes of payload
tep[(tep[12]>>2):2] = 0x2320 and
(ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) ==

which, given its conceptualsimplicity, works surpris-
ingly well (see§ 5.6 below).



4.6 Napster

Napsteris a distributed systemby which userscan
sharecopiesof music that hasbeendigitized in MP3
format [NA99]. Usersrun a client that connectsto

napster.com  senersfor purposesf publishingthe
MP3'sthattheuserhasmadeavailableto thepublic,and
for searchindor particularMP3's availableelsavherein

the distributed database The sener redirectsthe client
to otherclientsthathave the desiredMP3 available,and
the client thenmakesa direct connectionto the source
of theMP3, bypassingheseneratthis point.

Napstetasprovencontroversialbecaus®ftenthe MP3

tradingis in violation of copyright laws, and also be-
causeMP3'’s tend to be large files, so the enthusi-
asmof a site’s Napsteruserscan consumeconsider

ableresource$NAO0O, Ha0Q. Thereforesitesmake ef-

forts to control Napstertraffic, for exampleby remov-

ing connecwity to the napster.com  seners. Nap-
ster usershave taken countermeasurego circumwent
such blocking [We0(Q, including configuring Napster
senersto usenon-standargbortsfor their communica-
tions. Open-sourceéNapsterclients are also available
[GN99, ON004, which will aid Napsterusersin mod-
ifying the client’s behaior to bettercircumvent detec-
tion.

DetectingNapstettraffic is thusin many wayssimilarto
detectingotherbackdoorsgventhoughin this casethe
traffic doesnot reflecta security accessviolation, but
rathera policy violation (authorizationratherthan au-
thentication).

We focusedon the problemof detectingthe communi-
cationdirectly betweerNapsterclients(usedto transfer
theactualMP3'’s). Onethoughtwasto developageneric
MP3 detectoy thoughour preliminarywork on this has
shavn the problemto be someavhatdifficult, asthe for-

mat hasa short, binary headerthat doesnot suggesia
simple,distinctpatternto look for [Bo0Q].

TheNapsterclientcommunicationhowever, hasa quite
distinctive signaturfONOOH. The communicatiorbe-
ginswith thestring SENDor GETfollowedimmediately

by the nameof the item (no intervening whitespace).

Furthermorewe have foundthatthe SENDor GET di-
rective is sentby the Napsterclient in its own packet?
so our currentversionof napstersig simply looks for
eitherof thesestringssentin their own paclet and oc-

2Clearly this is very easyfor the Napsterclient to change,and
the correspondinghangeto make to our detectoris looking for the
absencef whitespacédollowing thedirective, whichwill addressnis-
takingNapsteIiGETs for thoseusedby HTTP.

curring at the beginning of a connection. napster-sig-
filter doesthe same,but without the beginning-of-a-
connectiorcontext:

# look for "SEND" or "GET" in a

# packet by itself (so payload of

# 4 or 3 bytes, respectively)

((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) = 4 and

tep[(tep[12]>>2):4] = 0x53454e44) or
((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) = 3 and
tep[(tep[12]>>2):2] = 0x4745 and
tep[(tcp[12]>>2)+2]=0x54)

4.7 Gnutella

Gnutellais adistribution systenmsimilarin spirit to Nap-
ster[GNOQ]. Its distinctive featuresarethatit is fully
opensource,it canbe usedto exchangearbitrary files
and not just MP3'’s (althoughthere are now Napster
add-onsfor doing this, too), andit hasno centralized
component—Gnutellalients simply needto know the
nameof anotheiGnutellaclientandthey canparticipate
in the distribution network. ConsequentlyGnutellais
likely to prove harderfor sitesto controlthanNapster

In its currentform, however, Gnutellais very easyto
detect.EachGnutellasessiorbeginswith theconnecting
clienttransmitting:
GNUTELLACONNECT&version><NL><NL>
andrecevingin reply:
GNUTELLAOK<NL><NL>
where<NL> is thenewline characte(ASCII 10).
Accordingly, gnutella-sig looks for the string
“GNUTELLAbI ank>" at the beginning of a

connection.

The correspondingynutella-sig-filter is:

# look for "GNUTELLA " as first

# 9 characters of payload
tep[(tep[12]>>2):4] = 0x474e5554 and
tep[(4+(tcp[12]>>2)):4] = 0x454c4c4l
and tcp[8+(tcp[12]>>2)] = 0x20



5 Performanceevaluation

In this sectionwe evaluatethe algorithmsdevelopedin

§ 3ands§ 4. Theevaluationsveredoneby addingimple-
mentationf the algorithmsto the Bro intrusiondetec-
tion systemPa9g.

