
Taint-Enhanced Policy Enforcement:
A Practical Approach to Defeat a Wide Range of Attacks

Wei Xu Sandeep Bhatkar R. Sekar
Department of Computer Science

Stony Brook University, Stony Brook, NY 11794-4400
{weixu,sbhatkar,sekar}@cs.sunysb.edu

Abstract

Policy-based confinement, employed in SELinux and
specification-based intrusion detection systems, is a pop-
ular approach for defending against exploitation of vul-
nerabilities in benign software. Conventional access con-
trol policies employed in these approaches are effective
in detecting privilege escalation attacks. However, they
are unable to detect attacks that “hijack” legitimate ac-
cess privileges granted to a program, e.g., an attack that
subverts an FTP server to download the password file.
(Note that an FTP server would normally need to ac-
cess the password file for performing user authentica-
tion.) Some of the common attack types reported today,
such as SQL injection and cross-site scripting, involve
such subversion of legitimate access privileges. In this
paper, we present a new approach to strengthen policy
enforcement by augmenting security policies with infor-
mation about the trustworthiness of data used in security-
sensitive operations. We evaluated this technique using
9 available exploits involving several popular software
packages containing the above types of vulnerabilities.
Our technique sucessfully defeated these exploits.

1 Introduction
Information flow analysis (a.k.a. taint analysis) has
played a central role in computer security for over three
decades [1, 10, 8, 30, 25]. The recent works of [22,
28, 5] demonstrated a new application of this technique,
namely, detection of exploits on contemporary software.
Specifically, these techniques track the source of each
byte of data that is manipulated by a program during its
execution, and detect attacks that overwrite pointers with
untrusted (i.e., attacker-provided) data. Since this is an
essential step in most buffer overflow and related attacks,
and since benign uses of programs should never involve
outsiders supplying pointer values, such attacks can be
detected accurately by these new techniques.

In this paper, we build on the basic idea of using fine-
grained taint analysis for attack detection, but expand its
scope by showing that the technique can be applied to

detect a much wider range of attacks prevalent today.
Specifically, we first develop a source-to-source trans-
formation of C programs that can efficiently track infor-
mation flows at runtime. We combine this information
with security policies that can reason about the source of
data used in security-critical operations. This combina-
tion turns out to be powerful for attack detection, and of-
fers the following advantages over previous techniques:
• Practicality. The techniques of [28] and [5] rely on

hardware-level support for taint-tracking, and hence
cannot be applied to today’s systems. TaintCheck [22]
addresses this drawback, and is applicable to arbitrary
COTS binaries. However, due to difficulties associ-
ated with static analysis (or transformation) of bina-
ries, their implementation uses techniques based on
a form of runtime instruction emulation [21], which
causes a significant slowdown, e.g., Apache server re-
sponse time increases by a factor of 10 while fetching
10KB pages. In contrast, our technique is much faster,
increasing the response time by a factor of 1.1.

• Broad applicability. Our technique is directly applica-
ble to programs written in C, and several other script-
ing languages (e.g., PHP, Bash) whose interpreters are
implemented in C. Security-critical servers are most
frequently implemented in C. In addition, PHP and
similar scripting languages are common choices for
implementing web applications, and more generally,
server-side scripts.

• Ability to detect a wide range of common attacks.
By combining expressive security policies with fine-
grained taint information, our technique can address
a broader range of attacks than previous techniques.
Figure 1 shows the distribution of the 139 COTS
software vulnerabilities reported in 2003 and 2004 in
the most recent official CVE dataset (Ver. 20040901).
Our technique is applicable for detecting exploita-
tions of about 2/3rds of these vulnerabilities, includ-
ing buffer overflows, format-string attacks, SQL injec-
tion, cross-site scripting, command and shell-code in-
jection, and directory traversal. In contrast, previous
approaches typically handled smaller attack classes,

Security ’06: 15th USENIX Security SymposiumUSENIX Association 121



Other logic

errors

22%
Format

string

4%

Memory

errors

27%

Input

validation/

DoS

9%

Directory

traversal

10%

Cross-site

scripting

4%

Command

injection

15%

SQL

injection

2%

Tempfile

4%

Config

errors

3%

Figure 1: Breakdown of CVE software security vulnera-
bilities (2003 and 2004)

e.g., [7, 9, 2, 22, 28, 5] handle buffer overflows, [6]
handles format string attacks, and [24, 23] handle in-
jection attacks involving strings.

The focus of this paper is on the development of prac-
tical fine-grained dynamic taint-tracking techniques, and
on illustrating how this information can be used to signif-
icantly strengthen conventional access control policies.
For this purpose, we use simple taint-enhanced security
policies. Our experimental evaluation, involving read-
ily available exploits that target vulnerabilities in several
popular applications, shows that the technique is effec-
tive against these exploits. Nevertheless, many of these
policies need further refinement before they can be ex-
pected to stand up to skilled attackers. Section 7.2 dis-
cusses some of the issues in policy refinement, but the
actual development of such refined policies is not a fo-
cus area of this paper.

We have successfully applied our technique to several
medium to large programs, such as the PHP interpreter
(300KLOC+) and glibc, the GNU standard C library
(about 1MLOC). By leveraging the low-level nature of
the C language, our implementation works correctly even
in the face of memory errors, type casts, aliasing, and so
on. At the same time, by exploiting the high-level nature
of C (as compared to binary code), we have developed
optimizations that significantly reduce the runtime over-
heads of fine-grained dynamic taint-tracking.
Approach Overview. Our approach consists of the fol-
lowing steps:
• Fine-grained taint analysis: The first step in our ap-

proach is a source-to-source transformation of C pro-
grams to perform runtime taint-tracking. Taint origi-
nates at input functions, e.g., a read or recv function
used by a server to read network inputs. Input op-
erations that return untrusted inputs are specified us-
ing marking specifications described in Section 4. In
the transformed program, each byte of memory is as-

sociated with one bit (or more) of taint information.
Logically, we can view the taint information as a bit-
array tagmap, with tagmap[a] representing the taint
information associated with the data at memory loca-
tion a. As data propagates through memory, the asso-
ciated taint information is propagated as well. Since
taint information is associated with memory locations
(rather than variables), our technique can ensure cor-
rect propagation of taint in the presence of memory
errors, aliasing, type casts, and so on.

