
USENIX Association

Proceedings of the
9th USENIX Security Symposium

Denver, Colorado, USA
August 14 –17, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MAPbox: Using Parameterized Behavior Classes to Con�ne

Untrusted Applications

Anurag Acharya, Mandar Raje

Dept. of Computer Science, University of California, Santa Barbara

Abstract

Designing a suitable con�nement mechanism to con-
�ne untrusted applications is challenging as such
a mechanism needs to satisfy con
icting require-
ments. The main trade-o� is between ease of use
and
exibility. In this paper, we present the de-
sign, implementation and evaluation of MAPbox,
a con�nement mechanism that retains the ease of
use of application-class-speci�c sandboxes such as
the Java applet sandbox and the Janus document
viewer sandbox while providing signi�cantly more

exibility. The key idea is to group application be-
haviors into classes based on their expected func-
tionality and the resources required to achieve that
functionality. Classi�cation of application behav-
ior provides a set of labels (e.g., compiler, reader,
netclient) that can be used to concisely communi-
cate the expected functionality of programs between
the provider and the users. This is similar toMIME-
types which are widely used to concisely describe the
expected format of data �les. An end-user lists the
set of application behaviors she is willing to allow
in a �le. With each label, she associates a sand-
box that limits access to the set of resources needed
to achieve the corresponding behavior. When an
untrusted application is to be run, this �le is con-
sulted. If the label (or the MAP-type) associated
with the application is not found in this �le, it is not
allowed to run. Else, the MAP-type is used to au-
tomatically locate and instantiate the appropriate
sandbox. We believe that this may be an accept-
able level of user interaction since a similar tech-
nique (i.e., MIME-types) has been fairly successful
for handling documents with di�erent formats. In
this paper, we present a set of application behav-
ior classes that we have identi�ed based on a study
of a diverse suite of applications that includes CGI
scripts, programs downloaded from well-known web
repositories and applications from the Solaris 5.6
distribution. We describe the implementation and
usage of MAPbox. We evaluate MAPbox from two

di�erent perspectives: its e�ectiveness (how well it
is able to con�ne a suite of untrusted applications)
and e�ciency (what is the overhead introduced).
Finally, we describe our experience with MAPbox
and discuss potential limitations of this approach.

1 Introduction

Designing a suitable mechanism to con�ne un-
trusted applications is a challenging task as such a
mechanism needs to satisfy con
icting requirements.
The key trade-o� is between ease of use and
exi-
bility. To be easy to use, a con�nement mechanism
should require little or no user input. As a result,
such a mechanism is likely to provide one-size-�ts-
all functionality { that is, all applications being con-
�ned are allowed to access exactly the same set of
resources. This limits the class of applications that
can be used e�ectively while being con�ned. To be
more
exible, a con�nement mechanism has to ei-
ther allow access to all resources to all applications
(which defeats the purpose of con�nement) or it has
to somehow select the set of resources each applica-
tion is allowed to access. To be able to select the
set of resources that each application is allowed to
access, such a mechanism needs some knowledge of
the application's resource requirements as well as
the user's intent.

Previous research into creating con�nement envi-
ronments (also referred to as sandboxes) has taken
one of four approaches which make di�erent trade-
o�s between
exibility and ease of use. Several re-
searchers have proposed some form of per-program
access control [4, 5, 7, 11, 12, 14, 21]. This ap-
proach is highly
exible but requires users (or ad-
ministrators) to specify access-control information
for every program. It can work well if the number
of untrusted applications is small and changes infre-
quently. Several computing environments, however,

1

are dynamic and contain a large number of appli-
cations (e.g., a web-hosting service which allows its
users to run CGI scripts). The second approach uses
�nite-state machine descriptions of program behav-
ior [13, 15, 17]. This provides even more
exibility
as di�erent sequences of the same set of accesses
can be distinguished. To be used e�ectively, how-
ever, this approach requires a careful understanding
of the behavior of individual applications. Given the
size, complexity and the number of applications in
modern computing environments, it would be hard
to develop such detailed descriptions.

The third approach considers each application
provider (author/company/web site) as a principal
and uses per-provider access-control lists (ACLs) [9,
10, 20]. This groups applications from the same
provider into the same sandbox. This is a promising
approach since a user needs to deal with potentially
fewer principals than the �rst two approaches. This
makes it easier for the users to create and maintain
the corresponding ACLs. However, disparate appli-
cations from the same provider may be grouped into
the same sandbox. To allow all of these applications
to run, a user may have to provide an overly coarse
sandbox { which may or may not be desirable. An-
other potential problem is that the number of po-
tential providers is large and growing. Creating and
maintaining ACLs for a large number of providers
can require substantial administrative e�ort.

The fourth approach consists of special-purpose
sandboxes for speci�c classes of applications, e.g,
document viewers [8], applets [6], global comput-
ing [3], CGI scripts [18] and programs that run with
root privileges [19]. By limiting the scope of the con-
�nement mechanism, these techniques signi�cantly
reduce the administration e�ort required. While
each of these sandboxes are easy to use when they
are applicable, they are limited in their applicability.
For each application, one needs to manually �nd,
deploy and instantiate the appropriate sandbox. In
addition to being an administrative burden, using a
variety of programs for sandboxing makes it harder
to check the sandboxes themselves for security
aws.

In this paper, we present the design, imple-
mentation and evaluation of MAPbox, a con�ne-
ment mechanism that retains the ease of use of
application-class-speci�c sandboxes while providing
signi�cantly more
exibility. The key idea is to
group application behaviors into classes based on
the expected functionality and the resources re-
quired to achieve that functionality. Examples

of behavior classes include �lters, compilers, edi-
tors, browsers, document viewers, network clients,
servers etc. Classi�cation of the behavior of an ap-
plication provides a label (the name of its behavior
class) which can be used by its provider to concisely
describe its expected functionality to its users. This
is similar to MIME-types which are widely used
to concisely describe the expected format of �les.
We refer to the label assigned to an application as
itsMulti-purpose Application Pro�le-type (orMAP-
type). An end-user speci�es the set of application
behaviors she is willing to allow as a set of MAP-
types listed in a .mapcap �le. With each MAP-
type, she associates a suitable sandbox. When an
untrusted application is to be run, this �le is con-
sulted. If the MAP-type associated with the appli-
cation is not present in the .mapcap �le, the appli-
cation is not allowed to run. Else, the MAP-type
is used to automatically locate and instantiate the
appropriate sandbox without requiring user inter-
vention. We believe that this may be an acceptable
level of user interaction since a similar technique has
been fairly successful for handling documents with
di�erent formats. For MIME-types, end-users spec-
ify, in a .mailcap �le, which MIME-types they are
willing to view, which application is to be used to
view MIME-type and how should this application
be invoked.

In e�ect, MAPbox allows the provider of a pro-
gram to promise a particular behavior and allows
the user of a program to con�ne it to the resources
she believes are su�cient for that behavior. For
CGI scripts provided by users of a web-hosting ser-
vice, the MAP-type for the script can be speci�ed
by the user when it is submitted for installation.
For plug-ins and other applications that are down-
loaded on demand, the MAP-type can be speci�ed
in the HTTP header (just as MIME-types are spec-
i�ed for downloaded documents). For applications
downloaded and built locally, the MAP-type can be
speci�ed by the provider (e.g., in a README �le).
Note that the provider of a program only speci�es
the MAP-type for the program, she does not specify
the sandbox to be used. The association between
MAP-types and sandboxes is completely under the
control of the user of the program (being speci�ed
in the .mapcap �le in the user's home directory).