Our generalframawvork for evaluationis asfollows. To
assessan algorithm’s accurag, we first run it against
known interactve traffic of the particulartypeit is sup-
posedto detect(Telnet,Rlogin, SSH;or, for thegeneral
algorithm, a combinationof Telnetand Rlogin, since
SSHtraffic is sometimesulk-transferJandanalyzehow
oftenit fails to flag a connectionin the traceasinterac-
tive. This evaluateghe false negative rate. We thenrun
the algorithm againstpaclet tracesof a site’s Internet
traffic (thesehave high-wvolumeprotocolssuchasHTTR,
NFS,andX11 removed,becausetherwisene couldnot
capturethetracegeliably)to seewhichconnectionshey
mark asinteractve, and then manuallyassessvhether
theconnectiordoesndeedappeato beinteractve. This
evaluateghefalse positive rate.

Note, we do not assesghe Napsterand Gnutellade-
tectors,asthe traceswe useherewere capturechbefore
thoseapplicationsexisted. However, our informal as-
sessmenbasedon correlatingtraffic to known Napster
and Gnutellaports and servicesis that they work very
well.

5.1 Tracedescription

We usedfour tracesto evaluatethe performanceof the
algorithms:

e ssh.trace  (194MB, 380K paclets,905connec-
tions), a half-hoursnapshobf all the SSHconnec-
tions seenlate at night on the Internetaccesdink
(DMZ) of the University of Californiaat Berkeley
(ucn).

e |bnl.mix1.trace (54MB, 134K paclets,4.6K
connections)and Ibnl.mix2.trace (421MB,
863K paclets,14.7Kconnections)Eachtracecon-
tainsone hour of aggreatetraffic collectedat the
DMZ of the LawrenceBerkeley NationalLabora-
tory (LBNL), thefirstin themiddleof thenight,the
secondn the middle of the afternoon. The traces
have hadhighvolumeprotocols(HTTPR, SSH,NFS,
X11,NNTP, FTPdatafilteredout.

Note that we might well apply suchfiltering for
operationaluse,too, decidingto tradeoff missing
backdoorson thoseports for the reducedpaclet
capturdoad.

¢ Ibnlinter.trace (389MB, 3.5M paclets,
5.5K connections)pne day’s worth of Telnetand
Rlogintraffic collectedat LBNL.

5.2 Performanceof SSHalgorithms

Weranssh-sigontracessh.trace  toevaluatdtsfalse
negative ratio. Clearly, ssh-sigonly workswhenthe be-
ginningof a connectioris presentAltogether thereare
546completeSSHconnectiongn ssh.trace  , noneof
which is missedby ssh-sig This demonstratethatthe
falsenegative ratio of ssh-sigis extremelylow, which
is to be expectedsincethe presencef the signatureis
requiredby the specification.

We then ran ssh-sig on Ibnl.mix1.trace ,

Ibnl.mix2.trace and Ibnl.inter.trace

to evaluateits false positive ratio. Among the 16,938
completenon-SSHconnectionsnoneis mis-classified
asSSHby ssh-sig Thereforethe falsepositive ratio of

ssh-sigis closeto 0.

ssh-sig-filterhasexactly the samegoodperformancen
the traceswe have, which is not surprising,asthe only
apparenbpportunityfor erroris unusualpacletization
splittingthe SSHversiontext acrossmultiple paclets.In
addition, the filtering gainis tremendousbecausenly
thosepacletsthat containthe SSHversionstring need
to befurtherprocessedror ssh.trace , thealgorithm
needsonly inspect111 KB of paclets ratherthanthe
194MB presenin theentiretrace.

Themajorlimitation of ssh-sigandssh-sig-filteris that
they only work whenthe beginning of an SSHconnec-
tionis present.

Since SSH can be usedfor both interactie traffic and
bulk transfer it is difficult to soundlyevaluatethe false
negative ratio of ssh-len whichis designedo detectin-
teractive SSHbackdoorsConsequentlywe only evalu-
atethefalsepositive ratio here.

Again, we ran ssh-len on the three traces with-
out ssh connections: [bnl.mix1.trace ,
Ibnl.mix2.trace and Ibnl.inter.trace

Among the 16,938 non-SSHconnections,only 5 are
classifiedas SSHby ssh-len yielding a very low false
positiverate.



