Corporate Lab or Academic Department, Which Fits?

Bill Aiello

University of British Columbia
What’s this talk about?

• Give a description of life in a corporate research lab and life at a research university for folks on (or contemplating being on) the job market
 – Plenty of similarities but tons of differences

• Both can be a good life but…
 – the proclivities and talents of some folks make them better suited to one versus the other

• “Really? Both can be a good life?”
 – “Hasn’t corporate America turned its back on basic research over the last twenty years?”
 – “And didn’t you yourself jump from an industrial lab to a university?”

• There is no question that the industrial lab glory days are gone, but life is a university is also much different than it was 20 years ago
The Good Old Days

- After Ph.D. & Postdoc joined Bellcore in 1989
 - Bellcore was formed as R&D org co-owned by seven Baby Bells after AT&T split in 1984
 - One of the very best combinatorics/theory groups anywhere in the world

- The job: approximate the early scientific trajectory of the senior researchers in the lab
 - Not exactly a cake walk!
<table>
<thead>
<tr>
<th>Bellcore in the Glory Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorics/Theory</td>
</tr>
<tr>
<td>- Fan Chung</td>
</tr>
<tr>
<td>- Bill Cook</td>
</tr>
<tr>
<td>- Milena Mihail</td>
</tr>
<tr>
<td>- Paul Seymour</td>
</tr>
<tr>
<td>- Subash Suri</td>
</tr>
<tr>
<td>- Tom Trotter</td>
</tr>
<tr>
<td>- Peter Winkler</td>
</tr>
<tr>
<td>+ Coding, Stats, Networking, HCI,…</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crypto</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dan Boneh</td>
</tr>
<tr>
<td>- Stuart Haber</td>
</tr>
<tr>
<td>- Arjen Lenstra</td>
</tr>
<tr>
<td>- Rafi Ostrovsky</td>
</tr>
<tr>
<td>- Raj Rajagopalan</td>
</tr>
<tr>
<td>- Avi Rubin</td>
</tr>
<tr>
<td>- Victor Shoup</td>
</tr>
<tr>
<td>- Venkie Venkatesan</td>
</tr>
<tr>
<td>- Yacov Yacobi</td>
</tr>
</tbody>
</table>
The Good Old Days

- After Ph.D. & Postdoc joined Bellcore in 1989
 - One of the very best combinatorics/theory groups anywhere in the world
 - Bellcore was formed as R&D org co-owned by seven Baby Bells after AT&T split in 1984

- The job: approximate the early scientific trajectory of the senior researchers in the lab
 - Not exactly a cake walk

- By ~1997, Bellcore was completely out of the basic research game. Superposition of two stories:
 - One specific to Baby Bells and telecom industry
 - One about broad changes affecting nearly all industrial research
Where are they now?

Combinatorics/Theory
- Fan Chung →UPenn→UCSD
- Bill Cook →Rice →GTech
- Milena Mihail →GTech
- Paul Seymour →Princeton
- Subash Suri →WashU →UCSB
- Tom Trotter →ASU →GTech
- Peter Winkler →Lucent →Dartmouth

Crypto
- Dan Boneh →Stanford
- Stuart Haber ...→HP Labs
- Arjen Lenstra →Lucent →EPFL
- Rafi Ostrovsky →UCLA
- Raj Rajagopalan →HP Labs
- Avi Rubin →AT&T Labs →Johns Hopkins
- Victor Shoup →IBM Zurich →NYU
- Venkie Venkatesan →MS Research
- Yacov Yacobi →MS Research
The Good Old Days

- After Ph.D. & Postdoc joined Bellcore in 1989
 - One of the very best combinatorics/theory groups anywhere in the world
 - Bellcore was formed as R&D org co-owned by seven Baby Bells after AT&T split in 1984

- The job: approximate the early scientific trajectory of the senior researchers in the lab
 - Not exactly a cake walk

- By ~1997, Bellcore is completely out of the basic research game. Superposition of two stories:
 - One specific to Baby Bells and telecom industry
 - One about broad changes affecting nearly all industrial research

- After some nasty legal bits, I joined AT&T Labs in 1998
Security Group at AT&T Labs

- Matt Blaze
- Lori Cranor
- John Ioanides
- Tal Malkin
- Patrick McDaniel
- Omer Reingold
- Avi Rubin
- Rebecca Wright

- Steve Bellovin
- Jake Lacey
- Dahlia Malki
- Matt Franklin
- Mike Reiter
Dot Com Era

• Huge amount of capital flows into telecom and high tech sectors supporting a huge amount of speculative work, in start-ups and large companies

• In ‘98, AT&T operated the largest long-distance network, IP backbone, cable network, and a large cell network
 – Seemingly unlimited opportunity for research in services, networking, data management, software systems