• Policy enforcement: This step is driven by security
policies that are associated with security-critical func-
tions. There are typically a small number of such func-
tions, e.g., system calls such as open and execve, li-
brary functions such as vfprintf, functions to access
external modules such as an SQL database, and so on.
The security policy associated with each such function
checks its arguments for “unsafe” content.

Organization of the Paper. We begin with motivat-
ing attack examples in Section 2. Section 3 describes
our source-code transformation for fine-grained taint-
tracking. Our policy language and sample policies are
described in Section 4. The implementation of our ap-
proach is described in Section 5, followed by the exper-
imental evaluation in Section 6. Section 7 discusses im-
plicit information flows and security policy refinement.
Section 8 presents related work. Finally, concluding re-
marks appear in Section 9.

2 Motivation for Taint-Enhanced Policies
In this section, we present several motivating attack ex-
amples. We conclude by pointing out the integral role
played by taint analysis as well as security policies in
detecting these attacks.

2.1 SQL and Command Injection. SQL injection is
a common vulnerability in web applications. These
server-side applications communicate with a web
browser client to collect data, which is subsequently used
to construct an SQL query that is sent to a back-end
database. Consider the statement (written in PHP) for
constructing an SQL query used to look up the price of
an item specified by the variable name.

$cmd = "SELECT price FROM products WHERE
name = ’" . $name . "’"

If the value of name is assigned from an HTML form
field that is provided by an untrusted user, then an SQL
injection is possible. In particular, an attacker can pro-
vide the following value for name:

xyz’; UPDATE products SET price = 0 WHERE
name = ’OneCaratDiamondRing

With this value for name, cmd will take the value:
SELECT ... WHERE name =

’ xyz’; UPDATE products SET price = 0 WHERE

Security ’06: 15th USENIX Security Symposium USENIX Association122



name = ’OneCaratDiamondRing ’

Note that semicolons are used to separate SQL com-
mands. Thus, the query constructed by the pro-
gram will first retrieve the price of some item called
xyz, and then set the price of another item called
OneCaratDiamondRing to zero. This attack enables
the attacker to purchase this item later for no cost.

Fine-grained taint analysis will mark every character
in the query that is within the box as tainted. Now, a
policy that precludes tainted control-characters (such as
semicolons and quotes) or commands (such as UPDATE)
in the SQL query will defeat the above attack. A more
refined policy is described in Section 7.2.

Command injection attacks are similar to SQL in-
jection: they involve untrusted inputs being used as to
construct commands executed by command interpreters
(e.g., bash) or the argument to execve system call.

2.2 Cross-Site Scripting (XSS). Consider an exam-
ple of a bank that provides a “ATM locator” web page
that customers can use to find the nearest ATM machine,
based on their ZIP code. Typically, the web page con-
tains a form that submits a query to the web site, which
looks as follows:

http://www.xyzbank.com/findATM?zip=90100

If the ZIP code is invalid, the web site typically returns
an error message such as:

<HTML> ZIP code not found: 90100 </HTML>

Note in the above output from the web server, the user-
supplied string 90100 is reproduced. This can be used
by an attacker to construct an XSS attack as follows. To
do this, the attacker may send an HTML email to an un-
suspecting user, which contains text such as:

To claim your reward, please click <a href="

http://www.xyzbank.com/findATM?zip=

<script%20src=’http://www.attacker.com/

malicious_script.js’></script>">here</a>

When the user clicks on this link, the request goes to the
bank, which returns the following page:

<HTML> ZIP code not found:

<script src=’http://www.attacker.com/

malicious_script.js’></script> </HTML>

The victim’s browser, on receiving this page, will
download and run Javascript code from the attacker’s
web site. Since the above page was sent from
http://www.xyzbank.com, this script will have ac-
cess to sensitive information stored on the victim com-
puter that pertains to the bank, such as cookies. Thus, the
above attack will allow cookie information to be stolen.
Since cookies are often used to store authentication data,
stealing them can allow attackers to perform financial
transactions using victim’s identity.

Fine-grained taint analysis will mark every character
in the zip code value as tainted. Now the above cross-site
scripting attack can be prevented by disallowing tainted
script tags in the web application output.

2.3 Memory Error Exploits. There are many dif-
ferent types of memory error exploits, such as stack-
smashing, heap-overflows and integer overflows. All
of them share the same basic characteristics: they
exploit bounds-checking errors to overwrite security-
critical data, almost always a code pointer or a data
pointer, with attacker-provided data. When fine-grained
taint analysis is used, it will mark the overwritten pointer
as tainted. Now, this attack can be stopped by a policy
that prohibits dereferencing of tainted pointers.

2.4 Format String Vulnerabilities. The printf
family of functions (which provide formatted printing in
C) take a format string as a parameter, followed by zero
or more parameters. A common misuse of these func-
tions occurs when untrusted data is provided as the for-
mat string, as in the statement “printf(s).” If s con-
tains an alphanumeric string, then this will not cause a
problem, but if an attacker inserts format directives in s,
then she can control the behavior of printf. In the worst
case, an attacker can use the “%n” format directive, which
can be used to overwrite a return address with attacker-
provided data, and execute injected binary code.

When fine-grained taint analysis is used, the format
directives (such as “%n”) will be marked as tainted. The
above attack can be then prevented by a taint-enhanced
policy that disallows tainted format directives in the for-
mat string argument to the printf family of functions.

2.5 Attacks that “Hijack” Access Privileges. In this
section, we consider attacks that attempt to evade de-
tection by staying within the bounds of normal accesses
made by an application. These attacks are also referred
to as the confused deputy attacks [13].

Consider a web browser vulnerability that allows an
attack (embedded within a web page) to upload an ar-
bitrary file f owned by the browser user without the
user’s consent. Since the browser itself needs to access
many of the user’s files (e.g., cookies), a policy that pro-
hibits access to f may prevent normal browser opera-
tions. Instead, we need a policy that can infer whether
the access is being made during the normal course of
an operation of the browser, or due to an attack. One
way to do this is to take the taint information associated
with the file name. If this file is accessed during normal
browser operation, the file name would have originated
within its program text or from the user. However, if the
file name originated from a remote web site (i.e., an un-
trusted source), then it is likely to be an attack. Similar
examples include attacks on (a) P2P applications to up-
load (i.e., steal) user files, and (b) FTP servers to down-

Security ’06: 15th USENIX Security SymposiumUSENIX Association 123



load sensitive files such as the password file that are nor-
mally accessed by the server.