Comparedwith ssh-sigand ssh-sig-filter, ssh-lendoes
not requirethe presencef the beginning of a connec-
tion. However, it is lessrobustfor SSH1.x over highly

lossylinks, wheretwo SSHblocksof length8%+4 could
be coalescedlueto pacletretransmissiomesultingin a
singlepacletof 8(k; + k2 + 1) bytes.Consequentlywe

only usessh-lenwhenthe beginning of a connections

missing.

5.3 Performanceof Rlogin algorithms

Altogethertherearel75completeRloginconnectionsn
thetracesnoneof which is missedby rlogin-sig.

We begin with evaluating the false positive ratio of
rlogin-sig. In thefour tracesaltogethetherearel7,306
non-rloginconnectionsnoneof which is mis-classified
asanRlogin connectionThis meanglogin-sig alsohas
anextremelylow falsepositie ratio.

After addingfiltering into rlogin-sig, we foundthatthe

false nggative ratio remainsthe same(0/175). Mean-
while, theincreaseén thefalsepositive ratiois mamginal:

altogethethereare4 out of 17,306non-Rloginconnec-
tions that are mis-classifiedas Rlogin connectionsby

rlogin-sig-filter .

The filtering gain of rlogin-sig-filter is significant.
Amongthe 1 GB datawe have in the four traces,only
16 MB dataneedgo beprocessety rlogin-sig.

The major limitation of rlogin-sig andrlogin-sig-filter
is similar to ssh-sig—they only work whenthe begin-
ning of aconnectioris seernby the monitor.

5.4 Performanceof Telnetalgorithms

Again, we first evaluatethe falsenegative ratio of algo-

rithm telnet-sig Unfortunately it turns out that mary

Telnetconnectiongn ourtracesarevery short.For such
shortconnectionstelnet-sig fails becausehe connec-
tions do not include option negotiations. On the other
hand,if a connections thatshort,evenif it is indeeda

backdoorit is notlikely to causesignificantdamage.

To malke the evaluation meaningful,we only consider
thoseconnectionsatisfying:

¢ theclientsendsatleasttwo linesof data;

o thesener sendsatleastoneline of data;and

e thedurationof theconnectioris atleastl second.

After eliminating connectionsnot satisfyingthesere-
guirements, 1,526 Telnet connectionsremain, 18 of
which are missedby telnet-sig Further inspection
shaws that 17 out of the 18 involve the samepublic li-

brary catalogsener, which performspasswerdlesslo-

ginswithoutary optionnegotiation.

We further find that of the 12,708non-Telnetconnec-
tionsin thetracesnoneis mis-classifiecas Telnetcon-
nections. This demonstratethat telnet-sig hasa very
low falsepositiveratio.

After addingfiltering into telnet-sigto form algorithm
telnet-sig-filter, thefalsepositive andfalsenegative ra-
tios are unafectedfor the traceswe have studied. The
filtering gain, however, is significant: telnet-sig-filter
hasto procesdessthan 1.5 MB out of over 1 GB of
pacletdata.

Themajorlimitation of telnet-sigandtelnet-sig-filter is
similar to ssh-sigandrlogin-sig—they only work when
the connectionas seenby the monitor includesoption
negotiationswhich tendsto only occuratthebeginning
of aconnection.

5.5 Performanceof FTP algorithms

As notedin § 4.4, our FTP detectionalgorithmwill also
detectSMTR, so herewe note this limitation andthen
treatthetwo protocolstogether

We have altogethel5,629FTP/SMTPsessiongn which
the sener sentat least4 bytesof data. Of these,29
are missedby ftp-sig. Furtherinspectionshaws that
theseconnectionsarealmostall partial connectiongor
whichtheinitial dialog(whichis farandaway the most
likely placefor our signatureto trigger)is missing.This
demonstratethatftp-sig hasalow falsenegative ratio.

Among20,135non-FTP/SMTRonnectionspnly oneis

classifiedas FTP/SMTP Furtherinspectionshows that
thisis actuallyan FTP sener runningvia WinSock—so
thereis nofalsepositive afterall!

After addindfiltering, ftp-sig-filter enjoysthe sameac-
curag/, aswell asaterrific filtering gain: only 1.2 MB
out of over 1 GB dataneedbe processedy ftp-sig-
filter.

Again,thelimitation for ftp-sig andftp-sig-filter is that,



exceptfor rareexceptionsthey only work whenthebe-
ginningof aconnectioris seerby the monitor.