This proposal raises several questions. First, can
application behaviors be suitably classi�ed? That
is, do application behaviors and the corresponding
resource requirements fall into distinct categories?
Second, how does MAPbox deal with a group of

applications that exhibit similar behavior but need
di�erent resources? For example, hotjava and trn

are both browsers that connect to remote servers.
However, they di�er in the hosts they connect to,
the port they connect to and the directory they use
to store the downloaded information. Third, how
are the individual sandboxes used by MAPbox to be
implemented? There are con
icting constraints { on
one hand, all accesses must be checked; on the other
hand, the overhead should be acceptable. Finally,
how well does this approach work in practice?

In section 2, we describe a study of the behavior and
resource requirements of �fty applications. These
applications were drawn from di�erent sources: CGI
scripts downloaded from a well-known CGI reposi-
tory; programs downloaded from well-known pro-
gram repositories; and applications provided as part
of the Solaris 5.6 environment. Based on this study,
we have de�ned a set of behavior classes and the
corresponding sandboxes. In section 3, we present
the design and implementation of MAPbox. Our
implementation of MAPbox runs on Solaris 5.6 and
con�nes native binaries. It also provides a sandbox
description language that can be used to construct
new sandboxes with relative ease. In section 4, we
describe how MAPbox can be con�gured and used.
In section 5, we present an evaluation of MAPbox.
We evaluated both its e�ectiveness (how well it is
able to con�ne a suite of untrusted applications) and
e�ciency (what is the overhead introduced). Our
results indicate that the overhead of con�nement
is small enough (< 5% for CGI scripts, 1-33% for
other applications) to be acceptable for many appli-
cations and environments. We found that a MAP-
type-based approach is quite e�ective for con�ning
untrusted applications. Of the 100 applications in
our evaluation suite, only nine failed to complete
their test workloads; of these �ve failed because they
made inherently unsafe requests. We also found
that mislabeled applications (i.e., applications that
were labeled with a di�erent MAP-type than their
own) were not able to gain access to resources that
the user did not wish to grant. We conclude with a
discussion of our experience with MAPbox and the
potential limitations of this approach.

2 Identifying Behavior Classes

To identify application behavior classes, we studied
a suite of �fty applications. Of these, twenty were

Perl-based CGI scripts that we downloaded from
a well-known repository; another �fteen were pro-
grams downloaded from various well-known repos-
itories; and the �nal �fteen were applications pro-
vided as part of the Solaris 5.6 distribution.1 We
ran each application on a Solaris 5.6 platform with
several workloads. For each execution, we obtained
a trace of the system-calls made by the application.
To collect the system-call traces, we used the truss
utility. For each system-call, it prints the name, ar-
guments and the return value. As far as possible,
we summarized these traces by identifying groups of
system-calls and relating them to higher-level oper-
ations such as: accessing �les, linking libraries, mak-
ing/accepting network connections, creating child
processes, accessing the display, handling signals
etc. Figure 1 presents one such group. For other ex-
amples, please see [16]. In some cases, to verify the
mapping between a higher-level operation and the
system-calls it generates, we wrote short programs
performing the operation and compared their traces
with that of the application being studied.

To design the workloads for our study, we consid-
ered two alternative techniques. The �rst technique
starts with an intuitive notion of application be-
havior classes such as editors, document viewers,
compilers, mailers, etc. For each class, it de�nes
a synthetic workload that exercises the primary be-
havior of the class. The second technique develops
trace-based workloads by having a set of users to
use individual applications and keeping track of user
operations for relatively long sessions. Trace-based
workloads have the advantage of being more realis-
tic. However, many applications can exhibit multi-
ple behaviors (e.g., gnu-emacs can be used as an ed-
itor, a news-reader, a mailer etc). Since our goal in
this study was to identify the set of resources needed
for the individual behaviors, we chose to use syn-
thetic workloads instead of trace-based workloads.
For example, for editors, we used the following work-
load: (1) start up with no �le and exit; (2) start up
with an existing �le and exit; (3) start up with an
existing �le, delete 100 characters, add 100 charac-
ters and exit; (4) for text editors, edit a �le, spell-

1The CGI
scripts were ads, AtDot-2.0.1, authentication, banner, bbs,
bookofguests, bp, browsermatcher, bsmidi, calendar, chat,
counter, CrosswordMaker, DB Manager, DB Search, dcguest2,
formmail, form processor, guestbook, and juke. All of these
are linked o� cgi.resource-index.com, a well-known CGI
repository. The downloaded programs were idraw, xfig,
ghostview, xv, gcc, pico, pine, elm, lynx, agrep, xcalc,
ical, xdvi, gzip, httpd. The Solaris applications were
vi, pageview, imagetool, dvips, mailtool, trn, Netscape,
hotjava, sh, ftp, finger, rwho, whois, telnet and sed.

check it and exit; (5) for graphical editors, generate
a postscript �le and exit. Workloads used for most
of the other classes are described in [16].

Based on the results of this study, we identi�ed a
set of behavior classes and their resource require-
ments. We �rst determined the resources needed by
each application. By resources, we mean �les, direc-
tories, network connections (hosts and ports), the
X server, other devices, ability to create new pro-
cesses, environment variables etc. For each behavior
class, we identi�ed resources commonly required to
implement the primary functionality of the applica-
tions in the class. Some applications make use of
resources that are not really needed for implement-
ing their primary functionality. For example the
Solaris C compiler opens a socket to a license server
to check licensing information. Other C compilers
(e.g., gcc) don't need to make network connections.
Based on the Principle of Least Privilege, we do not
consider such resources as requirements for the cor-
responding behavior classes. Note that the resource
requirements for a class are not simply the union
of the resource used by a set of applications that
we studied. Instead, they are the set of resources
that we believe are required to implement the ex-
pected functionality for the class. In Section 5, we
compare these expected resource requirements asso-
ciated with a behavior class with the actual resource
requirements of a large suite of applications that im-
plement that behavior.

In addition, we identi�ed a set of parameters for
each class. Parameters of a class capture com-
mon patterns in the idiosyncratic resource require-
ments of the applications belonging to the class.
For example, hotjava and trn are both browsers
that connect to remote servers, download �les and
present them to users. For this, they need to
link in networking libraries, make network con-
nections, open networking-related device �les (e.g.,
/dev/ftcp,udp,ticotsordg) and write �les in a lo-
cal directory. However, they di�er in the hosts they
connect to, the port they connect to and the direc-
tory they use to store the downloaded information.
In this case, the hosts to connect to, the port to con-
nect to and the directory to store the information
would be parameters of the behavior class contain-
ing hotjava and trn.

Table 1 presents the behavior classes we identi�ed
and their parameters. We do not claim that the
classi�cation presented in Table 1 is either unique
or complete. Our goal in identifying these classes

was to demonstrate that application behaviors and
the corresponding resource requirements can be
grouped into distinct categories. We expect this
classi�cation to be re�ned based on further expe-
rience. This would be similar to the evolution of
MIME-types which have been repeatedly re�ned as
users have better understood their potential.