• Exciting Times
 – Not quite the Good Old Days
 – Emphasis on R & D related to AT&T’s business and pressure on Research to justify its expense
 – But enough optimism to allow for a wide diversity of work
End of Telecom Era

- Overvalued .com market--AT&T pays too much for cable assets
- MCI overstates earnings
- Analysts beat down AT&T’s stock relative to MCI’s
 - AT&T’s stock plummets about 9 months before .dot com bubble bursts
- AT&T’s board panics and sells off last mile assets (cell and cable networks)
- Reduces AT&T to providing two commodity services:
 - Long distance: Large but decrease revenues and margins
 - Enterprise and Backbone data: small but increasing revenue
- Research budget and personnel reduced by a factor of two over about 18 months
- All of this superimposed on general trends re: research support in corporate America
Where are they now?

- Matt Blaze → UPenn
- Lori Cranor → CMU
- John Ioannides → Columbia
- Tal Malkin → Columbia
- Patrick McDaniel → Penn State
- Omer Reingold → Weizmann
- Avi Rubin → Johns Hopkins
- Rebecca Wright → Stevens
- Steve Bellovin → Columbia
- Matt Franklin → SRI → UC Davis
- Mike Reiter → Lucent → CMU
The End of the Good Old Days

Then:
- Handful of very large, dominant companies supporting research
- Deeply rooted ideological support for research in Gov & Industry as part of competition with USSR
 - Basic research had a huge payoff for U.S/West as a whole, but much less competitive advantage for individual companies
- Very few household hold stocks; dividend to price ratio important measure for return on investment--investing for the long haul
The End of the Gold Old Days

• Then:
 – Handful of very large, dominant companies supporting research
 – Deeply rooted ideological support for research in Gov & Industry as part of
 competition with USSR
 • Basic research had a huge payoff for U.S/West as a whole, but much less
 competitive advantage for individual companies
 – Very few household hold stocks; dividend to price ratio important measure
 for return on investment--investing for the long haul

• Now:
 – Many of these companies have struggled: disruptive technological change,
 extremely competitive technical marketplace
 – Fall of the Berlin Wall, disintegration of USSR
 • Research investment no longer seen as a compelling public good
 • Rise of Multinational capitalism, trustworthy mechanisms and institutions for
 moving money around the globe
 – Growth of 401k’s, retail investing, return on equity moves from dividend to
capital gain, emphasis on quarterly analysis, extremely competitive capital
 markets

• Support for basic research for its own sake, a luxury no* company can
 afford
Old Model vs New Model

- **Old Model:**
 - Research org judged primarily on science and engineering excellence
 - Everyone is expected to be or become a star researcher; everyone is a PI
 - Little expectation to bring in support (either internal or external) to pay for resources:
 - Travel, Post Docs, Equipment, summer interns
 - Company provides reasonably generous level of support (except for summer interns)
 - Resource allocation by Research Management mainly based on research outcomes
 - Large numbers of people in a relatively small number of areas (except for largest labs)
 - Collaboration with Research org peers is the norm
New Model

- Research org judged primarily on short and medium term contributions to company:
 - Types of contributions:
 - Advanced prototypes of possible next gen products and services
 - Intellectual property: patents, etc.
 - Technical leadership on
 - internal projects: strategic planning, new product/service architecture/spec/development
 - client presentations and client consulting
 - vendor interactions, vendor management
 - industry initiatives and standards
New Model

- Requires Research org to manage a pipeline that achieves a high output rate of such contributions
 - Requires Research org to really understand the company’s business and industry
 - Requires Research org personnel to develop strong partnerships throughout company
 - Requires diverse Research org personnel: few technical leads, many first rate technologist/developers
 - Requires diverse set of projects
 - Requires being one step ahead of company needs
 - To maintain political upper hand, this should appear to be magic
 - If you do this, management will not ask too many questions about how you do it
 - If you don’t do this, you may not be able to justify expenditures on long term capabilities
Old Model

Research Group/Division

Engineering /Business Contributions

Scientific/Academic Contributions
Old Model

Development Group/Division

Engineering /Business Contributions

Scientific/Academic Contributions
New Model

Engineering /Business Contributions

Scientific/Academic Contributions

Research Group/Division
Academic Research in a Corp Lab

Tough question: Why should any company pay for the time spent producing an academic paper, work that becomes part of the public domain?