5.6 Rootshellalgorithms

As far aswe cantell, our tracesdo notincludeary root
shells,so we cannotsoundlyevaluatethe performance
of root-sigandroot-sig-filter. But seethe next section
for preliminary experiencesndicating that they (root-
sig-filter, in particular)arequite powerful.

5.7 Performance of the generaldetectionalgo-
rithm

To assesthefalsenegativeratio of thealgorithm,weran
it ontracelbnl.inter.trace , which consistonly
of TelnetandRlogin connectionsAmongthe 150com-
plete Rlogin connections26 are missedby the algo-
rithm. Furtherinspectionshavs that23 areexcessvely
short(lessthan2 secondsn duration,or only onecom-
mandexecuted) andthe other3 areuserlogin failures.
Amongall 1,450Telnetconnectionghatarenot exces-
sively short, 22 are missedby the timing-basedalgo-
rithm. Thereforethefalsenegativeratiois atleastcom-
parableto telnet-sig Furtherinspectionshaws thatthe
algorithmfoundall 18 connectionsnissedy thetelnet-
sig, but 22 connectionsletectedy telnet-sigaremissed
by thetiming-basedlgorithm.

To evaluatethe false positive ratio of the algorithm,
we ran the algorithm on Ibnl.mix1.trace and
Ibnl.mix2.trace with all the Telnet/Rlogin/FTP/
SSH/SMTP connectionsfiltered out. Among over
12,000 connections,the timing-basedalgorithm re-
ported 57 backdoors. Furtherinspectionshavs that
45arelMAP [Cr94] andPOP[MR96] mail senersused
interactvely, and thereforeare not in fact false posi-
tives?

5.8 Experiencewith production use

We only recentlybegun operationaldeploymentof the
backdoodetectioralgorithmsfor productionuseonthe
LBNL DMZ. One of the mostsurprising(and, in ret-
rospectobvious)findingshasbeenthe large numberof
legitimatebackdoors.

3Thealgorithmhasalsodetectednteractve SMTP sessionspom-
inally anon-interactie protocol.

For example whenanalyzing20 minutesof traffic from
theUCB DMZ (comprising4.9 GB of dataafterfiltering
out the high volumetraffic), the protocol-specifialgo-
rithms report334 backdoorson non-standargborts. Of
these 326 are FTP senerson non-standarghorts,7 are
interactvegamesandtheremainingoneis alibrary card
catalogsener. In contrast,the timing-basedalgorithm
reports220backdoorsFromvisualinspection®f 75 of
thesewefound: 17 areinteractve AOL sessionsl9are
interactve games 14 arechatsessions3 are cardcata-
log seners,7 areFTP sessionsandwe were unableto
identify theother15.

Runningonthelive traffic streamthe SSHdetectioral-

gorithmshave turnedup SSHsenersrunningon port80

(nominallyHTTP—thesenerranonthatportto provide

tunnelingthroughfirewalls); port 110 (nominally POP);
port32 (usedto runanolderversionof SSHthantheone
onport22,dueto compatibilityproblems)ports44320—
44327(a NAT senerwith SSHaccesgo the collection
of hostsbehindit via a numberof differentports); as
well asa hostof variantsof 22 (222,922,2222,. . .).

For productionuseit is unsafeto filter out the high-
volume protocols. Running the signature-basedcp-
dump filters on full traffic streamsdoesnot present
ary performanceproblemswhen using a kernel-based
paclet filter, as the filters are highly selectve. For
the other protocol-specifiaetectorsjt appearsve can
alsorunthemon good-sizedull traffic streamsasrun-
ning all of themagainsta 10 GB traceonly takesabout
20 CPUminuteson a400MHz Pentiumll.

Werunall of theprotocol-specifidetectorslaily against
tracesof LBNL traffic otherthanthe high-volumeports.
(We will shortlybeconfiguringour monitorto runthem
in real-time.) We currently run with a set of five fil-
tersto remove legitimatebackdoorsthe NAT front-end
mentionedabove; two hoststhatrun adocumenupload
servicethattriggersftp-sig  (the protocolis not FTP
or SMTR but hasa similar structure);a hostthat runs
a serviceon TCP port 497 that involves an exchange
thatlookslik e Telnetoption negotiation(but isn’t); and
a popularFTP sener that sometimessenes files with
binarydatathatlookslike embeddedelnetoptions.