The classes described in Table 1 form a lattice based
on their resource requirements. A class X is higher
in the lattice than a class Y if the resources re-
quired by Y are a proper subset of the resources
required by X. For example, applications in the
filter class can access only stdin/stdout/stderr
whereas applications in the transformer class can
access stdin/stdout/stderr as well as infile and
outfile. We present this lattice in Figure 2.

3 Design and implementation of

MAPbox

Our implementation of MAPbox runs on Solaris 5.6
and con�nes native binaries. We �rst describe the
sandbox description language provided by MAPbox
which can be used to construct new sandboxes with
relative ease. Next, we describe how MAPbox im-
plements individual sandboxes.

3.1 The sandbox description language

We base our sandbox description language on the
con�guration language used by Janus [8], a class-
speci�c sandbox for document viewers. Our lan-
guage consists of eight commands: path, connect,
putenv, rename, accept, childbox, define and
params. Figure 3 provides a brief description for
these commands (Figure 7 contains a BNF descrip-
tion). Of these, the �rst four commands were pro-
vided by Janus. For a detailed description of these
commands, please see [8]. The last four commands
are new to MAPbox and are described below. A
sample sandbox speci�cation is presented in Fig-
ure 9.

accept: this command is the server-side analogue
of the Janus connect command. It can be used to
control the set of peer hosts as well as the set of
ports that the con�ned application can listen on.

open("/usr/lib/libsocket.so.1", O_RDONLY) = 3

fstat(3, 0xEFFFEA00) = 0

mmap(0x000000, 8192, PROT_READ, MAP_SHARED, 3, 0) = 0xEF7B000

mmap(0x000000, 8192, PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xEF7900

close (3) = 0

Figure 1: The system-call sequence for dynamically linking a library in Solaris 5.6.

Behavior class Parameters Description

filter None cannot open �les, access network/display or exec processes
reader dir/filelist can read �les listed in filelist or contained in dir and its descen-

dants; cannot write �les, access network/display or exec processes (e.g,
cat, CGI scripts that authenticate a user or provide a random image)

transformer infile,

outfile

can read infile, write outfile; cannot access network/display or exec
processes (e.g., compress, gzip, image format converters)

maintainer homedir can read and write �les in homedir and descendants; cannot access
network/display or exec processes (e.g., CGI scripts that implement
counters, guestbooks, bulletin boards, chat servers, etc.)

compiler homedir,
filelist,
libpath,
outfile

can read/write �les in homedir and descendants; can read �les in
filelist; can read �les in all directories on libpath; can write
outfile; cannot access network/display; can exec other applications
in the same class (e.g., gcc, tar, dvips, latex, nroff, bibtex, ld)

editor homedir,
filelist

can read/write �les in homedir and its descendants; can read/write
�les in filelist; cannot access network; can access display; can exec
applications labeled filters or transformers (e.g., gnu-emacs, vi,
pico, xfig, idraw)

viewer homedir,
filelist

can read/write �les in homedir and its descendants; can read �les in
filelist; cannot access network; can access display; can exec applica-
tions in the same class (e.g., ghostview, pageview, imagetool, xdvi)

netclient host, port,

dir

can connect to host at port; can read and write �les in dir; cannot
exec processes; cannot access display (e.g., ftp, finger, wget)

mailer homedir,
[mailbox],
[gateway],
[mailcommand]

can read/write �les in homedir and descendants, can read/write
mailbox �le (if speci�ed), can connect to gateway (if speci�ed) on
port 25; can access display; can exec viewers and filters, can exec
the mailcommand (if speci�ed) (e.g., pine, elm, mailtool, many CGI
scripts that implement guestbook, mailing lists and bulletin boards)

browser homedir,
filelist,
hostlist,
port

can read/write �les in homedir and descendants; can read �les in
filelist; can connect to hosts in hostlist at port, can access dis-
play; can exec viewers (e.g., lynx, hotjava, trn)

netserver homedir,
hostlist,
port

can read/write �les in homedir and descendants; can accept connec-
tions at port from hosts in hostlist; cannot access display; can exec
filters, transformers and maintainers (e.g., httpd, ftpd)

shell path,
mapfile,
[maptypelist]

can exec binaries found in the directories listed in path; can read
mapfile; maptypelist can be used to limit the MAP-types of appli-
cations that be exec'ed; cannot access network; cannot access display
(e.g., ksh, csh, tcsh)

game homedir can read/write homedir; can access display; cannot access network; can
exec applications in the same class

applet host, port,
path

can access display; can connect to host at port; can read �les in di-
rectories listed in path; cannot write �les; cannot exec processes.

Table 1: Brief descriptions of the behavior classes identi�ed in this study.

Applet

NetclientMailer Netserver Game

Maintainer

Compiler

Transformer

Reader

Filter

EditorBrowser

Viewer

Shell

Figure 2: Lattice describing the relationship between application behavior classes.

Command Description

path used to allow or deny read/write/exec access to a list of �les (e.g., path deny

read,write,exec /etc). Wildcards are allowed; relative paths are not allowed; deny takes
precedence over allow.

rename used to redirect accesses to a particular �le to a di�erent �le (e.g., rename read /etc/passwd
/tmp/dummy). Wildcards and relative paths are not allowed.

connect used to control connections to remote hosts and the X server. Must be speci�ed as IP
addresses; wildcards allowed (e.g., connect allow tcp 128.111.*.*:80/128.32.*.*:8080)

putenv used to add a variable de�nition to the environment (e.g., putenv HOME=/tmp/boxedin)
accept used to control connections from remote hosts (e.g., accept allow udp 128.111.*.*:513)
childbox used to specify the sandbox to be used for processes forked by the con�ned application (e.g.,

childbox viewer). At most one childbox command allowed per sandbox.
define used to de�ne a symbolic value that can be used later (e.g., define NETWORK FILES

/etc/netconfig /etc/nsswitch.conf /etc/.name service door)
params used to de�ne the parameters for a sandbox (e.g., params infile outfile). Parameters

are refered to using a $ pre�x (e.g., $outfile)

Figure 3: Brief description of the MAPbox sandbox description language.

The value NON SYSTEM PORT can be used to indicate
any port not reserved for system services.

childbox: this command is used to specify a di�er-
ent sandbox for the processes forked by the con�ned
application. If no childbox command occurs in a
sandbox speci�cation, the original sandbox is used
to con�ne the children, if any. For example, children
of browsers can be restricted to be viewers.

de�ne: this command can be used to de�ne sym-
bolic constants which can then be used in other
commands. Symbolic constants can be used to sim-
plify the task of porting sandboxes across platforms.
For example, to be able to access the network on
many platforms, an application needs to link in
a platform-dependent set of libraries2 and read a

2On Solaris 5.6,
/usr/lib/libsocket.so.1, /usr/lib/libnsl.so.1.so.1 and

platform-dependent set of con�guration �les.3 Sym-
bolic de�nitions can be used to isolate these de-
pendencies. As long as the sandboxes are de�ned
in terms of symbolic constants which are collected
in a single �le, porting the entire set of sandboxes
is a matter of rede�ning the symbolic constants in
this �le. To support this, MAPbox reads a common
speci�cation �le before it reads the speci�cation �le
for a particular sandbox. Figure 8 presents an ex-
ample of a common speci�cation �le for Solaris 5.6.

params: this command is used to de�ne the pa-
rameters for a sandbox. This command can occur
only once in a speci�cation and must precede all
other commands.