Two answers:

1. Technical leadership generalizes
 - Empirical fact: Many of the folks who consistently provide outsized internal technical contributions/leadership, are folks who like to also mix it up in the global marketplace of ideas and are good at it
 - And you want to keep such people happy

2. Utilization of Public Domain knowledge
 - Public knowledge is of no value to a company without internal experts who can analyze, extract, apply
 - A huge amount of the knowledge is implicit
 - People best able to analyze, extract, apply are those who actively produce papers themselves
Downsides of a Corp Lab

• Budget and resource allocations not transparent, esp. to a junior researcher

• Very challenging navigating the political waters in a large corp; finding, developing, maintaining partnerships
 – Political complexity of a corporation is several orders of magnitude greater than a University department
 – Some are naturally adept

• Many failure modes for staying on the academic publishing track

• No tenure, company and industry fortunes can change dramatically over your career
 – Some are confident they’ll keep up their skills, expertise, and marketability and are not bothered by this in the least

• Some corporate positions may conflict with personal values
Advantages of a Corp Lab

• Grant writing not required
 – Corp picks up you full salary, reasonable travel and equipment, and a small amount of student support

• Career support, coaching part of your supervisor’s job

• Access to real problems, real data
 – Front row seat to the discipline of the market
 – Research abstractions are of little value if they are generalizations of the wrong things

• Possibility of having real world impact
 – Can influence products & services that actually get deployed
What about academia?

To a first approximation

Corporate Lab \hspace{1cm} Academic Department

Company Projects \rightarrow Undergrad Teaching

Academic Research \rightarrow Academic Research
What about academia?

To a first approximation

Corporate Lab Academic Department

Company Projects → Undergrad Teaching

Academic Research → Academic Research

But the organizational models are very different
The Department as a Business

A department is engaged in two distinct, lightly coupled enterprises:

• Education

• Research
The Educational Enterprise

- Dept Product:
 - Delta in expertise & intellectual sophistication of majors between enrollment and graduation

- Educational revenue covers huge fraction of Dept central budget

- Income: to Univ for Education from student tuition + state/provincial subsidies
 - Income to Dept flows through Univ & Dean
 - Based on historical budgets + enrollment numbers + ...
 - Complications: differences in time constants

- Enrollment + other Dean factors partly dependent on strength/quality of program

- Quality--and hence dept central budget--dependent on whole dept: faculty, grad students, staff

- Looks a bit like a non-profit organization
Research Enterprise

• Business Model: Dept looks like conglomerate/holding company
 – E.g., 50 professors, 50 separate businesses
 – The businesses share the cost of some shared resources:
 • physical plant, computing infrastructure, administration
 – CEO of each business responsible for success or failure of that business

• Each business: Professor Inc.
Research Enterprise, cont.

• Implications for dept: governance of holding company very flat:
 – transparency, fairness, consensus
 – Good: No Professor Inc inherently privileged over another
 – Bad: Often making a good option quickly is better than designing the perfect option slowly
 – Root of complaints about department politics
 • Overall organizational politics & complexity of a corporation is much higher but # of people involved in any one decision is lower

• Both the Research Enterprise and the Educational Enterprise have to coexist in one org structure
Professor Inc

• Products:
 – Scientific and engineering artifacts;
 • primarily papers, also talks, prototypes/tools,…
 – Masters and Ph.D. students--also your employees

• Multiple roles for the Professor of Professor Inc:
 – CTO--develop technical vision
 – CFO--manage the money
 – CEO
 • Represent company externally, sell/market technical vision to funders--bring in the money!
 • Manage product development cycle, manage/mentor/motivate the employees
 • Overall responsibility for putting the pieces together and making it all work
Assistant Professor Inc

- Small company in start-up mode
- You have to get competent at the CTO, CFO, CEO roles very quickly
 - In start-ups, there’s a reason that VC’s insist that the founders become CTOs and someone with management experience becomes the CEO
 - Missteps managing students common but costly
- Bootstrap funding problem: $$ doesn’t come until well after first round of products are out the door
 - make sure you negotiate good start-up funding with the department
Getting to Assoc Professor Inc: Tenure and Promotion

- You’ll be judged primarily on the contributions and impact of your portfolio of work

- What about teaching?
 - You need to be a good teacher
 - Being an excellent teacher requires an enormous amount of time

- And Service?
 - Internal: be a good department citizen but no need to take a leadership role
 - External: Letter writers and Dept/Univ will use this as indicators of standing within your community: program committees, invited talks,…
External Letters

• External letters are the single most important component of your case. They will comment on:
 – A few of your papers that they are familiar with and the specific contributions and impact of those papers
 – Their impression of the strength of your overall portfolio of work
 – Your community service, particularly if they have shared a PC or have run a workshop/conf w/ you
 – The quality of your talks as a proxy for your teaching ability
 – The quality of your students talks as a proxy for your student mentoring ability
Academia works best if:

• You work best when you’re running the show
 – You want to try out the CEO role of Professor Inc
• You don’t mind the grant game—-in fact, your pretty good at it
 – You’re entrepreneurial
• You genuinely enjoy teaching
• You find the marketplace of ideas much more compelling than in the marketplace of products/services
• Your personal life is such that you can be unnaturally singleminded for ~6 years
Corporate Lab works best if:

• You have a facility for balancing your own agenda with multiple other agendas
 – You enjoy group projects: working with and learning from your peers
 – You know how to be a good citizen without being just a good citizen
 – You have a facility for navigating in complex political waters

• You’d prefer not to be out in front all the time on marketing and fund raising
 – You’d rather spend the time on tangible projects

• You are a technologists at heart
 – The marketplace of ideas is not sufficient
 – You feel strongly about the discipline of the market

• Teaching is not particularly interesting to you
 – You’d rather spend the time on tangible projects

• Your personal life is such that you can be very singleminded for ….
• For most people it is not exclusive-or
• It is possible, but not easy, to keep both options open
• Timing of moving from Industry to Academia can be tricky
Job Prospects

• Inspite of enrollment numbers, still some hiring in CS departments
 – Academic hiring is going through a phase transition
 – Two years of Post Doc is likely to become the norm
 – May be more post doc positions over time in US if ACI comes through

• Growth in CIT industries very strong, companies cannot find enough good people
 – Will translate into bigger enrollments
 – Will translate into more R & D expenditures

• Many different types of R&D orgs: Large Corp, Gov Labs, Soft Money Labs,....
Elements of the ACI (from: Lazowska’s CRA 2006 talk)

• Research
 ▶ Commitment to double NSF, DoE SC, NIST over 10 years
 ▶ Make permanent the R&D tax credit

• Education
 ▶ 70,000 new teachers, alternative teacher certification, bolster AP, improve participation in math and science

• Workforce/Immigration
 ▶ Expand worker training programs
 ▶ Flexible H-1B caps, reform visa issues
Figure 1: ACI Research Funding, 2007-2016.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>ACI Research FY 2007</th>
<th>ACI Research FY 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(billions of dollars)</td>
<td>(billions of dollars)</td>
</tr>
<tr>
<td>NSF</td>
<td>$5.58</td>
<td>$6.02</td>
</tr>
<tr>
<td>DoE SC</td>
<td>$3.60</td>
<td>$4.10</td>
</tr>
<tr>
<td>NIST Core</td>
<td>$0.57</td>
<td>$0.54</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$9.75</td>
<td>$10.66</td>
</tr>
<tr>
<td></td>
<td>$15.45 billion</td>
<td>$15.45 billion</td>
</tr>
</tbody>
</table>

1 ACI doubles total research fund; individual agency allocations remain to be determined.
2 NIST core consists of NIST lab research and construction accounts.
3 The 2006 enacted level for NIST core includes $137 million in earmarks.
4 Represents a 24 percent increase after accounting for earmarks.
Projected Science & Engineering Job Openings
(new jobs plus net replacements, 2004-2014)

(from: Lazowska’s CRA 2006 talk)
Projected Science & Engineering Job Creation
(new jobs, 2004-2014)

(from: Lazowska’s CRA 2006 talk)

- Engineers: 15%
- Social Scientists: 7%
- Life Scientists: 4%
- Physical Scientists: 2%
- Mathematical Scientists: 1%
- Computer Specialists: 71%

Advice to new professors

- Identify one mentor in the department and one outside
 - Get advice on grantsmanship and on managing students
 - Have a serious chat with them once a year about your progress with cv in hand

- Learn about your national funding agencies, current funding programs and priorities--get to know the program officers

- Don’t wait five years to learn the details of your tenure and promotion policies

- Work often with more senior colleagues
 - Tendency to write papers only with your grad students--fight against that tendency

- Don’t worry too much about the numbers
 - Your contribution/impact is the integration over your portfolio of work
 - Lots of ways to have a high impact portfolio

- Wait until you have tenure to go for the teaching awards

- Find ways to keep a pulse on the discipline of the market
 - Collaborate with R & D folks, send your students on summer internships

- Get into the habit of communicating
Advice for starting in a Lab

• When interviewing ask the research management
 – Their prognostication of their industry, their view of the company’s strategy, how the lab is shaping and supporting that strategy
 – The funding model for the Lab
 – The why-pay-for-academic-papers question

• Spend time building knowledge about your company/industry
• Learn about the performance review practices and other incentives
• General rule: publishing track iff top performer
 – Need to produce high quality academic work in relevant areas
 – Need to contribute internally, show promise of technical leadership
 – Need to find some projects that are win-win
 – Avoid black hole internal projects--work against being too much of a good citizen
 – Maintain consultant role on company projects--need support from management for this
Lab Advice, con’t

• Develop a strong working relationship with your boss.
 – He/she can/should:
 • Provide coaching, feedback, career support
 • Be the conduit/shield for Lab and Company connections/projects
 – Develop and push a unique agenda but take into account his/her incentives/agenda
 – Get in the queue for summer interns, travel, equipment early

• Collaborate with Academics
• Find a mentor in addition to you boss
• Get into the habit of communicating