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Abstract

The nightmare of Trusted Third Party (T3P) based
protocol users is compromise of the T3P. Because
the compromised T3P can read and modify any user
information, the entire user group becomes vulner-
able to secret revelation and user impersonation.
Kerberos, one of the most widely used network au-
thentication protocols, is no exception. When the
Kerberos Key Distribution Center (KDC) is com-
promised, all the user keys are exposed, thus re-
vealing all the encrypted data and allowing an ad-
versary to impersonate any user. If an adversary
has physical access to the KDC host, or can obtain
administrator rights, KDC compromise is possible,
and catastrophic. To solve this problem, and to
demonstrate the capabilities of secure hardware, we
have integrated the IBM 4758 secure coprocessor
into Kerberos V5 KDC. As a result of the integra-
tion, our implemented KDC preserves security even
if the KDC host has been compromised.

1 Introduction

Over the past decades, numerous security protocols
have been developed and have been quite successful
at improving computer system security, providing
safe handling of critical information. However, there
still remains one large security dread; you really
do not know what your computer is doing.
Indeed, with current commodity computer technol-
ogy, it is quite difficult to have confidence in sys-
tem integrity! because (1) physical security tends
to be overlooked in commodity hardware, (2) soft-
ware bugs inevitably introduce security threats, and

*This project has been carried out in the IBM T. J. Wat-
son Research Center, P.O. Box 704, Yorktown Heights, New
York 10598, in the summer of 1999.

ISystem integrity is intact when “no unauthorized modi-
fication has been made.” [10]

(3) new systems introduce new problems. Most of
the security software available today ignores these
difficulties, and simply asserts system integrity. The
reasoning behind this assertion is that physical at-
tacks are more difficult to execute than software at-
tacks.

However, this assumption can no longer be consid-
ered reasonable as the value of information stored
in computers increases. For example, the CIC Se-
curity Working Group reported the theft of a medi-
cal server that contained highly private information,
such as social security numbers and medical histo-
ries of many donors at a university hospital. Consid-
ering the private nature of the stolen information,
the damage the incident caused was extremely seri-
ous [19].

The time is right to begin addressing the flawed as-
sumption that physical attack is unlikely and that
system integrity is intact [32]. One approach is to
employ secure hardware with the following consid-
erations in mind. First, such hardware should be
physically tamper resistant. Second, to minimize
software flaws, it should be simple and throughly
tested. Secure hardware is now being mass pro-
duced and is becoming more widely available (e.g.,
[21, 8, 43]), so it can now be more readily integrated
with existing computer infrastructures. In this ef-
fort, we secure one of the most critical component in
current computer systems: the trusted third party
in Kerberos, namely, the Kerberos Key Distribution
Center (KDC).

We integrated the IBM 4758 secure coprocessor into
the Kerberos KDC, which has resulted in the imple-
mented KDC preserving critical secrets even when
compromised. This paper presents the motivation,
design, security consideration, implementation, and
performance evaluation of the project.

We use the term “card” to refer to the 4758, and
“host” to refer to the workstation to which the 4758



is attached.

1.1 Fundamental Security Problems

Physical Security

Many researchers have identified the problem of
physical security of distributed computer systems
[20, 49, 37]. Unlike mainframe computers of the
past, in isolated computer centers, today’s com-
puter environment consists of physically distributed
personal computers and workstations, connected
by networks. Such an environment is difficult to
protect because computers are geographically dis-
tributed, making it more difficult to control physical
access. Further, PCs and workstations have weaker
physical protection than mainframes in that phys-
ical access to computational and storage devices is
typically possible by simply opening the cover of
the computer. For example, a hard disk drive can
be easily removed from a personal computer. Once
it is removed, an adversary can mount it on his own
computer to access it, or can make a copy and an-
alyze it off-line. Some PCs and workstations have
locks, but these tend to be of low quality and easily
defeated [13].

Bootstrap Process

Arbaugh et al. have pointed out that without a
secure bootstrap process, the integrity of operating
system kernels cannot be trusted because malicious
code (e.g., Trojan horse) can be injected in the boot-
strap process [1]. For example, typical PCs can be
booted from floppy disks, thus allowing arbitrary
operating system kernels to run, even malicious ones
or ones with Trojan horses. Some of them allow the
administrator to set a BIOS password, preventing
booting unless the password is entered. However,
an adversary can reset the password by resetting
the BIOS [13].

Software Flaws

Bugs and design flaws in software, which are un-
avoidable, can be exploited. For example, buffer
overflow in an administrator privileged (root) pro-
cess can allow an adversary to run arbitrary code
with administrator privileges. = Vulnerable soft-
ware ranges from operating systems to applications.
Some examples are as follows:

e operating systems (e.g., erroneous permission
of DLL cache on Windows NT 4.0 [11])

e basic system programs (e.g., buffer overflow in
df, eject, login, etc., in IRIX [4])

e daemons (e.g., buffer overflow in wu-ftpd [7],
buffer overflow in IIS web server [6, 38] and
bugs in sample files in IIS [48])

e applications (e.g., buffer overflow in sendmail

[5])

e network protocols (e.g., flaws in ICMP Router
Discovery Protocol allowing man-in-the-middle
attack [39])

e security software (e.g., poor encryption of shell-
lock [35] and Password Appraiser sending Win-
dows passwords in the clear on the Internet
[34])

Such vulnerabilities can be quite serious. For in-
stance, they may yield administrative rights to an
adversary, crash the computer system, or leak crit-
ical information.