/usr/lib/nss compat.so.1.
3On Solaris 5.6, /etc/netconfig, /etc/nsswitch.conf

and /etc/.name service door.

3.2 Implementation details

Initialization: MAPbox starts by reading the
sandbox speci�cation �le (speci�ed on the com-
mand line) and building the Policy structure. The
Policy structure consists of eight components: (1)
read-list (list of �les that can be read), (2)
write-list (list of �les that can be written), (3)
exec-list (list of binaries that can be exec'ed),
(4) rename-list (list of �les whose accesses are to
be redirected to some other �le), (5) connect-list
(list of host/port combinations that the con�ned ap-
plication can connect to), (6) accept-list (list of
hosts that the con�ned application can accept con-
nections from and the ports that it can bind to),
(7) env-list (list of environment variables for the
con�ned application), and (8) childbox (the sand-
box to be used for child processes, if any). It �rst
forks. The forked version sets up the environment
for the application to be con�ned by: limiting the
environment variables to those speci�ed in sandbox,
setting umask to 077, limiting the virtual memory
use and datasize, disabling core dumps, changing
the current working directory to the application's
homedir directory,4 and closing all unnecessary �le
descriptors. It then exec's the application to be
con�ned.

Interception mechanism: we use the /proc in-
terface provided by Solaris 5.6 to intercept selected
system-calls. The /proc interface has been previ-
ously used by researchers for building class-speci�c
sandboxes [3, 8] and for user-level extensions to op-
erating systems [2]. This interface guarantees that
all system-calls are intercepted. It allows us to in-
tercept system-calls both on their entry to and exit
from the operating-system. The interception mech-
anism provides information about the identity of an
intercepted system-call, its arguments, whether it is
an entry or an exit, and the return value (if inter-
cepted on exit). We intercept most system-calls on
their entry to the kernel to allow or deny access to
resources; we intercept a few system-calls on their
return from the kernel to record a returned value
(e.g., fork) or to control access to blocking commu-
nication calls (e.g., accept for which the identity of
the peer is known only when it returns). MAPbox
maintains a handler for every intercepted system-

4If no homedir directory exists for the application, a tem-
porary directory is created in /tmp for this execution and
is used as the current working directory. This directory is
deleted after the con�ned program terminates.

call (separate handlers are maintained for entry and
exit). When a system-call is intercepted, the corre-
sponding handler is invoked. To deny a system-call,
the handler sets a �eld in the structure used to com-
municate between the kernel and MAPbox. A de-
nied system-call returns to the application with an
error code of EINTR. For a description of individual
system-call handlers, please see [16].

Handling symbolic links: since Unix �le-systems
support symbolic links, simply checking the ar-
guments for �le-system-related system-calls is not
su�cient to implement �le-system-related checks.
For example, /tmp/letter-to-my-mom.txt can be
a symlink to /etc/passwd. To plug this hole,
MAPbox completely resolves each �lename (using
the resolvepath() call available in Solaris) before
checking it against the Policy structure.

Redirecting requests for sensitive �les: to
redirect requests for a sensitive �le to a benign
dummy �le, MAPbox resolves all �lenames com-
pletely and compares them with the completely re-
solved name of the sensitive �le. If a match is found,
it writes the name of the dummy �le as a string on
the stack of the con�ned process,5 and changes the
pointer to the �lename argument to the intercepted
system-call to point to this string. It then allows
the system-call to proceed.

Con�ning child processes: MAPbox creates a
separate copy of itself for every child of a con�ned
process. To achieve this, it intercepts the fork

system-call on exit and extracts the process-id of
the newly created process. It then forks itself and
attaches the child MAPbox process to the newly
created application process. Unless speci�ed other-
wise, the child of a con�ned application is con�ned
in the same sandbox as the parent. If, however, a
di�erent sandbox is speci�ed (using the childbox

command), the instance of MAPbox corresponding
to the child process intercepts the subsequent exec
system-call and reads the appropriate sandbox spec-
i�cation �le.

Other system-calls: the MAPbox sandbox spec-
i�cation language can specify the con�nement re-
quirements for most but not all system-calls. For
the remaining system-calls, MAPbox implements an

5On Solaris 5.6, this is implemented using pwrite() and
ioctl()s on the /proc �le corresponding to the con�ned
application.

application-independent policy. It does not inter-
cept system-calls related to signals, threads and vir-
tual memory. For these resources, it relies on the
security provided by the kernel. It also does not
intercept system-calls that perform read/write or
send/receive operations { depending on the checks
performed for initializing operations such as open(),
creat(), socket() etc. For others, it takes a con-
servative approach and denies all system-calls that
it does not know to be safe.

� it denies calls that can be invoked only with
super-user privileges (e.g., mount, umount,
plock, acct, etc.).

� it currently denies calls to acl() which
gets/sets the access-control list for a �le. We
have not yet seen these system-calls in traces.

� it denies all calls to door() except those used
to query the host database.

� it allows fcntl() calls with F DUPFD,
F DUP2FD (which return new �le descriptors)
and F GETFD, F SETFD (which read and
write �le descriptor
ags) commands. It denies
fcntl() calls with other commands.

� it allows a small number of ioctl calls on
stdin and stdout. It currently denies all other
ioctl calls. This call performs a variety of con-
trol functions on devices and streams. Properly
handling ioctl requires a good understanding
of the individual devices and their controls.

Con�ning X applications: The X protocol has
been designed for use by cooperative clients. Any
client application is able to manipulate or modify
objects created by any other client application run
by the same user.6 This has been done for two rea-
sons. First, it allows window managers to be written
as ordinary clients and second, it allows clients to
communicate to implement cooperative functional-
ity such as cut-and-paste.

To con�ne X applications, we have developed Xbox,
an X protocol �lter [1]. Xbox has been designed to
be used in conjunction of a system-call-level sand-
box such as MAPbox and Janus and is to be in-
terposed between an untrusted application and the

6The existing security mechanisms provided by the X
server, i.e., the xhost-based mechanism and the xauthority-
based mechanism cannot distinguish between multiple appli-
cations belonging to the same user.

X server. Before starting an untrusted X applica-
tion, MAPbox sets the DISPLAY environment vari-
able to a socket that Xbox listens on (unix:4 by
default). It then makes sure that the con�ned ap-
plication does not bypass Xbox by denying direct
connections to the X server.

Xbox snoops on all protocol messages and keeps
track of the resources (windows, pixmaps, cur-
sors, fonts, graphic contexts and colormaps) cre-
ated by the con�ned application. Xbox can be
easily extended to handle extensions to the X
protocol. The current implementation handles
the SHAPE, MIT-SCREEN-SAVER, DOUBLE-BUFFER,
Multi-Buffering, and XTEST extensions. The con-
�ned application is allowed to access/manipulate
only the resources that it has created and is al-
lowed to read limited information from the root win-
dow (the operations it allows on the root window
are both necessary and safe). All other requests
regarding speci�c resources are denied (e.g., Cre-
ateWindow, ChangeWindowAttributes, GetWin-
dowAttributes, InstallColorMap,ReparentWindow,
ChangeGC, ClearArea, PolyPoint etc). In ad-
dition, the con�ned application is not allowed
to query parts of the window hierarchy it did
not create and is allowed limited versions of
some operations that change the global state of
the server (GrabKey, GrabButton etc). Other
global operations (such GrabServer, SetScreen-
Saver, ChangeKeyboardMapping etc) are denied.
Finally, the con�ned application is not allowed to
communicate with other applications via the X
server.