A variant of the above scenario occurs in the context
of directory traversal attacks, where an attacker attempts
to access files outside of an authorized directory, e.g.,
the document root in the case of a web server. Typically,
this is done by including “..” characters in file names
to ascend above the document root. In case the victim
application already incorporates checks for “..” charac-
ters, attacker may attempt to evade this check by replac-
ing “.” with its hexadecimal or Unicode representation,
or by using various escape sequences. A taint-enhanced
policy can be used to selectively enforce a more restric-
tive policy on file access when the file name is tainted,
e.g., accesses outside of the document root directory may
be disallowed. Such a policy would not interfere with the
web server’s ability to access other files, e.g., its access
log or error log.

The key point about all attacks discussed in this sec-
tion is that conventional access control policies cannot
detect them. This is because the attacks do not stray
beyond the set of resources that are normally accessed
by a victim program. However, taint analysis provides
a clue to infer the intended use of an access. By incor-
porating this inferred intent in granting access requests,
taint-enhanced policies can provide better discrimina-
tion between attacks and legitimate uses of the privileges
granted to a victim application.

2.6 Discussion. The examples discussed above bring
out the following important points:
• Importance of fine-grained taint information. If we

used coarser granularity for taint-tracking, e.g., by
marking a program variable as tainted or untainted,
we would not be able to detect most of the attacks de-
scribed above. For instance, in the case of SQL in-
jection example, the variable cmd containing the SQL
query will always be marked as tainted, as it derives
part of its value from an untrusted variable name. As a
result, we cannot distinguish between legitimate uses
of the web application, when name contains an al-
phanumeric string, from an attack, when name con-
tains characters such as the semicolon and SQL com-
mands. A similar analysis can be made in the case
of stack-smashing and format-string attacks, cross-site
scripting, directory traversal, and so on.

• Need for taint-enhanced policies. It is not possible
to prevent these attacks by enforcing conventional ac-
cess control policies. For instance, in the SQL injec-
tion example, one cannot use a policy that uniformly
prevents the use of semicolons and SQL commands
in cmd: such a policy would preclude any use of the
database, and cause the web application to fail. Simi-
larly, in the memory error example, one cannot have a

working program if all control transfers through point-
ers are prevented. Finally, the examples in Section 2.5
were specifically chosen to illustrate the need for com-
bining taint information into policies.
Another point to be made in this regard is that attacks
are not characterized simply by the presence or ab-
sence of tainted information in arguments to security-
critical operations. Instead, it is necessary to develop
policies that govern the manner in which tainted data
is used in these arguments.

3 Transformation for Taint Tracking
There are three main steps in taint-enhanced policy en-
forcement: (i) marking, i.e., identifying which external
inputs to the program are untrusted and should be marked
as tainted, (ii) tracking the flow of taint through the pro-
gram, and (iii) checking inputs to security-sensitive op-
erations using taint-enhanced policies. This section dis-
cusses tracking, which is implemented using a source-
to-source transformation on C programs. The other two
steps are described in Section 4.

3.1 Runtime Representation of Taint
Our technique tracks taint information at the level of
bytes in memory. This is necessary to ensure accurate
taint-tracking for type-unsafe languages such as C, since
the approach can correctly deal with situations such as
out-of-bounds array writes that overwrite adjacent data.
A one-bit taint-tag is used for each byte of memory, with
a ‘0’ representing the absence of taint, and a ‘1’ repre-
senting the presence of taint. A bit-array tagmap stores
taint information. The taint bit associated with a byte at
address a is given by tagmap[a].

3.2 Basic Transformation
The source-code transformation described in this sec-
tion is designed to track explicit information flows that
take place through assignments and arithmetic and bit-
operations. Flows that take place through conditionals
are addressed in Section 7.1. It is unusual in C programs
to have boolean-valued variables that are assigned the re-
sults of relational or logical operations. Hence we have
not considered taint propagation through such operators
in this paper. At a high-level, explicit flows are simple to
understand:
• the result of an arithmetic/bit expression is tainted if

any of the variables in the expression is tainted;
• a variable x is tainted by an assignment x = e when-

ever e is tainted.
Specifically, Figure 2 shows how to compute the taint
value T (E) for an expression E. Figure 3 defines how
a statement S is transformed, and uses the definition of
T (E). When describing the transformation rules, we

Security ’06: 15th USENIX Security Symposium USENIX Association124



E T (E) Comment
c 0 Constants are untainted
v tag(&v, tag(a, n) refers to n bits

sizeof(v)) starting at tagmap[a]
&E 0 An address is

always untainted
∗E tag(E,

sizeof(∗E))
(cast)E T (E) Type casts don’t

change taint.
op(E) T (E) for arithmetic/bit op

0 otherwise
E1 op E2 T (E1) || T (E2) for arithmetic/bit op

0 otherwise

Figure 2: Definition of taint for expressions

S Trans(S)

v = E v = E;
tag(&v, sizeof(v)) = T (E);

S1;S2 Trans(S1); Trans(S2)
if (E) S1 if (E) Trans(S1)
else S2 else Trans(S2)

while (E) S while (E) Trans(S)
return E return (E, T (E))
f(a) { S } f(a, ta) {

tag(&a, sizeof(a)) = ta; Trans(S)}
v = f(E) (v, tag(&v, sizeof(v))) = f(E, T (E))
v = (∗f)(E) (v, tag(&v, sizeof(v))) = (∗f)(E, T (E))

Figure 3: Transformation of statements for taint-tracking

use a simpler form of C (e.g. expressions have no side
effects). In our implementation, we use the CIL [19]
toolkit as the C front end to provide the simpler C form
that we need.

The transformation rules are self-explanatory for most
part, so we explain only the function-call related transfor-
mations. Consider a statement v = f(E), where f takes
a single argument. We introduce an additional argument
ta in the definition of f so that the taint tag associated
with its (single) parameter could be passed in. ta is ex-
plicitly assigned as the taint value of a at the beginning of
f ’s body. (These two steps are necessary since the C lan-
guage uses call-by-value semantics. If call-by-reference
were to be used, then neither step would be needed.) In
a similar way, the taint associated with the return value
has to be explicitly passed back to the caller. We rep-
resent this in the transformation by returning a pair of
values as the return value. (In our implementation, we
do not actually introduce additional parameters or return
values; instead, we use a second stack to communicate
the taint values between the caller and the callee.) It
is straight-forward to extend the transformation rules to
handle multi-argument functions.