TheNapsterandGnutelladetectordhave becomampor-
tanttools in enforcingLBNL's appropriateuse policy,
and,for example,have detectech remoteNapstersener
runningon port21 (FTP)in anapparentattemptto hide
or circumwentafirewall.

The root backdooffilter, root-sig-filter, hasuncovered
root backdoorgunningon UCB traffic. However, these



have not beenin theform originally intended(in which

theconnectiorbeginsdirectly with “#<blank>"), which

we know from experienceare a rare, albeit striking,

signature. Instead,becausehe filter versionof the al-

gorithmdetects'#<blank>" anywhere in a connection,
providing it is sentasa prompt(by itself with no new-

line), root-sig-filter is quite powerful at detectingboth

sometransitionsto root via the Unix su commandand
session$or whichthepromptseerafterthelogin prolog

is indeed"#<blank>".

Part of the appealof root-sig-filter is thatit generates
very few candidateeonnectionssoeventhoughits false
hit rate on generalraffic is fairly high, the connections
it flagsarenot burdensomeo check,andit is anexcep-
tionally cheapalgorithmin termsof computation.

We do not yet run the generalalgorithm operationally
As discussedborve, it detectdarge numberf interac-
tive services requiring time-consumingeffort contact-
ing the managerdor the variousmachinedo determine
thatin factthe backdoorsarelegitimate. But the poten-
tial of theapproactseemslearalready

6 Summary

The problemof finding abackdoorconnectiorin aflood
of otherwiselegitimate network traffic initially appears
daunting. But becausenteractve traffic hascharacter
istics quite different from most machine-dwen traffic
(smallerpaclet sizes,longeridle periods),it is possible
to searchefficiently for suchtraffic. We have presented
a generalalgorithm for doing so, and also protocol-
specificalgorithmsthatlook for signaturegparticularto
differentprotocols pothof whichweimplementedn the
Bro intrusiondetectiorsystem.

One unexpected benefit of developing the protocol-
specificalgorithmswas to realizehow it is frequently
possibleto fingerprinta particularapplicationprotocol
by uniqueor nearlyuniquetext it includes. This lead
to the developemenbf successfublgorithmsfor Nap-
sterandGnutellawhichcanbeimportantto detecigiven
thattheir usesometimewiolatesasite’s policy, andthat
their usersoftenattemptto evadedetection.

Thealgorithmsarefrequentlyamenableo prefilteringin
which a statelespaclet filter discardsnearlyall of the
traffic streambeforeit is even considerecby the algo-
rithm. Suchfiltering yieldsmajorperformancéncreases
in termsof reducedCPU processingfor little or some-

timesno decreasén accurag. A relatedline of future
work thatmay prove fruitful is to explorethe possibility
of combiningthe generalalgorithmwith the protocol-
specificalgorithms whichis likely to yield betteraccu-

racgy.

While thealgorithmswork verywell, amajorstumbling
block we failed to anticipateis the large numberof le-

gitimate“backdoors”"thatusersroutinelyaccessThese
arenot backdoorsn the surreptitioussensehput only in

the moregeneralsenseof standardprotocolsbeingrun

onnon-standargorts.We haverecentlybegunusingthe
algorithmsoperationallywhichwill necessitatboththe
developmentof refinedsecuritypoliciesaddressinghe
mary legitimate backdoorsandhoningour algorithms
asa mechanistiavay to eliminatecertainclasse®f be-
nign backdoors.But even given thesehurdles,we find

the utility of the detectionalgorithmsclear and com-
pelling, andanaturalnext stepis to now investigateheir
applicationto detectingcustombackdooiprotocolssuch
asLOKI [da97 andBackOrifice [CERT98].

7 Acknowledgments

We would like to thank Ken Lindahl and Cliff Frost
for their greatlyappreciatedhelp with gainingresearch
accesso UCB'straffic, andTaraWhalenandtheanory-
mousreviewersfor their feedbackon the work andits
presentation.

References

[Bo90] D. Borman, “Telnet Linemode Option;
RFC 1184, Network Information Center SRI
InternationalMenlo Park, CA, Oct. 1990.

[Bo0O0O] G. Bouvigne, “MPEG Audio Layer
/I/lll - frame headel http://wwwmp3-tech.og/
programmer/framdeadehtml, 2000.

[CERT98] CERT Vulnerability Note VN-98.07, http://
www.cert.og/vul_notes/VN-98.07 .baakifice.html,
Oct1998.

[Cr94] M. Crispin,“InternetMessagé\ccessProtocol-
Version4,” RFC 1730,Network InformationCenter
DDN Network InformationCenter Dec.1994.