The computer security community deals with such
flaws by publishing countermeasures as soon as vul-
nerabilities are found. However, searching for vul-
nerabilities is an endless chore, as it is impossible to
be confident that the software is bug-free. In addi-
tion, computer systems are developing quite rapidly,
and new systems tend to bring new problems.

For example, the new functionality of Java [18]
enabled client side programming on the Internet.
At the same time however, a design flaw in Java
caused a mismatch between the language and the
bytecode, leaving the Java Virtual Machine open
to attacks [29], and implementation bugs made In-
ternet browsers vulnerable [9]. In many ways, the
new technology itself enabled new kind of attacks
[46, 28].

It is dangerous to assume the integrity of an operat-
ing system’s kernel and software, as most software
does. This is problematic especially for security crit-
ical software, such as trusted third parties.

1.2 Trusted Third Party

Several trusted third party (T3P) based security
protocols are in use today. T3P is a central author-
ity in a network that defines and enforces security
policies for the other members of the network. A



certificate authority (CA) is a T3P in a public key
based protocol that uses certificates for authoriza-
tion. A key distribution center (KDC) is a T3P in
a secret key based protocol that stores secret keys
of the members. The natural match between a T3P
based model and real-world security management
lends T3P based protocols configurability and scal-
ability, making them widely accepted.

The T3P is a critical point of attack on a network.
The damage caused by a T3P compromise is ex-
tremely serious. In particular, it is catastrophic to
have the KDC compromised, as the keys of all the
members can be obtained by an adversary. With all
the member keys in hand, the adversary can decrypt
all the secrets encrypted with the keys, and can im-
personate any member. To recover from KDC com-
promise, all keys must be revoked and regenerated,
affecting every member. Compared with KDC, CA
has better characteristics when compromised be-
cause CA stores public keys, but not private keys.
However, CA compromise is still quite damaging,
as an adversary can impersonate anyone by crafting
bogus certificates.

Therefore, to keep systems secure, T3Ps must have
the highest security. However, as described in
the previous section, fundamental security problems
pose a significant challenge to obtaining high levels
of security with current computer systems.

1.3 IBM 4758 Secure Coprocessor

We address the problem stated above by bringing a
secure coprocessor into the mix. A secure coproces-
sor is a “computational device that can be trusted
to execute its software correctly, despite physical at-
tack” [41].

We employ the IBM 4758 secure coprocessor be-
cause of its superior security and programmability.
The 4758 is a PCI card with a tamper-resistant and
tamper-responding secure coprocessor.

IBM 4758 Security

The 4758 is physically protected with layers of epoxy
and metal so that it does not leak information out
of the barrier, has electromagnetic shielding, and
cannot be accessed without the card detecting it.
The card detects opening attempts, penetration at-
tempts, temperature attacks, and radiation attacks.

This has three types of storage: RAM, battery-
backed up RAM (BBRAM), and flash memory. On

detecting an attack, the card responds by resetting
all the data in RAM and BBRAM, thus prevent-
ing an adversary from obtaining any information.
RAM is 4 MB of volatile memory. BBRAM is 8.5
kilobytes of non-volatile secure memory. Flash is 1
MB of non-volatile memory.2

Validated with the FIPS 140-1 Level 4 standards,
this coprocessor is one of the most trustworthy and
secure coprocessors [42].

IBM 4758 Programmability

In addition to its security, the 4758 has very good
programmability. Applications that run in the card
are written in C, and can be debugged with a run-
time debugger [12].

It has a very fast cryptographic accelerator (20
MB/s bulk DES and 20 signatures/s of RSA ? with
1024 bit modulus), which allows for efficient imple-
mentation of security protocols. [41, 21].

It is natural to use the most secure hardware for
the most critical component. To demonstrate the
potential of secure hardware integration in T3P pro-
tocols, and to counter one of the fundamental secu-
rity limitations of Kerberos, we integrated the 4758
into Kerberos V5 KDC.

1.4 Paper Composition

This paper presents the secure coprocessor integra-
tion with Kerberos KDC project. The next section
provides the motivation behind the project by refer-
ring to related work. Section 3 describes the design
of the integrated protocols. The security of our de-
sign is discussed in Section 4. Section 5 presents the
prototype implementation. Performance evaluation
of the prototype is presented in Section 6. Discus-
sion and future work are in Section 7.

In this document, it is assumed that readers have
some knowledge of the mechanisms of Kerberos.
Readers who are not familiar with them are advised
to consult available literature [3, 44, 27, 25, 26].

2Parameters such as storage size and cryptographic per-
formance are reported for the 4758 Model 1. The 4758 Model
2 has improved size and performance [21].