We conclude this section with a clarification on our
notion of soundness of taint information. Consider any
variable x at any point during any execution of a trans-
formed program, and let a denote the location of this
variable. If the value stored at a is obtained from any

tainted input through assignments and arithmetic/bit op-
erations, then tagmap[a] should be set. Note that by
referring to the location of x rather than its name, we re-
quire that taint information be accurately tracked in the
presence of memory errors. To support this notion of
soundness, we needed to protect the tagmap from cor-
ruption, as described in Section 3.4.

3.3 Optimizations

The basic transformation described above is effective,
but introduces high overheads, sometimes causing a
slowdown by a factor of 5 or more. To improve per-
formance, we have developed several interesting runtime
and compile-time optimizations that have reduced over-
heads significantly. More details about the performance
can be found in Section 6.4.

3.3.1 Runtime Optimizations In this section, we de-
scribe optimizations to the runtime data structures.

Use of 2-bit taint values. In the implementation, ac-
cessing of taint-bits requires several bit-masking, bit-
shifting and unmasking operations, which degrade per-
formance significantly. We observed that if 2-bit taint
tags are used, the taint value for an integer will be
contained within a single byte (assuming 32-bit archi-
tecture), thereby eliminating these bit-level operations.
Since integer assignments occur very frequently, this op-
timization is quite effective.

This approach does increase the memory requirement
for tagmap by a factor of two, but on the other hand,
it opens up the possibility of tracking richer taint infor-
mation. For instance, it becomes possible to associate
different taint tags with different input sources and track
them independently. Alternatively, it may be possible to
use the two bits to capture “degree of taintedness.”

Allocation of tagmap. Initially, we used a global vari-
able to implement tagmap. But the initialization of this
huge array (1GB) that took place at the program start in-
curred significant overheads. Note that tag initialization
is warranted only for static data that is initialized at pro-
gram start. Other data (e.g., stack and heap data) should
be initialized (using assignments) before use in a cor-
rectly implemented program. When these assignments
are transformed, the associated taint data will also be ini-
tialized, and hence there is no need to initialize such taint
data in the first place. So, we allocated tagmap dynami-
cally, and initialized only the locations corresponding to
static data. By using mmap for this allocation, and by per-
forming the allocation at a fixed address that is unused
in Linux (our implementation platform), we ensured that
runtime accesses to tagmap elements will be no more
expensive than that of a statically allocated array (whose
base address is also determined at compile-time).

Security ’06: 15th USENIX Security SymposiumUSENIX Association 125



The above approach reduced the startup overheads, but
the mere use of address space seemed to tie up OS re-
sources such as page table entries, and significantly in-
creased time for fork operations. For programs such as
shells that fork frequently, this overhead becomes unac-
ceptable. So we devised an incremental allocation tech-
nique that can be likened to user-level page-fault han-
dling. Initially, tagmap points to 1GB of address space
that is unmapped. When any access to tagmap[i] is
made, it results in a UNIX signal due to a memory fault.
In the transformed program, we introduce code that inter-
cepts this signal. This code queries the operating system
to determine the faulting address. If it falls within the
range of tagmap, a chunk of memory (say, 16KB) that
spans the faulting address is allocated using mmap. If the
faulting address is outside the range of tagmap, the sig-
nal is forwarded to the default signal handler.

3.3.2 Compile-time Optimizations
Use of local taint tag variables. In most C programs,
operations on local variables occur much more fre-
quently than global variables. Modern compilers are
good at optimizing local variable operations, but due
to possible aliasing, most such optimizations cannot be
safely applied to global arrays. Unfortunately, the basic
transformation introduces one operation on a global ar-
ray for each operation on a local variable, and this has
the effect of more than doubling the runtime of trans-
formed programs. To address this problem we modi-
fied our transformation so that it uses local variables to
hold taint information for local variables, so that the code
added by the transformer can be optimized as easily as
the original code.

Note, however, that the use of local tag variables
would be unsound if aliasing of a local variable is possi-
ble. For example, consider the following code snippet:

int x; int *y = &x;
x = u; *y = v;

If u is untainted and v is tainted, then the value stored in
x should be tainted at the end of the above code snippet.
However, if we introduced a local variable, say, tag x,
to store the taint value of x, then we cannot make sure
that it will get updated by the assignment to *y.

To ensure that taint information is tracked accurately,
our transformation uses local taint tag variables only
in those cases where no aliasing is possible, i.e., the
optimization is limited to simple variables (not arrays)
whose address is never taken. However, this alone is not
enough, as aliasing may still be possible due to memory
errors. For instance, a simple variable x may get updated
due to an out-of-bounds access on an adjacent array, say,
z. To eliminate this possibility, we split the runtime stack
into two stacks. The main stack stores only simple vari-
ables whose addresses are never taken. This stack is also

used for call-return. All other local variables are stored
in the second stack, also called shadow stack.

The last possibility for aliasing arises due to pointer-
forging. In programs with possible memory errors, a
pointer to a local variable may be created. However, with
the above transformation, any access to the main stack
using a pointer indicates a memory error. We show how
to implement an efficient mechanism to prevent access
to some sections of memory in the transformed program.
Using this technique, we prevent all accesses to the main
stack except using local variable names, thus ensuring
that taint information can be accurately tracked for the
variables on the main stack using local taint tag variables.
Intra-procedural dependency analysis is performed
to determine whether a local variable can ever become
tainted, and to remove taint updates if it cannot. Note
that a local variable can become tainted only if it is in-
volved in an assignment with a global variable, a pro-
cedure parameter, or another local variable that can be-
come tainted. Due to aliasing issues, this optimization is
applied only to variables on the main stack.