4 Con�guration and administration

There are two ways in which MAPbox can be con-
�gured. First, by listing the MAP-types allowed
by the user in a .mapcap �le; and second, by plac-
ing commands in a site-wide speci�cation �le which
MAPbox reads when it starts up.

Specifying acceptable MAP-types: the list of
MAP-types acceptable to the user can be speci�ed
in a .mapcap �le. This �le contains a sequence of
entries consisting of (MAP-type, sandbox-�le) pairs.
A MAP-type consists of the name of a behavior class
with values for all its parameters. The correspond-
ing sandbox �le contains a description of the sand-

box that is to be used for this MAP-type. A parame-
ter can be speci�ed using as a symbolic value, a con-
crete value, a regular expression, a numeric range,
or a list. Multiple combinations of parameter val-
ues can be speci�ed using separate entries. Param-
eters for some behavior classes (e.g., transformer)
include command-line arguments that will supplied
only when an application runs (for transformer,
the the input and output �les). These parameters
are speci�ed by the meta-values %a1, %a2, %a3 etc.
These correspond to the arguments supplied to the
program { in the same order as they are speci�ed.
Several behavior classes have a homedir parameter
which speci�es the home directory for the applica-
tion. Typically, this is the directory in which all the
�les for the application reside and the application
is allowed to read/write �les in this directory and
its descendants. To refer to the directory that the
binary for an application lives in, MAPbox provides
the meta-value %h (h for homedir).7 The syntax for
.mapcap entries is presented in Figure 4. A sample
.mapcap �le is presented in Figure 5.

To check if an application is to be allowed to run,
the MAP-type speci�ed by the provider is matched
against entries in the .mapcap �le. The rules for
matching are:

� an empty argument can only be matched by an
empty argument.

� meta-values, like %a1, %a2 and %h, can be
matched only by themselves.

� for all other arguments, the value provided by
the application provider should not be more
general than the value in the .mapcap �le.
For example, browser(%h,www.aol.com,80)

would match the speci�cation in the .mapcap

�le in Figure 5 whereas browser(%h,*,*)

would not.

Implementing site-wide policies: as mentioned
in Section 3, MAPbox reads a common speci�cation
�le before it reads the speci�cation �le for a partic-
ular sandbox. In addition to making sandbox speci-
�cation �les more portable, this feature can also be

7Executables in a a software package are often placed in
a \appDir/bin" directory whereas the resource �les are usu-
ally placed in a separate subdirectory of \appDir" (e.g. \ap-
pDir/lib"). To handle this common case, MAPbox checks if
the last element in an application's pathname is \bin". If
so, it removes this element. For example, if the application
lives in \/apphome/bin", this meta-value would expand to
\/apphome".

used to implement site-wide policies. The purpose
of this feature is not to deal with malicious users {
it is easy to bypass this mechanism. Instead it is to
rapidly respond to problems in a cooperative envi-
ronment. Figure 8 contains a sample of a common
speci�cation �le.

5 Evaluation of MAPbox

We evaluated MAPbox from two di�erent perspec-
tives: its e�ectiveness (how well it is able to con-
�ne a suite of untrusted applications) and e�ciency
(what is the overhead introduced).

5.1 E�ectiveness of MAPbox

For these experiments, we used a suite of 100 appli-
cations: the �fty applications used in the applica-
tion characterization study mentioned in Section 2
and �fty additional applications. Of the additional
applications, twenty were Perl-based CGI scripts
from cgi.resource-index.com, �fteen were programs
that we downloaded from di�erent repositories and
built locally and �fteen were applications from the
Solaris 5.6 distribution.8 We assigned each applica-
tion a MAP-type based on the code (where avail-
able), the associated documentation (manual, man
page, README �le) and a trace of the system calls
it makes.

We performed two sets of experiments. The �rst set
of experiments were designed to check if the behav-
ior classes identi�ed in Section 2 were too restrictive.
In other words, is MAPbox so restrictive that few
or no applications can be successfully run while con-
�ned? The second set of experiments were designed
to check if the behavior classes were too broad. That
is, is MAPbox so lax that mislabeled applications
(i.e., applications that were labeled with a di�erent
MAP-type than their own) are able to gain access to

8The CGI scripts were
jchat10c, kewlcheckers, kewlchess, mazechat, multimail,
netcard201, picpost, postit, robpoll, SDPGuestbook,
SDPMail, SDPUpload, search, showsell, UltraBoard 1.62,
web store, webadverts, webbbs, webodex, wwwchat30. The
downloaded and built programs were gnu-emacs, lcc, javac,
wget, ksh, latex, bibtex, xbiff, xclock, groff, gnuplot,
mpeg play, cjpeg, gzcat, md5sum. The Solaris 5.6 applica-
tions were tcsh, comm, detex, deroff, compress, tar, ld,
talk, strings, sort, diff, s2p, find2perl, mpage and cc.

entry := behaviorClass (args) sandbox�le
behaviorClass := filter j transformer j ...
args := /* empty */ j arg j args arg , arg
arg := value j list j %a j %c j /* empty */
list := fvaluesg
values := values , value j value
value := regexp j [num - num]

Figure 4: Syntax for .mapcap entries.

filter() /fs/play/~user/mapbox/sandboxes/filter.box

transformer(%a1,%a2) /fs/play/~user/mapbox/sandboxes/transformer.box

browser(%h,*,80) /fs/play/~user/mapbox/sandboxes/browser.box

game(%h) /fs/play/~user/mapbox/sandboxes/game.box

maintainer(%h) /fs/play/~user/mapbox/sandboxes/maintainer.box

Figure 5: Sample .mapcap �le.

resources that the user did not wish to grant? For
the �rst set of experiments, we ran each application
within the sandbox associated with its own MAP-
type. For the second set of experiments, we ran each
application within a sandbox that corresponds to a
MAP-type other than its own. For both experiment
sets, we ran these applications with workloads simi-
lar to those used in the classi�cation study described
in Section 2.

5.1.1 Is MAPbox too restrictive?

Of the 100 applications in our evaluation suite, only
nine failed to complete their workload when run
within the sandbox for their own MAP-type. Of
these, six belonged to the original set of 50 applica-
tions that were used in the classi�cation study de-
scribed in Section 2, the remaining three belonged
to the second set of 50 applications added for these
experiments.9 Of the 40 CGI scripts in the suite,
one failed; of the 30 downloaded programs, �ve
failed; of the 30 Solaris applications three failed. Of
these nine programs, �ve (xv, xfig, pageview, lynx
and Netscape) failed because they made unsafe ac-
cesses and the other four failed inspite of making
accesses that we manually veri�ed to be safe. Of the
latter, two (gcc and gnu-emacs) failed because they
made a sequence of requests that were individually

9As mentioned in Section 2, the resource requirements for
a class are not simply the union of the resource used by a
set of applications that we studied. Instead, they are the set
of resources that we believe are required to implement the
expected functionality for the class.

unsafe but taken as a sequence, implement a safe
operation. Since MAPbox makes decisions about
each system-call independently, it is unable to de-
tect such cases. The last two, (cc and multimail)
failed because they do not �t into our current col-
lection of MAP-types.