350 MB/sec DES and 200 signatures/s RSA on 4758
Model 2



2 Related Work

This section reviews the work most closely related to
our research. Section 2.1 introduces Kerberos. Sec-
tion 2.2 describes approaches taken by researchers
to address goals similar to ours, and the relation-
ship between their approaches and ours. Section
2.3 discusses secure hardware integration with the
Kerberos client.

2.1 Kerberos

Kerberos [44, 27, 26] is a very widely used authen-
tication protocol. It is a secret key, T3P proto-
col based on the Needham-Schroeder protocol [36].
Kerberos KDC offers two services, Authentication
Service (AS), and Ticket Granting Service (TGS).
AS authenticates members (principals), while TGS
establishes a session key between two principals. For
example, Alice needs to run AS with the Kerberos
KDC to prove she is Alice, and needs to run TGS
with the Kerberos KDC to obtain a ticket, which is
later sent to Bob to establish a session key between
them. Every principal in the protocol, i.e., users,
services 4, and computers, is assigned a secret key,
which is shared between the principal and the KDC.

Kerberos is used in universities to protect their com-
puter network environments. CMU, Cornell, MIT,
Stanford, the University of Michigan, and many
more embrace it. It is also part of the products of
many corporations such as Transarc, Cisco, Qual-
comm, IBM, and Microsoft, whose Windows 2000
employs it as a fundamental network authentica-
tion method. Many network applications are mod-
ified to work with Kerberos, including login, ftp,
telnet, PAM, ssh, AFS, and DFS. Its security has
been thoroughly analyzed [2, 27], and it scales quite
well. For example, three replicated Kerberos servers
at the University of Michigan serve 180,000 users.
It is also quite portable. Both the clients and the
servers run on almost any UNIX or Windows sys-
tems. We believe that Kerberos will continue to be
an important security system.

A huge security issue for Kerberos is the com-
mon problem of KDCs, that is, it yields all

the keys when compromised [2, 32]. MIT
Kerberos V5-1.0.6 stores a master key, which
encrypts the other keys, in cleartext in a

file (/usr/local/var/krb5kdc/.k5. DOMAINNAME).
Keys of the principals, i.e., the user keys and the

4Examples of services are login service and ftp service.

service keys, are encrypted with the master key and
are stored on hard disks. Therefore, if an adversary
has administrative rights for the KDC’s computer
or physical access to its disks, all the keys can be
stolen.

2.2 Public Key Based Authentication
Systems

Several public key authentication systems have been
designed and implemented [47, 40, 45] that are com-
patible with or related to Kerberos. Many of these
systems are similar to ours in the sense that they
try to protect the trusted third party. The logic
to support them is that public key based authenti-
cation systems fail more gracefully than secret key
based systems when T3P is compromised. Indeed,
CA does not store private keys, thus maintaining
forward secrecy and preventing an adversary from
getting immediate impersonation ability. However,
these systems amplify the value of our work because
of the following;:

e Even in public key systems, the trusted third
party (CA) is the most critical point of attack.
By obtaining the CA’s private key, an adver-
sary can modify certificates, issue bogus certifi-
cates, and modify certificate revocation lists, to
impersonate members. Therefore, it is vital to
protect the CA with secure hardware.

e Because of both the computational overhead
of public key cryptography and the necessity
for key revocation, we have concerns over how
public key based authentication systems scale.
In contrast, we know the secret key based sys-
tem scales quite well. We believe that secret
key based Kerberos will be in service for a long
time.

Therefore, we believe that public key augmentation
to Kerberos complements our work.

2.3 Smartcard Integration with Ker-
beros Client

Smartcard integration with the Kerberos client en-
hances security of Kerberos by taking advantage of
secure hardware in the form of smartcard [24, 33,
15, 31, 22]. This work (smartcard/Kerberos client)
and our work (secure coprocessor/Kerberos server)
complement each other.



3 Design

As described in Section 1.1, we prefer not to trust
the host computer on which the Kerberos KDC
runs. Thus, we designed our protocol to survive
a host “hijack”. One way of achieving this is to
implement an entire KDC in the 4758, but we did
not take this approach, as this will limit the perfor-
mance and scalability of KDC. Instead, we decided
to split a KDC between the host and the 4758, fol-
lowing these design policies.

e keys never leave the 4758 in clear

e all cryptographic operations are executed in the
4758

More concretely, the master key is stored in the
battery-backed up RAM in the 4758 and never
leaves. Because of storage limitations, user keys are
stored in the host and encrypted with the master
key. The 4758 has BBRAM of 8.5 kilobytes and 1
megabytes of flash memory, allowing it to securely
store many DES keys. However, storage in the host
is more abundant than storage in the 4758, and a
Kerberos realm, for example, at a university, may
require a huge number of keys, so we decided to
store them in the host.

When user keys are used, for example, to encrypt
a ticket, they are downloaded from the host to the
4758, decrypted there with the master key, used,
and then deleted from its memory. Session keys are
also generated in the 4758, augmented into tickets,
and encrypted in the 4758 before being shipped to
clients.

3.1 process_as_req

Figure 1 shows how the authentication request
(AS_REQ) is handled in Kerberos V5. The keys
(the user keys of Alice and Bob, the krbtgt key,
and the master key) are used in the host. The mas-
ter key is not shown in the figure, but is used to
decrypt the other keys. If the host is compromised,
all the keys are revealed.