3.4 Protecting Memory Regions
To ensure accurate taint-tracking, it is necessary to pre-
clude access to certain regions of memory. Specifically,
we need to ensure that the tagmap array itself cannot
be written by the program. Otherwise, tagmap may be
corrupted due to programming errors, or even worse, a
carefully crafted attack may be able to evade detection by
modifying the tagmap to hide the propagation of tainted
data. A second region that needs to be protected is the
main stack. Third, it would be desirable to protect mem-
ory that should not directly be accessed by a program,
e.g., the GOT. (Global Offset Table is used for dynamic
linking, but there should not be any reference to the GOT
in the C code. If the GOT is protected in this manner,
that would rule out attacks based on corrupting a func-
tion pointer in the GOT.)

The basic idea is as follows. Consider an assignment
to a memory location a. Our transformation ensures that
an access to tagmap[a] will be made before a is ac-
cessed. Thus, in order to protect a range of memory lo-
cations l—h, it is enough if we ensure that tagmap[l]
through tagmap[h] will be unmapped. This is easy
to do, given our incremental approach to allocation of
tagmap. Now, any access to addresses l through h will
result in a memory fault when the corresponding tagmap
location is accessed.

Note that l and h cannot be arbitrary: they should fall
on a 16K boundary, if the page size is 4KB and if 2 bit
tainting is used. This is because mmap allocates mem-
ory blocks whose sizes are a multiple of a page size.
This alignment requirement is not a problem for tagmap,
since we can align it on a 16K boundary. For the main

Security ’06: 15th USENIX Security Symposium USENIX Association126



Attack Type Policy Comment
Control-flow
hijack

jmp(addr) |
addr matches (any+)t → term()

Tainted values cannot be used as a
target of control transfer

Format string
Format ="%[ˆ%]"
vfprintf(fmt) |fmt matches any∗ (Format)T any∗ → reject()

Format directives (e.g.%n) should
not be tainted

Directory
traversal

DirTraversalModifier = ".."
file function(path) =

open(path, ) || unlink(path) || ...

file function(path) |
path matches any ∗ (DirTraversalModifier)T any∗
&& escapeRootDir(path) → reject()

If path contains tainted directory
traversal strings (e.g. “..”), then the
real path of path should not go out-
side the top level directories that are
allowed to be accessed by the pro-
gram, e.g. DocumentRoot and cgi-
bin for httpd

Cross-site
scripting

ScriptTag = "<script" | ...

html print function(str) |
str matches (StrIdNum|Delim) ∗ (ScriptTag)T any∗ → reject()

No tainted script tags (e.g. script)
should be output to HTML.

SQL injection

SqlMetachar = "’" | ";" | "/*" | ...

sql query function(query) |
query matches (StrIdNum|Delim) ∗ (SqlMetachar)T any∗
→ reject()

SQL query string should not contain
tainted SQL meta-chars

Shell command
injection

ShellMetachar = ";" | "&&" | ...

shell command function(cmd) |
cmd matches (StrIdNum|Delim) ∗ (ShellMetachar)T any∗
→ reject()

cmd argument of system or popen

should not contain tainted shell
meta-chars

Figure 4: Illustrative security policies

stack, a potential issue arises because the bottom of the
stack holds environment variables and command-line ar-
guments that are arrays. To deal with this problem, we
first introduce a gap in the stack in main so that its top
is aligned on a 16K boundary. The region of main stack
above this point is protected using the above mechanism.
This means that it is safe to use local tag variables in any
function except main.

4 Marking and Policy Specification
4.1 Marking Trusted and Untrusted Inputs
Marking involve associating taint information with all
the data coming from external sources. If all code, in-
cluding libraries, is transformed, then marking needs to
be specified for system calls that return inputs, for en-
vironment variables and command-line arguments. (If
some libraries are not transformed, then marking specifi-
cations may be needed for untransformed library func-
tions that perform inputs.) Note that we can treat
command-line arguments and environment variables as
arguments to main. Thus, marking specifications can, in
every case, be associated with a function call.

Marking actions are specified using BMSL (Behavior
Monitoring Specification Language) [29, 3], an event-
based language that is designed to support specification
of security policies and behaviors. BMSL specifica-
tions consist of rules of the form event pattern −→
action. We use BMSL in a simplified way in this pa-
per — in particular, event pattern will be of the form
event | condition, where event identifies a function.
When this function returns, and (the optional) condition

holds, action will be executed. The event corresponding
to a function will take an additional argument that cap-

tures the return value from the function. Both the condi-
tion and the action can use external functions (written in
C or C++). Moreover, the action can include arithmetic
and logical operations, as well as if-then-else. Consider
the following example:

read(fd, buf, size, rv)|(rv > 0) →

if (isNetworkEndpoint(fd))

taint_buffer(buf, rv);

else untaint_buffer(buf, rv);

This rule states that when the read function returns, the
buf argument will be tainted, based on whether the read
was from a network or not, as determined by the exter-
nal function isNetworkEndpoint. The actual tainting
is done using two support functions taint buffer and
untaint buffer.

Note that every input action needs to have an associ-
ated marking rule. To reduce the burden of writing many
rules, we provide default rules for all system calls that
untaint the data returned by each system call. Specific
rules that override these default rules, such as the rule
given above, can then be supplied by a user.

4.2 Specifying Policies

Security policies are also written using BMSL, but these
rules are somewhat different from the marking rules. For
a policy rule involving a function f , its condition compo-
nent is examined immediately before any invocation of f .
To simplify the policy specification, abstract events can
be defined to represent a set of functions that share the
same security policy. (Abstract events can be thought of
as macros.)

The definition of condition is also extended to sup-
port regular-expression based pattern matching, using the

Security ’06: 15th USENIX Security SymposiumUSENIX Association 127



keyword matches. We use taint-annotated regular ex-
pressions defined as follows. A tainted regular expres-
sion is obtained for a normal regular expression by at-
taching a superscript t, T or u. A string s will match
a taint-annotated regular expression rt provided that s

matches r, and at least one of the characters in s is
tainted. Similarly, s will match rT provided all char-
acters in s are tainted. Finally, s will match ru provided
none of the characters in s are tainted.

The predefined pattern any matches any single char-
acter. Parentheses and other standard regular expression
operators are used in the usual way. Moreover, taint-
annotated regular expressions can be named, and the
name can be reused subsequently, e.g., StrIdNum used
in many sample policy rules is defined as:

StrIdNum = String | Id | Num

where String, Id and Num denote named regular ex-
pressions that correspond respectively to strings, identi-
fiers and numbers. Also, Delim denotes delimiters.