Applications that failed due to unsafe op-

erations:: Three applications failed because they
tried to perform unsafe X window operations: xv

failed when it tries to scan the entire window hi-
erarchy of the X server; xfig failed trying to allo-
cate a colormap not owned by itself; and pageview

failed trying to change an attribute of a window
not owned by itself. Two other applications failed
because they were denied access to sensitive �les:
lynx tried to access the password database via a
door() call; Netscape needed access to non-empty
/etc/passwd and /etc/mnttab.

Applications that failed due to local nature

of checking: Several applications try to determine
the current working directory, a safe operation by
itself, by walking up the directory hierarchy using
relative paths, which is an unsafe operation. Fig-
ure 6 illustrates this behavior using a system-call
trace excerpt. MAPbox does not allow this opera-
tion since it denies all �le-system calls with relative
paths. Two applications, gcc and gnu-emacs, failed
due to this limitation. Another application, the So-
laris C compiler cc, also failed while performing this
operation but had another reason for failure (see be-
low). Note that this particular problem can be elim-

inated if the Solaris system-call interface is extended
to provide a getcwd() operation directly. However,
the general problem of not being able to distinguish
safe sequences of potentially unsafe operations is in-
herent to the MAP-box approach. Based on our
experience, however, we expect this problem to be
rare.10

Applications that failed due to lack of a suit-

able MAP-type: Two applications failed as they
could not �t into our current collection of MAP-
types: cc (the Solaris C compiler), and multimail

(a CGI mailing program). The Solaris C compiler
fails because it connects to a license server and the
sandbox for a compiler does not allow access to the
network. If desired, this can be �xed by introducing
a new MAP-type, say licensed-compiler, which
includes the host and port number of the license
server as parameters. The CGI mailer, multimail,
fails as it invokes a program (/bin/date) that is not
the mail command. If desired, this problem can be
�xed by rewriting the program to directly determine
the current time.

Note that only four applications from a diverse suite
of 100 applications fail due to features of MAPbox.
This indicates that a MAP-type-based approach is
not too restrictive.

5.1.2 Is MAPbox too lax?

For each application used in these experiments, we
selected a con
icting MAP-type, that is, a MAP-
type that would allow the application to access re-
sources that it would not be allowed to if correctly
labeled. In e�ect, we picked a MAP-type that was
not its own and was not an ancestor in the lat-
tice shown in Figure 2. Of the 100 applications in
our evaluation suite, not one completed its workload
in these experiments. This provides evidence that
MAPbox is not too lax.

5.2 E�ciency of MAPbox

To evaluate the e�ciency of the MAPbox imple-
mentation, we ran two sets of experiments. In the

10In case, we are mistaken in this expectation, it is quite
easy to extend MAPbox to handle relative paths by using the
resolvepath() system-call to completely resolve all relative
paths.

�rst set, we used MAPbox to con�ne CGI scripts
in a web-server environment and measured the ad-
ditional latency experienced by web clients over a
long-haul network. For these experiments, we used
a suite of six CGI scripts. In the second set of exper-
iments, we used MAPbox to con�ne non-interactive
applications in a desktop environment and mea-
sured the increase in their execution time. For these
experiments, we used a suite of six applications.

The applications used in these experiments and the
corresponding workloads are listed in Table 2. We
ran each application with and without MAPbox
and measured the di�erence in end-to-end execution
time. For each experiment, we also kept track of the
time spent in MAPbox code. We conducted these
experiments on a lightly loaded SUN Ultra-1/170
with 64 MB and Solaris 2.6 (i.e., the applications
and the CGI scripts were run on this machine). All
�les involved in these experiments were in the OS
�le-cache. We used the Solaris high resolution timer
gethrtime() for all measurements.

For the experiments involving CGI scripts, the
server (Apache 1.0.2) was at the University of Cali-
fornia, Santa Barbara on the US west coast and the
client was at the University of Maryland, College
Park on the US east coast. We ran these exper-
iments between 1am and 3am Paci�c Time when
network congestion is usually light. Measurement
of the end-to-end execution time was done at the
client. The round-trip time between these sites (as
determined by ping) was about 80 ms. To factor out
the e�ects of transient congestion, we repeated each
experiment 100 times and reported the minimum
value as the result. For the experiments involving
local applications, we repeated each experiment �ve
times and reported the minimum value as the result.

Table 3 presents the results of all experiments. The
overhead caused by MAPbox for CGI scripts was
small (< 5%) in all experiments. This is to be ex-
pected since only a small fraction of the end-to-end
execution time in these cases was due to the exe-
cution of the scripts themselves; network latency,
transfer time and other administrative costs (web
server overhead, CGI invocation etc) contributed
a large fraction of the execution time. The over-
head caused by MAPbox for local applications var-
ied greatly { from about 1% for gzip-1MB and grep

to 33% for gzip-8KB. For �ve out of the six applica-
tions, the overhead was below 20%. From these re-
sults, we conclude that the overhead of con�nement
is likely to be acceptable for many applications and

stat64("./", 0xEFFFC620) = 0

stat64("/", 0xEFFFC588) = 0

open64("./../", O_RDONLY|O_NDELAY) = 3

fcntl(3, F_SETFD, 0x00000001) = 0

fstat64(3, 0xEFFFBC30) = 0

fstat64(3, 0xEFFFC620) = 0

getdents64(3, 0x0005A014, 1048) = 608

close(3) = 0

open64("./../../", O_RDONLY|O_NDELAY) = 3

fcntl(3, F_SETFD, 0x00000001) = 0

fstat64(3, 0xEFFFBC30) = 0

fstat64(3, 0xEFFFC620) = 0

getdents64(3, 0x0005A014, 1048) = 280

close(3) = 0

Figure 6: System-call trace excerpt illustrating the getcwd() pattern.

application type workload application type workload

ftp local ftp 10 32KB �les from
localhost

dvips local convert a 50 page DVI
�le to postscript

latex local compile 5 tex �les (� 300
lines each)

grep local search gcc source for
\int", 182 �les

gzip-1MB local compress 4 1MB �les gzip-8KB local compress 32 8KB �les

guestbook CGI post 100 1KB msgs wwwchat30 CGI post 100 128 byte msgs
counter CGI 100 counter accesses kewlcheckers CGI make 20 moves
SDPUpload CGI upload 10 64KB �les webbbs CGI post 32 8KB msgs

Table 2: Workloads used in the experiments. The two gzip workloads were selected to compare the overheads
for processing a few large �les with the overhead for processing many small �les.

environments.

To determine the cause of the variation in the over-
head for local applications, we analyzed their oper-
ation in greater detail. We found that the cost of
using MAPbox depended on the frequency of �le-
system-related system-calls (open/stat etc). To
obtain a �ne-grain breakdown of this overhead, we
added probes in the handlers for these calls and re-
peated the experiments. We found that most of
this overhead (90% of the time spent in MAPbox) is
due to two operations: (1) the resolvepath operation
which is used to safely handle symbolic links by com-
pletely resolving a �lename (65% of the time spent
in MAPbox); and (2) reading the string contain-
ing the �lename from the con�ned process's memory
(25% of the time spent in MAPbox). These costs are
inherent to the system-call interception technique
and cannot be eliminated.