To solve this problem, we designed the protocol with
the 4758 in Figure 2. Note that all the encryption
and decryption is done in the 4758, and no key is in
the host in the clear. This protects the keys from
an adversary who compromises the host.

The 4758 generates the ticket and the reply only if

requests are consistent, namely, the following con-
ditions are met:

Key of Alice is used in preauthentication

Alice is the client name in the ticket

Bob is the server name in the ticket

Key of Bob is used to encrypt the ticket

Bob is the server name in the reply

Key of Alice is used to encrypt the reply

Otherwise, it rejects the requests. As a result, the
adversary cannot fool the 4758 to generate tickets
and replies for her advantage.

3.2 process_tgs_req

Figures 3 and 4 show ticket granting service request
(TGS-REQ) handling both with and without the
4758.

In the protocol using the 4758, all the encryption
is done in the 4758, and no key is in the host in
the clear. Consistency checks similar to the ones in
process_as_req take place.

4 Security Analysis

In this section, we discuss the security of the design
presented in Section 3.

4.1 Model

We start with constructing a model of our system.
The model consists of the following participants:

Alice (A) A Kerberos principal who uses the au-
thentication and ticket granting service pro-
vided by KDC. Alice’s workstation is assumed
to be trustworthy. This allows us to combine
Alice and her workstation into one object.

Bob (B) A Kerberos principal with which Al-
ice wants to establish mutual authentication.
Bob’s workstation is assumed to be trustwor-
thy.

KDC-host Software component of KDC that re-
sides on a host computer.



Ali ce, Bob, nonce, padata

Alice KDC

Alice, tkt, reply Knast er,
Kal i ce, Kbob

Figure 1: original AS_REQ processing in Kerberos V5

Alice The principal who wants to be authenticated.
Bob The principal with whom Alice wants to communicate.

(Bob is the “krbtgt” when AS_REQ is used to obtain TGT.)
PAdata {current time}Kalice: Preauthentication data

to prove that Alice knows the right Kalice.
Kses Session key
Tkt {Alice, Bob, Kses}Kbob : Ticket forwarded by Alice to Bob

to prove that Alice carried out authentication with the KDC.

If Bob is “krbtgt”, the tkt is the TGT ({Alice, krbtgt, Kses}Kkrbtgt)
Reply {Bob, nonce, Kses}Kalice: Alice decrypts it to get the session key.

The parties send additional information, such as message types, protocol version num-
ber, flags, and start/expiration/renew-until time. We omit them in this figure because
they are treated the same with or without the 4758.

nonce, padata,

Alice, Bob, nonce, padata {Alice, Kalice}Kmaster
{Bab, Khoh}Kmnaster
, KDC
Alice KDC 4758
host
Alice, tkt, tkt, Kmast er,
{Kses, nonce, Bob}Kalice {Kses, nonce, Bob}Kalice Kal i ce, Kbob

Figure 2: AS_REQ processing in Kerberos V5 with the 4758

Security critical tasks, e.g., en(de)cryption and random key generation, are moved
from the host to the 4758. The host sends the 4758 the information needed for such
tasks, e.g., the nonce sent by Alice, and the encrypted keys of Alice and Bob. The
4758 generates a reply to Alice, and sends it back to the host.

The entries encrypted with the master key e.g., {Alice, Kalice}Kmaster, are gen-
erated and decrypted in the 4758. The KDC host stores them (encrypted) in the
Kerberos database and sends them to the 4758 when needed. The KDC host does not
know the master key.



TGT, authenticator,

Bob, nonce
Alice KDC
Alice, tkt, reply Knast er,
Kal i ce, Kbob

Figure 3: original TGS_REQ processing in Kerberos V5

Alice
Bob

PAdata
TGT

Authenticator
K

Kses

Tkt

Reply

The principal who wants to be authenticated.

The principal with whom Alice wants to communicate.

Bob is “krbtgt” when TGS_REQ is used to obtain TGT.
Preauthentication data (TGT and Authenticator).

and knows the right Kses.

{Alice, krbtgt, Kses} Kkrbtgt : Ticket Granting Ticket,

which proves that Alice carried out authentication with KDC.
{Alice, time, (subkey)}Kses

Key in TGT or subkey in authenticator

Session key

{Alice, Bob, Kses’}K: New ticket for Alice and Bob.

{Bob, nonce, Kses’}K: Alice decrypts it to get the session key.

The parties send additional information, such as message types, protocol version num-
ber, flags, and start/expiration/renew-until time. We omit them in this figure because
they are treated the same with or without the 4758.

TGT, authenticator,
nonce,

Alice

TGT, authenticator, {Alice, Kalice}Kmaster
Boh, nonce {Bob, Khob}Knmnster
KDC
KDC 4758
host .
tkt, {Kses, nonce, B}K Alice, tkt, Kmast er,
{Kses, nonce, Bob}K Kal i ce, Kbob

Figure 4: TGS_REQ processing in Kerberos V5 with the 4758

Security critical tasks, e.g., en(de)cryption and random key generation, are moved
from the host to the 4758. The host sends the 4758 the information needed for such
tasks, e.g., the nonce sent by Alice, the encrypted keys of Alice and Bob. The 4758
generates a reply to Alice, and sends it back to the host.