Figure 4 shows the examples of a few simple policies
to detect various attacks. The action component of these
policies make use of two support functions: term() ter-
minates the program execution, while reject() denies the
request and returns with an error.

For the control-flow hijack policy, we use a special
keyword jmp as a function name, as we need some spe-
cial way to capture low-level control-flow transfers that
are not exposed as a function call in the C language. The
policy states that if any of the bytes in the target address
are tainted, then the program should be terminated.

For format string attacks, we only define a policy for
vfprintf, because vfprintf is the common function
used internally to implement all other printf family of
functions. All format directives in a format string begin
with a “%”, and are followed by a character other than
“%”. (The sequence “%%” will simply print a “%”, and
hence can be permitted in the format string.)

Example policies to detect four other attacks, namely,
directory traversal, cross-site scripting, SQL injection
and shell command injection are also shown in Figure 4.
The comments associated with the policies provide an
intuitive description of the policy. These policies were
able to detect all of the attacks considered in our evalua-
tion, but we do not make any claim that the policies are
good enough to detect all possible attacks in these cate-
gories. A discussion of how skilled attackers may evade
some of these policies, and some directions for refining
policies to stand up to such attacks, can be found in Sec-
tion 7.2. The main strength of the approach presented in
this paper is that the availability of fine-grained taint in-
formation makes it possible for a knowledgeable system
administrator to develop such refined policies.

5 Implementation
We have implemented the program transformation tech-
nique described in Section 3. The transformer consists
of about 3,600 lines of Objective Caml code and uses the
CIL [19] toolkit as the front end to manipulate C con-
structs. Our implementation currently handles glibc
(containing around 1 million LOC) and several other
medium to large applications. The complexity and size
of glibc demonstrated that our implementation can han-
dle “real-world” code. We summarize some of the key
issues involved in our implementation.

5.1 Coping with Untransformed Libraries

Ideally, all the libraries used by an application will be
transformed using our technique so as to enable accurate
taint tracking. In practice, however, source code may not
be available for some libraries, or in rare cases, some
functions in a library may be implemented in an assem-
bly language. One option with such libraries is to do
nothing at all. Our implementation is designed to work
in these cases, but clearly, the ability to track informa-
tion flow via untransformed functions is lost. To over-
come this problem, our implementation offers two fea-
tures. First, it produces warnings when a certain func-
tion could not be transformed. This ensures that inaccu-
racies will not be introduced into taint tracking without
explicit knowledge of the user. When the user sees this
warning, she may decide that the function in question
performs largely “read” operations, or will never han-
dle tainted data, and hence the warning can safely be
ignored. If not, then our implementation supports sum-
marization functions that specify how taint information
is propagated by a function. For instance, we use the
following summarization function for the memcpy. Sum-
marization functions are also specified in BMSL, and use
support functions to copy taint information. A summa-
rization function for f would be invoked in the trans-
formed code when f returns.

memcpy(dest, src, n) →

copy_buffer_tagmap(dest, src, n);

So far, we had to write summarization functions for
two glibc functions that are written in assembly and
copy data, namely, memcpy and memset. In addition,
gcc replaces calls to some functions such as strcpy and
strdup with its own code, necessitating an additional 13
summarization functions.

5.2 Injecting Marking, Checking and Summa-
rization Code into Transformed Programs

In our current implementation, the marking specifica-
tions, security policies, and summarization code asso-
ciated with a function f are all injected into the trans-
formed program by simply inlining (or explicitly call-

Security ’06: 15th USENIX Security Symposium USENIX Association128



CVE# Program Language Attack type Attack description
CAN-2003-0201 samba C Stack smashing Buffer overflow in

call trans2open function
CVE-2000-0573 wu-ftpd C Format string via SITE EXEC command
CAN-2005-1365 pico server C Directory traversal Command execution via URL

with multiple leading “/” charac-
ters and “..”

CAN-2003-0486 phpBB 2.0.5 PHP SQL injection via topic id parameter
CAN-2005-0258 phpBB 2.0.5 PHP Directory traversal Delete arbitrary file via “..” se-

quences in avatarselect parameter
CAN-2002-1341 SquirrelMail 1.2.10 PHP Cross site scripting Insert script via the mailbox pa-

rameter in read body.php
CAN-2003-0990 SquirrelMail 1.4.0 PHP Command injection via meta-character in“To:” field
CAN-2005-1921 PHP XML-RPC PHP Command injection Eval injection
CVE-1999-0045 nph-test-cgi BASH Shell meta-character

expansion
using ’*’ in $QUERY STRING

Figure 5: Attacks used in effectiveness evaluation

ing) the relevant code before or after the call to f . In the
future, we anticipate these code to be decoupled from
the transformation, and be able to operate on binaries us-
ing techniques such as library interposition. This would
enable a site administrator to alter, refine or customize
her notions of “trustworthy input” and “dangerous argu-
ments” without having access to the source code.

6 Experimental Evaluation
The main goal of our experiments was to evaluate at-
tack detection (Section 6.1), and runtime performance
(Section 6.4). False positives and false negatives are dis-
cussed in Sections 6.2 and 6.3.

6.1 Attack Detection

Table 5 shows the attacks used in our experiments. These
attacks were chosen to cover the range of attack cate-
gories we have discussed, and to span multiple program-
ming languages. Wherever possible, we selected attacks
on widely-used applications, since it is likely that obvi-
ous security vulnerabilities in such applications would
have been fixed, and hence we are more likely to detect
more complex attacks.

In terms of marking, all inputs read from network (us-
ing read, recv and recvfrom) were marked as tainted.
Since the PHP interpreter is configured as a module for
Apache, the same technique works for PHP applica-
tions as well. Network data is tainted when it is read
by Apache, and this information propagates through the
PHP interpreter, and in effect, through the PHP applica-
tion as well. The policies used in our attack examples
were already discussed in Section 4.

To test our technique, we first downloaded the soft-
ware packages shown in Figure 5. We downloaded the
exploit code for the attacks, and verified that they worked
as expected. Then we used transformed C programs and

interpreters with policy checking enabled, and verified
that each one of the attacks were prevented by these poli-
cies without raising false alarms.

Network Servers in C.
• wu-ftpd versions 2.6.0 and lower have a format string

vulnerability in SITE EXEC command that allows ar-
bitrary code execution. The attack is stopped by the
policy that the format directive %n in a format string
should not be tainted.