6 Discussion

We �rst present our experience with determining
suitable MAP-types for applications. We then dis-
cuss potential limitations of the MAPbox approach.

6.1 Experience determining
MAP-types

Of the 100 applications in our suite, 91 applications
completed their test workloads. Of these, twenty
applications were labeled mailer, nineteen were
labeled maintainer, nine were labeled compiler,
eight each were labeled reader and transformer,
seven each were labeled netclient and viewer, six
were labeled editor, three were labeled shell, two
were labeled browser and one each were labeled
filter and netserver.

application total
time

total time with
MAPbox

time in MAPbox other overhead

ftp 1.99s 2.32s (17%) 0.17s (9%) 0.16s (8%)
dvips 2.88s 3.26s (13%) 0.11s (4%) 0.27s (9%)
latex 2.80s 3.06s (9%) 0.17s (6%) 0.09s (3%)
grep 2.72s 2.76s (1.2%) 0.02s (0.6%) 0.02s (0.6%)
gzip-1MB 4.26s 4.30s (1%) 0.01s (0.2%) 0.03s (0.8%)
gzip-8KB 1.52s 2.02s (33%) 0.23s (15%) 0.27s (18%)

guestbook 49.1s 51.2s (2.2%) 0.36s (0.7%) 0.74s (1.5%)
wwwchat30 19.21s 19.62s (2%) 0.2s (1%) 0.22s (1%)
counter 25.4s 26.0s (2%) 0.32s (1%) 0.28s (1%)
kewlcheckers 16.94s 17.23s (1.7%) 0.1s (0.6%) 0.19s (1.1%)
SDPUpload 22.31s 22.9s (2.6%) 0.3s (1.3%) 0.29s (1.3%)
webbbs 26.12s 26.94s (3%) 0.31s (1%) 0.51s (2%)

Table 3: MAPbox overheads. All percentages are with respect to end-to-end execution time without MAP-
box (second column). The time in the \other overhead" column includes kernel overhead for intercepting
system-calls as well as the cost of the context-switches required to pass information between the kernel and
MAPbox.

All the CGI scripts that we studied fell into only
four MAP-types: reader, maintainer, mailer and
compiler.11 While we expected the �rst two MAP-
types to be common among CGI scripts, the num-
ber of scripts that are able to send email was a
surprise to us. Seventeen of the forty CGI scripts
used in this study invoke sendmail and/or open a
socket to a mail gateway. This included guestbooks,
advertisement managers, homepage providers, web-
based rolodex and bullletin board programs. These
programs used email to notify users/administrators
about events of interest. It appears that the authors
of CGI scripts prefer to send mail for this purpose
instead of writing to a log �le (as is common in con-
ventional applications).

6.2 Potential limitations

We believe that the MAPbox approach provides a
good tradeo� between ease of use and
exibility.
Nevertheless, it has several potential limitations.

Applications limited to single behavior: the
MAPbox approach limits each application to a sin-
gle behavior. Many applications, however, exhibit
multiple behaviors (e.g., Netscape can be used as a
browser, mailer and newsgroup reader). In some

11Only one application was assigned the compiler MAP-
type: search which compiles an index for all �les on a web-
site and looks it up on demand.

speci�c cases, it may be possible to create cus-
tomized classes that allow a particular group of be-
haviors. In general, however, we believe this is an
inherent trade-o� between security and functional-
ity: many applications cannot be securely con�ned
in all their generality.

Con�ning setuid root programs: the system-
call interception mechanism used by MAPbox does
not work for setuid root programs. This is a nec-
essary restriction as allowing a user-level process to
intercept the system-calls of a setuid root pro-
gram would provide a trivially easy way to become
root.

Lack of standardized behavior classes: given
that individual end-users are allowed (though not
required) to create new MAP-types and the corre-
sponding sandboxes, it is conceivable that every-
one de�nes di�erent MAP-types or uses di�erent
names for the same classes resulting in con�gura-
tion chaos. While this is a possibility, we believe
that it is unlikely to happen. As evidence, we point
to the web community's experience with MIME-
types which have a similar potential for con�gura-
tion chaos. Instead, the set of MIME-types used by
most users has converged to a more-or-less stable
set.

Portability: MAPbox depends on the ability to
intercept all system-calls for implementing a se-

cure reference monitor. Currently, only Solaris and
Linux provide this facility.

7 Conclusions

In this paper, we have presented the design, im-
plementation and evaluation of MAPbox, a con-
�nement mechanism that retains the ease of use of
application-class-speci�c sandboxes, such as Janus,
while providing signi�cantly more
exibility. Based
on a study of a diverse set of applications, we have
identi�ed a set of behavior classes which have in-
tuitive meaning and whose resource requirements
can be di�erentiated. We do not claim that this
classi�cation is either unique or complete. Our
goal in identifying these classes was to demonstrate
that application behaviors and the corresponding
resource requirements can be grouped into distinct
categories. We expect this classi�cation to be re-
�ned based on further experience.

To evaluate the e�ectiveness of MAPbox, we tried to
con�ne a large suite of applications (including Perl-
based CGI scripts, downloaded programs and appli-
cations from the Solaris distribution) using suitable
class-speci�c sandboxes. We found that a MAP-
type-based approach is quite e�ective for con�ning
untrusted applications. Of the 100 applications in
our evaluation suite, only nine failed to complete
their test workloads when run within the sandbox
corresponding to their own MAP-type. Of the 40
CGI scripts in the suite, one failed; of the 30 down-
loaded programs, �ve failed; of the 30 Solaris appli-
cations, three failed. Of these, �ve failed because
they made unsafe accesses and only four failed in
spite of making accesses that we manually veri�ed
to be safe. We also found that mislabeled appli-
cations (i.e., applications that were labeled with a
di�erent MAP-type than their own) were not able
to gain access to resources that the user did not wish
to grant.

To evaluate the e�ciency of the MAPbox imple-
mentation, we ran two sets of experiments { one
set with CGI scripts and the other with local ap-
plications. We found that the overhead caused by
MAPbox for CGI scripts was small (< 5%) in our
experiments. The overhead caused by MAPbox for
local applications varied greatly { from about 1% to
33%. For �ve out of the six applications, the over-
head was below 20%. We found that the cost of

using MAPbox depended on the frequency of �le-
system-related system-calls. From these results, we
conclude that the overhead of con�nement is likely
to be acceptable for many applications and environ-
ments.

Acknowledgments

We would like to thank the authors of Janus
for making their implementation available. While
MAPbox has been implemented anew and contains
much functionality not provided by Janus, we ben-
e�ted greatly from reading their code as well as its
lucid description in [8]. We would also like to thank
Paul Kmiec for suggesting the use of pwrite() to
write a string into the stack of a con�ned process.

References

[1] A. Acharya. The Xbox distribution. Available
at http://www.cs.ucsb.edu/�acha/-
software/xbox.tar.gz, 1999. Xbox is a con�ning
�lter for X11 applications.

[2] A. Alexandrov, M. Ibel, K. Schauser, and
C. Scheiman. Extending the operating system
at the user level: the Ufo global �le system. In
Proc. of the 1997 USENIX Technical Confer-
ence.