The entries encrypted with the master key, e.g., {Alice, Kalice}Kmaster, are gen-
erated and decrypted in the 4758. KDC host stores them (encrypted) in the Kerberos
database and sends them to the 4758 when needed. The KDC host does not know the

master key.



KDC-4758 Software component of KDC that re-
sides on a secure coprocessor.

Mallory (M) An adversary.
4.2 Threats

We make the following assumptions in our model.
Some of these assumptions are discussed in detail in
a related paper [22].

1. System administration is appropriately done.

As problems of system administration are out
of this paper’s scope, administration is assumed
to be done appropriately, namely, (1) the mas-
ter key is stored in KDC-4758 and nowhere else,
and (2) keys of Alice and Bob are stored in
KDC-host encrypted with the master key. We
discuss more about administration in Section
7.3.

2. Client workstations are secure.

As problems of the security of client worksta-
tions are out of this paper’s scope, client work-
stations are assumed to be secure, namely, (1)
a client workstation does not steal user’s in-
formation, and (2) it does not alter or modify
messages a user sends.

3. Passwords of Alice and Bob are good.

The problem of dictionary attack against user
chosen passwords is out of this paper’s scope;
passwords are assumed to be chosen carefully
so that the dictionary attack against them is
impossible.

4. DES is strong.

Our principal cipher is DES, which is as-
sumed impossible to compromise in reasonable
amount of time. This may not be a good as-
sumption any more in the age of fast DES
crackers [14], but Kerberos will eventually re-
place DES with triple-DES, thus eliminating
the brute force attack to DES.

5. Mallory can compromise KDC-host.

Mallory can read and modify any information
in KDC-host, and can make KDC-host do any-
thing she wants.

6. Mallory cannot compromise KDC-4758.

Mallory can neither read nor modify any in-
formation in KDC-4758. When she tries, 4758

deletes all the information in it. Mallory cannot
influence the behavior of KDC-4758.

7. Mallory can read, modify, and alter messages
in the network connecting the participants.

8. Mallory can be a principal in the Kerberos
realm.

4.3 Attacks

4.3.1 Key Theft

Without 4758

Mallory can steal all keys by compromising KDC-
host. This is possible by Assumption 5.

With 4758

Mallory cannot steal any key. The master key is
in KDC-4758, and is not readable (Assumption 1,
6). All the other keys are in KDC-host, but are
encrypted by the master key, with DES, which is
unbreakable (Assumption 4).

4.3.2 User Impersonation

Without 4758

Mallory can impersonate any user by stealing or
guessing the user key.

With 4758

Mallory cannot impersonate any user. First, she
cannot steal a user key. Second, the other way of
impersonating a user (Alice) is to obtain a ticket
{Alice, Bob, K4,g}Kp and the session key K4 5.
Mallory can obtain the ticket by sniffing the network
(Assumption 7), but this is impossible as well. The
session key is generated in KDC-4758 and is always
encrypted by K4 or Kg when it is outside KDC-
4758. K 4 and K g are strong (Assumption 3), so the
session key cannot be obtained. These keys cannot
be stolen from client workstations (Assumption 2).

4.3.3 Ticket / Reply Forgery

Without 4758

Mallory can generate any ticket or reply by using
stolen keys.

With 4758



Mallory cannot generate a ticket or reply on her ad-
vantage. KDC-4758 generates them only after Alice
showes possession of her key through preauthenti-
cation, and consistency is checked as described in
Section 3.1.

5 Implementation

We implemented the AS and TGS protocols de-
scribed in Section 3 by modifying Kerberos V5-1.0.6
distributed by MIT. The host platform is Linux
2.0.36 (RedHat 5.2) on an IBM PC. The secure co-
processor is the IBM 4758 Model 1, with the Secure
Cryptographic Coprocessor toolkit version 1.33.

5.1 Outline

The implementation was carried out in the following
three steps.

e analysis of process_as_req() and
process_tgs.req(), which implement AS
and TGS to identify which portions of the
functions should be moved to the 4758

e implementation of the card side functions that
have functionality equivalent to the portions
identified in the first step

e modification of the host side program to make
calls to the implemented functions in the card

5.2 Stepl: Functionality Analysis

There are six parts to be moved in AS: three calls
to key decryption and one each to preauthentica-
tion, ticket encryption, and reply encryption. Like-
wise, there are six parts in TGS: two calls to key
decryption and one each to ticket decryption, au-
thenticator decryption, ticket encryption, and reply
encryption.

As the performance evaluation in Section 6 shows,
the overhead of calling a function in the 4758 is
high. Therefore, to obtain high performance, the
six calls should be combined into one call. How-
ever, as cryptographic code and non-cryptographic
code are tightly coupled together in Kerberos, doing
so changes the order of execution and breaks mod-
ularity, thus significantly complicating the host side
code. For this prototype, we decided to make six

calls in each AS and TGS, valuing simplicity and
manageability over performance. A detailed look at
the overhead in Section 6.2 explains our decision.