[da97] daemonQoute@infonexus.com  , “LOKI2
(the implementation}, Phrack Magazine, 7(51),



Sep.01,1997.http://wwwinfowar.com/iwftp/phra&/
Phrack51/P51-06.txt

[DJCME92] P. Danzig,S.Jamin,R. CaceresD. Mitzel,
and D. Estrin, “An Empirical Workload Model for
Driving Wide-areal CP/IPNetwork Simulations), In-
ternetworking: Research and Experience, 3(1),pp. 1-
26,1992.

[GI93] V. Gligor, “A Guide to UnderstandingCovert
ChannelAnalysis of TrustedSystems, NCSC-TG-
030, versionl, http://wwwradium.ncsc.mil/tpep/lib-
rary/rainbav/NCSC-TG-030.html, National Com-
puterSecurityCenter Nov. 1993.

[GN99] Gnapster http://www faradic.nefasta/

gnapstehtml, 1999.
[GNOO] Gnutellahttp://gnutella.wgo.com,2000.

[Ha00] J. Harrow, “The Consumerlinternet Steam-
roller The Rapidly Changing Face of Computing,
http://www.compaq.com/rcfocf0004 17 .html
#_Toc480185377April, 2000.

[JLM91] V. JacobsonC. Leres,andS. McCanne,'tcp-
dump; ftp://ftp.ee.lbl.gew/tcpdump.tazZ,1991.

[Ka91] B. Kantor, “BSD Rlogin; RFC 1282, Net-
work Information Center SRI International,Menlo
Park, CA, Dec.1991.

[LWWWG98] R. Lippmann,D. Wyschogrod,S. Web-
ster D. Weber and S. Gorton, “Using Bottleneck
Verificationto Find Novel New Attackswith a Low
FalseAlarm Rate, Proc.RecentAdvancesn Intru-
sion Detection, Sept. 1998; http://www.zurich.ibm.
com/” dac/ProgRAID98/Talks.html#Lippman21.

[MR96] J.MyersandM. Rose,"PostOffice Protocol-
Version3,” RFC 1939,Network InformationCenter
DDN Network InformationCenter May 1996.

[NA99] Napsterhttp://wwwnapstecom,1999.

[NAOO] Napster (Press Room), http://www.napster
com/press.htmR000.

[ONOOb] “Napster protocol specificatiori, http://
opennap.sourcefge.ret/nastertxt, June2000.

[ONOOa] OpenNap,
2000.

http://opennap.sourcefge.ret,

[PF95] V. Paxsonand S. Floyd, “Wide-Area Traffic:
TheFailureof PoissorModeling; |IEEE/ACM Trans-
actions on Networking, 3(3),pp-226-244 Junel995.

[Pa98] V. Paxson,“Bro: A Systemfor DetectingNet-
work Intrudersin Real-Time;" Proc. USENIX Secu-
rity Symposium, Jan.1998.

[Po82] J. Postel, “Simple Mail Transfer Protocol,
RFC821,Network InformationCenter SRI Interna-
tional, Menlo Park, CA, Aug. 1982.

[PR83a] J. Posteland J. Reynolds, “Telnet Protocol
Specificatiorf, RFC 854, Network InformationCen-
ter, SRl InternationalMenlo Park, CA, May 1983.

[PR83b] J.PostelandJ.Reynolds, TelnetOptionSpec-
ifications; RFC 855, Network Information Center
SRl InternationalMenlo Park, CA, May 1983.

[PR85] J. PostelandJ. Reynolds,“File TransferProto-
col (FTP)! RFC 959, Network Information Center
SRl InternationalMenlo Park, CA, Oct. 1985.

[PN98] T. PtacekandT. Newsham,‘Insertion,Evasion,
and Denial of Service: Eluding Network Intrusion
Detection, SecureNetworks, Inc., http://www.aciri.
org/vern/Ptacek-N&sham-Easior98.ps,Jan.1998.

[Ra00] M. Ranum.“RE: Bypassindfirewall,” mailing
list firewall-wizards@nfmet,Feh 1, 2000.

[We00] D. Weekly, “How to get around a Nap-
sterblockadé, http://darid.weeklyorg/coce/naster
proxy.php3,2000.

[YKSRL99] T. Ylonen, T. Kivinen, M. Saarinen,T.
Rinne,andS. Lehtinen,"SSH TransportLayerProto-
col,” InternetDraft, draft-ietf-secsh-transport-07t{x
May 2000.