[3] A. Alexandrov, P. Kmiec, and
K. Schauser. Consh: A con�ned execution en-
vironment for internet computations. Available
at http://www.cs.ucsb.edu/�berto/papers/99-
usenix-consh.ps, Dec 1998.

[4] W. Boebert, R. Kain, W. Young, and S. Han-
sohn. Secure Ada Target: Issues, System De-
sign, and Veri�cation. In Proc. of 1985 IEEE
Symposium on Security and Privacy, pages
176{83.

[5] G. Edjlali, A. Acharya, and V. Chaudhary.
History-based access control for mobile code.
In Proc. of the Fifth ACM Conference on Com-
puter and Communications Security, 1998.

[6] J. Fritzinger and M. Mueller. Java security.
Technical report, Sun Microsystems, Inc, 1996.

[7] T. Gamble. Implementing execution controls
in Unix. In Proc. of the 7th System Adminis-
tration Conference, pages 237{42, 1993.

[8] I. Goldberg, D. Wagner, R. Thomas, and
E. Brewer. A secure environment for untrusted
helper applications: con�ning the wily hacker.
In Proc. of the 1996 USENIX Security Sympo-
sium, 1996.

[9] L. Gong. New security architectural directions
for Java. In Proc. of IEEE COMPCON'97,
1997.

[10] T. Jaeger, A. Rubin, and A. Prakash. Building
systems that
exibly control downloaded exe-
cutable content. In Proc. of the Sixth USENIX
Security Symposium, 1996.

[11] P. Karger. Limiting the damage potential of
the discretionary trojan horse. In Proc. of the
1987 IEEE Syposium on Security and Privacy,
1987.

[12] M. King. Identifying and controlling undesir-
able program behaviors. In Proc. of the 14th
National Computer Security Conference, 1992.

[13] C. Ko, G. Fink, and K. Levitt. Automated de-
tection of vulnerabilities in privileged programs
by execution monitoring. In Proceedings. 10th
Annual Computer Security Applications Con-
ference, pages 134{44, 1994.

[14] N. Lai and T. Gray. Strengthening discre-
tionary access controls to inhibit trojan horses
and computer viruses. In Proc. of the 1988
USENIX Summer Symposium, 1988.

[15] N. Mehta and K. Sollins. Extending and ex-
panding the security features of Java. In Proc.
of the 1998 USENIX Security Symposium.

[16] M. Raje. Behavior-based con�nement of
untrusted applications. Technical Report
TRCS99-12, Dept of Computer Science, Uni-
versity of California, Santa Barbara, Jan 1999.

[17] F. Schneider. Enforceable security policies.
Technical report, Dept of Computer Science,
Cornell University, 1998.

[18] L. Stein. SBOX: put CGI scripts in a box. In
Proc. of the 1999 USENIX Technical Confer-
ence.

[19] K. Walker, D. Sterne, M. Badger, M. Petkac,
D. Shermann, and K. Oostendorp. Con�ning

root programs with domain and type enforce-
ment (DTE). In Proc. of Sixth USENIX Secu-
rity Symposium, 1996.

[20] D. Wallach, D. Balfanz, D. Dean, and E. Fel-
ten. Extensible security architecture for Java.
In Proc. of the Sixteenth ACM Symposium on
Operating System Principles, 1997.

[21] D. Wichers, D. Cook, R. Olsson, J. Crossley,
P. Kerchen, K. Levitt, and R. Lo. PACL's: an
access control list approach to anti-viral secu-
rity. In USENIX Workshop Proceedings. UNIX
SECURITY II, pages 71{82, 1990.

command := path c j rename c j connect c j accept c j putenv c j childbox c
path c := path permission access modes �le list
rename c := rename �le1 �le2
connect c := connect permission protocol ip addr list

j connect permission display

accept c := accept permission protocol ip addr list
putenv c := putenv name val list j putenv DISPLAY

childbox c := childbox class
permission := allow j deny
access modes := access modes , access modes j access mode
access mode := read j write j exec
�le list := �lename �le list j �lename
protocol := tcp j udp j *
ip addr list := ip addresses : port addr
ip addresses := ip addr , ip addresses j ip addr j *
port addr := port num / port mask j port num j *

Figure 7: Grammar for the sandbox description language. Note that the define and params commands
are not included in the above description. These commands are implemented as macros in a preprocessing
step.

define _COMMON_LD_LIBRARY_PATH /usr/openwin/lib:/usr/ucblib

define _COMMON_READ /dev/zero /usr/lib/locale/*

/dev/zero is a device file used for mmap's

define _COMMON_WRITE /dev/zero

this is true in our environment

define _COMMON_TERM xterm

redirect X requests to the Xbox filter

define _COMMON_DISPLAY unix:4

define _COMMON_LIBS /usr/lib/libthread.so.1 /usr/lib/libICE.so.6\\

/usr/lib/libSM.so.6 /usr/lib/libw.so.1 /usr/ucblib/* \\

/usr/lib/libc.so.1 /usr/lib/libdl.so.1 /usr/lib/libintl.so.1\\

/usr/lib/libelf.so.1 /usr/lib/libm.so.1 /usr/lib/liballoc.so.1\\

/usr/lib/libmp.so.2 /usr/lib/libmp.so.1 /usr/lib/libsec.so.1

define _X_FILES /usr/openwin/lib/* /usr/openwin/share/*\\

/usr/openwin/bin/*

define _NETWORK_READ_FILES /etc/netconfig /etc/nsswitch.conf\\

/etc/.name_service_door

define _NETWORK_WRITE_FILES /dev/tcp /dev/udp /dev/ticotsord\\

/dev/ticlts, /dev/ticots

define _NETWORK_LIBS /usr/lib/libsocket.so.1 /usr/lib/libnsl.so\\

/usr/lib/nss_compat.so.1

Figure 8: A common speci�cation �le for Solaris 5.6.

sandbox spec for the browser class

the browser sandbox takes three arguments -- the home directory

the hosts it is allowed to connect to and the port(s)

it is allowed to connect to.

params HOMEDIR HOSTSPEC PORTSPEC

set up the env variables

putenv PATH=$HOMEDIR

putenv TERM=$_COMMON_TERM

putenv LD_LIBRARY_PATH=$_COMMON_LD_LIBRARY_PATH:$_NETWORK_LIBS

putenv DISPLAY=$_COMMON_DISPLAY

_COMMON_READ and _COMMON_LIBS are accessible to all apps

path allow read $_COMMON_READ $_COMMON_LIBS $HOMEDIR

browsers are allowed to read network config files and libs

path allow read $_NETWORK_READ_FILES $_NETWORK_LIBS

browsers are allowed to read X data files and libs

path allow read $_X_FILES

_COMMON_WRITE can be written by all (in this case /dev/zero)

browsers are allowed to write HOMEDIR

path allow write $_COMMON_WRITE $HOMEDIR

browsers are allowed to write networking device files

path allow write $_NETWORK_WRITE_FILES

browsers are allowed to connect to all hosts in the argument

connect allow tcp $HOSTSPEC:$PORTSPEC

broswers are allowed to connect to the X server

connect allow display

all exec'ed children of browsers must be viewers

childbox viewer

browsers are not allowed to access /etc/passwd

rename /etc/passwd /tmp/dummy

Figure 9: Sandbox example