5.3 Step2: Card Side Functions

5.3.1 Authentication Service
Key Decryption

User keys are stored in the host and encrypted with
the master key. The card decrypts the keys before
using them. The host-side decrypt key () function
sends keys to the card, decrypts them and then
stores them in RAM for future use. The function
is called three times in AS: first for Alice’s key for
preauthentication, second for Bob’s key for ticket
encryption, and third for Alice’s key for reply en-
cryption. ®

Preauthentication

Preauthentication is the step in which Alice proves
her identity to the KDC by proving knowledge of
her key. By default, preauthentication takes place
in the following three steps:

e Alice sends to the KDC a timestamp encrypted
with her key : {time}Kalice.

e The KDC decrypts {time}Kalice.

e The KDC verifies that the request is really
generated by Alice by determining whether
the time value falls within clock skew allowed.
KDC goes on to the next step in AS if the an-
swer is yes. Otherwise, KDC rejects Alice.

Because this step requires the use of Alice’s user
key, this function is moved to the card. The 4758
decrypts the timestamp and verifies it. If the times-
tamp is invalid, following requests, e.g., ticket en-
cryption and reply encryption, are rejected.

Ticket Encryption

A ticket is a data structure sent from the KDC to Al-
ice to establish a session key. Roughly speaking, it is

5We can save one call by caching the key in preauthenti-
cation and using it in reply encryption. We did not try this
optimization for the prototype; performance is not yet our
goal.



{Alice, Bob, Kses}Kbob. Part of the ticket is not
security critical, and is generated in the host. After-
ward, the ticket is sent to the card, filled with the
session key generated in the card, encrypted with
Kbob, and sent to Alice. The card stores the ses-
sion key for future use because the reply will include
it as described in the next paragraph.

Reply Encryption

Similar to the ticket, the reply {Bob, nonce,
Kses}Kalice includes a public part, which is en-
coded in the host and is sent to the card. The ses-
sion key, generated in the ticket encryption function,
is inserted into the reply. The card then encrypts
the reply with Alice’s key.

5.3.2 Ticket Granting Service

As in AS, six calls are made to the card in TGS:
two calls to key decryption, and one each to ticket
decryption, authenticator decryption, ticket encryp-
tion, and reply encryption. Some of the functions
are common in AS; we explain only the functions
that do not appear in AS.

Ticket Decryption

TGS decrypts the ticket granting ticket, or TGT
({Alice, krbtgt, Kses}Kkrbtgt), to obtain Alice’s
name and the session key. Because it involves the
TGS key (Kkrbtgt), and the session key is in the
TGT, this step must be carried out in the card.
The card decrypts the TGT and returns it in the
clear to the host excluding the session key. The ses-
sion key must not leave the card, so it is stored in
RAM in the card. Later it is used in authenticator
decryption and reply encryption.

Authenticator Decryption

The authenticator {Alice, time, (subkey)}Kses is
decrypted in the card. The timestamp is checked
in the card.

5.4 Step 3: Host Side Modification with
Secure Hardware RPC

As with other secure hardware [23], the communi-
cation methods between the host and the 4758 are
primitive. For example, the only type provided is

an array of bytes. It is the developers’ responsi-
bility to convert types such as int, short, char,
and more complicated data structures, into and out
of the string of bytes. It is a burden for developers
to deal with low-level programming, e.g., marshal-
ing and unmarshaling data structures, dealing with
endian problems, message buffer handling, and error
handling.

To provide a better abstraction, we developed the
Secure Hardware Remote Procedure Call (SHRPC),
which parses the interface definition file and gen-
erates C programs to handle the low-level com-
munication details. With SHRPC, procedure call
abstraction is provided to the host. As a conse-
quence, modification in the host side is merely to
call SHRPC stub functions, e.g.., decrypt key(),
instead of equivalent but more elaborate functions
in the host.

Although interface definition language (IDL) should
follow some standards, such as rpcgen, we picked
our own simple IDL for rapid implementation. The
interface definition file for the Kerberos / 4758 in-
tegration looks like this:

# Interface Declaration File
# for the Kerberos V5 / 4758 Project
# 8/6/1999, Naomaru Itoi

PROG:  krb5_4758
FUNC: decrypt_key
IN:

int type

# type :

# 0: client key

# 1: server key
string enc_key

QUT:

int tick

6 Performance Evaluation

We evaluated the performance of the prototype in
the following environment: IBM Netfinity PC with
Intel 300 MHz Pentium; the IBM 4758 secure copro-
cessor model 1; the KDC and the Kerberos clients
running on the same computer to avoid network de-
lay.

Each measurement was carried out ten times and
an average is presented in tables. Variance was very
small.



6.1 Overall Result

This section describes the performance of AS. kinit
is the client program used to initiate the AS request.
The total time kinit spends with or without 4758
is shown. To exclude the time spent for password
typing, the password is hard coded in the kinit
program. kinit with the 4758 takes 34% more time
than kinit without it.

| time (sec)

kinit without 4758 | 0.0611
kinit with 4758 0.0820

sclient is the client we used to initiate the TGS
request. sclient with the 4758 takes 33% more
time than sclient without it.

| time (sec)

sclient without 4758 | 0.0719
sclient with 4758 0.0953

4758 integration introduces approximately 33% of
overhead in both cases. We look into the details in
the following sections.