• samba versions 2.2.8 and lower have a stack-smashing
vulnerability in processing a type of request called
“transaction 2 open.” No policy is required to stop this
attack — the stack-smashing step ends up corrupting
some data on the shadow stack rather than the main
stack, so the attack fails.
If we had used an attack that uses a heap overflow to
overwrite a GOT entry (which is common with heap
overflows), this too would be detected without the
need for any policies due to the technique described
in Section 3.4 for preventing the GOT from being di-
rectly accessed by the C code. The reasoning is that
before the injected code gets control, the GOT entry
has to be clobbered by the existing code in the pro-
gram. The instrumentation in the clobbering code will
cause a segmentation fault because of the protection of
the GOT, and hence the attack will be prevented. Note
that the GOT is normally used by the PLT (Procedure
Linkage Table) code that is in the assembly code au-
tomatically added by the compiler, and is not in the C
source code, so a normal GOT access will not be in-
strumented with checks on taint tags, and hence will
not lead to a memory fault.
If the attack corrupted some other function pointer,
then the “jmp” policy would detect the use of tainted
data in jump target and stop the attack.

• Pico HTTP Server (pServ) versions 3.2 and

Security ’06: 15th USENIX Security SymposiumUSENIX Association 129



lower have a directory traversal vulnerability. The
web server does include checks for the presence of
“..” in the file name, but allows them as long as
their use does not go outside the cgi-bin directory.
To determine this, pServ scans the file name left-
to-right, decrementing the count for each occurrence
of “..”, and incrementing it for each occurrence of
“/” character. If the counter goes to zero, then ac-
cess is disallowed. Unfortunately, a file name such as
/cgi-bin////../../bin/sh satisfies this check,
but has the effect of going outside the /cgi-bin di-
rectory. This attack is stopped by the directory traver-
sal policy shown in Section 4.

Web Applications in PHP.
• phpBB2 SQL injection vulnerability in (version 2.0.5

of) phpBB, a popular electronic bulletin board appli-
cation, allows an attacker to steal the MD5 password
hash of another user. The vulnerable code is:

$sql="SELECT p.post_id FROM ... WHERE ...
AND p.topic_id = $topic_id AND ..."

Normally, the user-supplied value for the variable
topic id should be a number, and in that case, the
above query works as expected. Suppose that the at-
tacker provides the following value:

-1 UNION SELECT ord(substring(user_password,
5,1)) FROM phpbb_users WHERE userid=3/*

This converts the SQL query into a union of two
SELECT statements, and comments out (using “/*”)
the remaining part of the original query. The first
SELECT returns an empty set since topic id is set
to -1. As a result, the query result equals the value of
the SELECT statement injected by the attacker, which
returns the 5th byte in the MD5 hash of the bulletin
board user with the userid of 3. By repeating this at-
tack with different values for the second parameter of
substring, the attacker can obtain the entire MD5
password hash of another user. The SQL injection pol-
icy described in Section 4 stops this attack.

• SquirrelMail cross-site scripting is present in ver-
sion 1.2.10 of SquirrelMail, a popular web-based
email client, e.g., read body.php directly outputs
values of user-controlled variables such as mailbox
while generating HTML pages. The attack is stopped
by the cross-site scripting policy in Section 4.

• SquirrelMail command injection: SquirrelMail
(Version 1.4.0) constructs a command for encrypting
email using the following statement in the function
gpg encrypt in the GPG plugin 1.1.

$command .= " -r $send_to_list 2>&1";

The variable send to list should contain the recip-
ient name in the “To” field, which is extracted using
the parseAddress function of Rfc822Header ob-

ject in SquirrelMail. However, due to a bug in this
function, some malformed entries in the “To” field are
returned without checking for proper email format. In
particular, by entering “〈recipient〉; 〈cmd〉;” into this
field, the attacker can execute any arbitrary command
〈cmd〉 with the privilege of the web server. By apply-
ing a policy that prohibits tainted shell meta-characters
in the first argument to the popen function, this attack
is stopped by our technique.

• phpBB directory traversal: A vulnerability exists in
phpBB, which, when the gallery avatar feature is en-
abled, allows remote attackers to delete arbitrary files
using directory traversal. This vulnerability can be ex-
ploited by a two-step attack. In the first step, the at-
tacker saves the file name, which contains “..” char-
acters, into the SQL database. In the second step, the
file name is retrieved from the database and used in
a command. To detect this attack, it is necessary to
record taint information for data stored in the database,
which is quite involved. We took a shortcut, and
marked all data retrieved from the database as tainted.
(Alternatively, we could have marked only those fields
updated by the user as tainted.) This enabled the attack
to be detected using the directory traversal policy.

• phpxmlrpc/expat command injection: phpxmlrpc
is a package written in PHP to support the implemen-
tation of PHP clients and servers that communicate us-
ing the XML-RPC protocol. It uses the expat XML
parser for processing XML. phpxmlrpc versions 1.0
and earlier have a remote command injection vulner-
ability. Our command injection policy stops exploita-
tions of this vulnerability.

Bash CGI Application. nph-test-cgi is a CGI
script that was included by default with Apache web
server versions 1.0.5 and earlier. It prints out the values
of the environment variables available to a CGI script. It
uses the code echo QUERY_STRING=$QUERY_STRING
to print the value of the query string sent to it. If the query
string contains a “*” then bash will apply file name ex-
pansion to it, thus enabling an attacker to list any direc-
tory on the web server. This attack was stopped by a
policy that restricted the use of tainted meta-characters
in the argument to shell glob filename, which is the
function used by bash for file name expansion. In terms
of marking, the CGI interface defines the exact set of en-
vironment variables through which inputs are provided to
a CGI application, and all these are marked as tainted.

6.2 False Positives

The policies described so far have been designed with
the goal of avoiding false positives. We experimen-
tally verified that false positives did not occur in our
experiments involving the wu-ftpd server, the Apache

Security ’06: 15th USENIX Security Symposium USENIX Association130



Server Programs Workload Orig. Response Time Overhead
Apache-2.0.40 Webstone 30 clients downloading 0.036 sec/page 6%

5KB pages over 100Mbps network
wu-ftpd-2.6.0 Download a 12MB file 10 times. 11.5 sec 3%
postfix-1.1.12 Send one thousand 3KB emails 0.03 sec/mail 7%

Figure 6: Performance overheads of servers. For Apache server, performance is measured in terms of latency and
throughput degradation. For other programs, it is measured in terms of overhead in client response time.