6.2 Communication Overhead

In this section, we examine communication over-
head. We measure the total time spent for the six
cryptographic operations described in Section 5.2,
the time spent in the card, and derive the commu-
nication overhead. As shown in Figure 5, the total
time is the sum of the card time and the overhead.

| Total | Card Time | Overhead
AS W/O 4758 0.00054 | - -
AS W/ 4758 0.02535 | 0.00866 0.01669
TGS w/o 4758 | 0.00032 | - -
TGS w/ 4758 0.02748 | 0.00866 0.01882

Communication overhead is approximately twice as
much as the card time in both AS and TGS. This is
an obvious bottleneck and there is an obvious opti-
mization. Theoretically, the number of calls can be
reduced from six in each AS and TGS to one in AS
and two in TGS. All operations can be done at once
in AS. In TGS, the TGT (ticket granting ticket)
must be decrypted to obtain the name of the client
before the KDC looks up its database. In contrast,
ticket encryption and reply encryption must happen
after the database lookup. Therefore, TGS requires
two calls. This optimization would reduce the card
time to 0.00278 seconds in AS and 0.00314 seconds
in TGS, thus reducing the overhead of using 4758

to 11% in AS and 15% in TGS.

6.3 Card Time Details

Although communication overhead was the bottle-
neck, it is also useful to study the details of the
time spent in the card. Breakdown of AS and TGS
is shown in the following table. For each function,
total time and time spent in main components are
presented.

AS
function contents time (sec)
decrypt_key | 24B DES decryption | 0.000957
TOTAL 0.001109
kdc_preauth | 40B DES decryption | 0.000997
CPGetTime 0.000023
TOTAL 0.001445
encrypt_tk 168B DES encryption | 0.001191
random number gen 0.000352
random number gen 0.000352
168B CRC 0.000041
TOTAL 0.002078
encode_kdc | 216B DES encryption | 0.001270
random number gen 0.000352
216B CRC 0.000053
TOTAL 0.001809
TGS
function contents time (sec)
decrypt_key | 24B DES decryption | 0.000957
TOTAL 0.001115
decrypt_tk 168B DES decryption | 0.001172
168B CRC 0.000041
TOTAL 0.001324
rd_rec_dec 120B DES decryption | 0.001113
120B CRC 0.000031
TOTAL 0.001230
encrypt_tk 168B DES encryption | 0.001191
random number gen 0.000352
random number gen 0.000352
168B CRC 0.000041
TOTAL 0.002105
encode kdc | 184B DES encryption | 0.001211
random number gen 0.000352
184B CRC 0.000045
TOTAL 0.001773

DES operation takes the longest time. Considering
that the hardware implemented DES takes much
longer time than the software implemented CRC
even though the hardware itself is quite fast (20
MB/s ¢), we believe the most of the DES opera-

650 MB/s on Model 2.
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Figure 5: total, card time, and overhead

tion time is spent in making a system call to DES
hardware and setting up a key schedule. For an ap-
plication that operates on such small data (100 -
200 bytes), which we believe many authentication
and authorization systems do, it is good to provide
(1) software implementation of crypto operations to
save system call overhead and (2) a decoupled API
for DES key scheduling separate from DES oper-
ation. (2) is helpful because some keys are used
repeatedly, e.g., a master key.

7 Discussion

7.1 Implementation Limitations

Due to time limitation, our implementation has the
following limitations.

User Name - Key Binding

In Sections 3 and 4, discussions were made assuming
a user name and the key of the user are encrypted
together. However, this is not the case in our pro-
totype because the key data structure in MIT Ker-
beros V5-1.* does not include the user name in it.

Preauthentication Failure

When preauthentication fails, either because it is
not encrypted with an appropriate key, or times-
tamps do not match, the 4758 should reject the fol-
lowing operations, namely, ticket encryption and re-
ply operations. This has not been implemented yet.

Consistency Check

Consistency check described in Section 3.1 has not
been implemented.

TGS Authenticator Check

Authenticator check described in Section 5.3.2 has
not been implemented yet. The 4758 simply de-
crypts and returns the authenticator.

7.2 Lessons Learned

Integration of secure hardware into a security pro-
tocol can be significantly simplified if the orig-
inal implementers of the protocol anticipate the
use of secure hardware. Complication of our
work comes from cryptographic operations and non-
cryptographic operations being tightly coupled in a
program, e.g., they coexist in one function. If they
are decoupled cleanly in an initial implementation,
the work of integration is merely to move the crypto
code to the secure hardware. Moreover, we believe
the separation is good for portability of the proto-
col, e.g., to switch from one encryption system to
another.

7.3 Future Work

Several steps must be taken before this project is
deployed.
Complete Implementation

Unfinished implementation, discussed in Section 7.1
should be completed to realize the claimed security.



Administration

We have not addressed problems associated with ad-
ministration: changing passwords, adding / remov-
ing principals, changing the the KDC’s policy, etc.

The Kerberos Database (KDB) is the database in
which Kerberos stores its critical information, e.g.,
the keys and the principal attributes; it is accessed
by administrators through kadmind. Because the
data in the KDB are sensitive, the entries are en-
crypted with the master key. As a consequence, in
the 4758 integrated KDC, administration requests
must go through the 4758.

An adversary can attack a Kerberos/4758 system
by attacking the channel between the administra-
tor and the 4758. For example, one possible attack,
which could reduce the advantage of integrating the
4758 into Kerberos, is a Trojan horse in the admin-
istrator’s terminal. If it can interrupt the operations
by the administrator, it can steal sensitive informa-
tion, e.g., user passwords. In fact, this secure I/O
problem is a general concern for any security sys-
tem, which requires the administrator be trustwor-
thy, and the administrator’s terminal be secure.

We plan to address these concerns by carrying
out mutual authentication and establishing an en-
crypted connection between a system administrator
and the 4758 with Kerberos authentication, and us-
ing the connection to securely transfer requests by
the administrator to the 4758.

This will partially achieve our goals because the ad-
ministrator is authenticated via Kerberos, and com-
munication is encrypted. However, it is not possible
to provide a completely trusted terminal with cur-
rent commercial hardware, even with secure hard-
ware such as the 4758, because even if the proces-
sors and storage are trusted, the I/O devices may
not be. For example, a keyboard or a display in-
strumented with a hardware eavesdropper can steal
administrators’ keystrokes. However, it is much eas-
ier to keep a terminal secure during administration
than to keep a Kerberos server secure in 24 hours a
day, seven days a week fashion. Therefore, we defer
solving this problem of secure I/O.

Performance Optimization

As described in Section 6.2, the six calls to the 4758
in AS and TGS should be combined into one and two
calls respectively to optimize the performance. The
drawback of this optimization is that it changes the

Kerberos code significantly. In the Kerberos/Cartel
meeting in July of 1999, we sensed that such a radi-
cal change would pose a major challenge to Kerberos
developers with regard to maintaining the source
code. Therefore, we decided to first implement a
prototype to determine what the computer systems
community thinks about it before proceeding to the
deployment step.

Brute Force Attack to Master Key

If an adversary has access to messages passed be-
tween the host and the 4758, he or she can obtain
a plaintext-ciphertext pair. Some messages are en-
crypted with single DES and the master key. This
is problematic because given a plaintext-ciphertext
pair, DES key can be cracked by a brute force at-
tack in a week [14]. Kerberos distribution from MIT
supports triple DES, eliminating this threat.

Replay Attack

An adversary can use a replay attack to impersonate
Alice if he or she hijacks the host and has Alice’s ob-
solete password. Here we describe a possible attack
and the countermeasure.

Our Kerberos/4758 protocol stores the master key
inside the 4758, which encrypts the other keys with
this master key and stores the ciphertext on the
host. An adversary (Mallory) cannot access these
plaintext keys even if she compromises the host be-
cause she does not know the master key, which never
leaves the 4758.

However, without additional measures, such a pro-
tocol suffers from replay attacks if Mallory can learn
one of Alice’s old passwords. The replay attack is
carried out as follows:

e Mallory obtains an old password of Alice, Pa.

e Because Mallory has complete access to the
host, she can obtain {Alice, Kalice} Kmaster.

e Alice, knowing that her password is stolen,
changes her password to Pa’. At this point,
the old password Pa and the corresponding key
Kalice are obsolete.

e Mallory types the obsolete password, Pa. Pa is
hashed to the key Kalice. The KDC hijacked
by Mallory sends {Alice, Kalice} Kmaster to the
4758. If the 4758 does not know Kalice is obso-
lete, it thinks Kalice is fresh, and sends a reply



encrypted by Kalice to the KDC/Mallory. Mal-
lory successfully decrypts the reply, thus imper-
sonating Alice.

To avoid this attack, we use key version numbering
and obsolete key caching. First, all the keys in the
Kerberos database have a key version number, N.
This key version number is different from the key
version number used in the original Kerberos V5
protocol. An encrypted key entry contains this ver-
sion number, i.e., {Alice, Kalice, N}. When Alice
changes her password, Alice’s current key version
number is updated to N+1. The 4758 generates a
new key entry {Alice, Kalice’, N+1}, sends the en-
try back to the host, and caches a pair {Alice, N+1}
in its internal memory.

The 4758 checks the cache whenever it receives a
key from the host. If the version numbers do not
match, then the key received is obsolete. To avoid
cache overflow, once in a while (e.g., daily) the 4758
regenerates the new N and computes the new entries
for all the keys, and sends them back to the host.

The cache should not overflow too quickly. If the
cache size is 1MB and each entry is 32 bytes, then
the maximum number of entries in the cache is 32K
entries — which we imagine exceeds the maximum
number of password changes in a day. (Further-
more, some preliminary tests indicate that the time
needed for cryptographic operations to regenerate
the cache is not excessive.)

8 Conclusion

This paper demonstrates the ability of secure hard-
ware to improve the security of current computer
environments. We can shrink the security bound-
ary of the trusted third party from a workstation to
a secure coprocessor, which is a smaller and more se-
cure component. The implemented Kerberos KDC
survives host compromise.

We plan to make the source code freely available.
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