Program Workload Over- Over- Over- Over-
head(A) head(B) head(C) head(D)

bc-1.06 Find factorial of 600. 212% 68% 61% 61%
enscript-1.6.4 Convert a 5.5MB text file into a PS file. 660% 529% 63% 58%

bison-1.35 Parse a Bison file for C++ grammar. 134% 92% 79% 78%
gzip-1.3.3 Compress a 12 MB file. 228% 161% 110% 106%

Figure 7: Performance overheads of CPU-intensive programs. Performance is measured in terms of CPU time. Over-
heads in different columns correspond to: (A) No optimizations, (B) Use of local tag variable, (C) B + Use of 2-bit
taint value, (D) C + Use of dependency analysis.

web server, and the two PHP applications, phpBB and
SquirrelMail. For wu-ftpd and Apache, we enabled
the control flow hijack policy, format string policy, direc-
tory traversal policy, and shell command injection policy.
For the PHP applications, we additionally enabled the
SQL injection policy and cross-site scripting policy for
the PHP interpreter.

To evaluate the false positives for Apache, we used
the transformed server as our lab’s regular web server
that accepted real-world HTTP requests from Internet for
several hours. For the wu-ftpd server, we ran all the
supported commands from a ftp client. To test phpBB
and SquirrelMail, we went through all the menu items
of these two Web applications, performed normal oper-
ations that a regular user might do, such as registering a
user, posting a message, searching a message, managing
address book, moving messages between different mail
folders, and so on. No false positives were observed in
these experiments.

6.3 False Negatives

False negatives can arise due to (a) overly permissive
policies, (b) implicit information flows, and (c) use of
untransformed libraries without adequate summarization
functions.

We will discuss the policy refinement and implicit
flows in Section 7. As for external libraries, the best ap-
proach is to transform them, so that the need for summa-
rization can be eliminated. If this cannot be done, then
our transformation will identify all the external functions
that are used by an application, so that errors of omission
can be avoided. However, if a summarization function is
incorrect, then it can lead to false negatives, false posi-
tives, or both.

6.4 Performance

Figure 6 and 7 show the performance overheads,
when the original and transformed programs were
compiled using gcc 3.2.2 with -O2, and ran on a
1.7GHz/512MB/Red Hat Linux 9.0 PC.

For server programs, the overhead of our approach
is low. This is because they are I/O intensive, whereas
our transformation adds overheads only to code that per-
forms significant amount of data copying within the pro-
gram, and/or other CPU-intensive operations. For CPU-
intensive C programs, the overhead is between 61% to
106%, with an average of 76%.

6.4.1 Effect of Optimizations. The optimizations
discussed in Section 3.3 have been very effective. We
comment further in the context of CPU-intensive bench-
marks.

• Use of local taint variables reduced the overheads by
42% to 144%. This is due to the reasons mentioned
earlier: compilers such as gcc are very good in opti-
mizing operations on local variables, but do a poor job
on global arrays. Thus, by replacing global tagmap
accesses with local tag variable accesses, significant
performance improvement can be obtained.
Most programs access local variables much more fre-
quently than global variables. For instance, we found
out (by instrumenting the code) that 99% of accesses
made by bc are to local variables. A figure of 90%
is not at all uncommon. As a result, the introduction
of local tag variables leads to dramatic performance
improvement for such programs. For programs that
access global variables frequently, such as gzip that
has 41% of its accesses going to global variables, the
performance improvements are less striking.

• tagmap optimizations are particularly effective for

Security ’06: 15th USENIX Security SymposiumUSENIX Association 131



programs that operate mainly on integer data. This is
because of the use of 2-bit taint tags, which avoids the
need for bit-masking and shifts to access taint informa-
tion. As a result we see significant overhead reduction
in the range of 7% to 466%.

• Intraprocedural analysis and optimization further re-
duces the overhead by up to 5%. The gains are mod-
est because gcc optimizations have already eliminated
most local tag variables after the previous step.

When combined, these optimizations reduce the over-
head by a factor of 2 to 5.

7 Discussion
7.1 Support for Implicit Information Flow
Implicit information flow occurs when the values of cer-
tain variables are related by virtue of program logic, even
though there are no assignments between them. A classic
example is given by the code snippet [25]:

x=x%2; y=0; if (x==1) y=1;

Even though there is no assignments involving x and y,
their values are always the same. The need for tracking
such implicit flows has long been recognized. [11] for-
malized implicit flows using a notion of noninterference.
Several recent research efforts [18, 30, 20] have devel-
oped techniques based on this concept.

Noninterference is a very powerful property, and can
capture even the least bit of correlation between sensitive
data and other data. For instance, in the code:

if (x > 10000) error = true;
if (!error) { y = "/bin/ls"; execve(y); }

there is an implicit flow from x to error, and then to
y. Hence, a policy that forbids tainted data to be used
as an execve argument would be violated by this code.
This example illustrates why non-interference may be
too conservative (and hence lead to false positives) in our
application. In the context of the kinds of attacks we are
addressing, attackers usually need more control over the
value of y than the minimal relationship that exists in the
code above. Thus, it is more appropriate to track explicit
flows. Nevertheless, there can be cases where substantial
information flow takes place without assignments, e.g.,
in the following if-then-else, there is a direct flow of in-
formation from x to y on both branches, but our formu-
lation of explicit information flow would only detect the
flow in the else statement.

if (x == 0) y = 0; else y = x;

The goal of our approach is to support those implicit
flows where the value of one variable determines the
value of another variable. By using this criteria, we seek
a balance between tracking necessary data value propa-
gation and minimizing false positives. Currently, our im-
plementation supports two forms of implicit flows that
appear to be common in C programs.

• Translation tables. Decoding is sometimes imple-
mented using a table look up, e.g.,

y = translation_tab[x];

where translation tab is an array and x is a byte of
input. In this case, the value of x determines the value
of y although there is no direct assignment from x to
y. To handle this case, we modify the basic transfor-
mation so that the result of an array access is marked
as tainted whenever the subscript is tainted. This suc-
cessfully handles the use of translation tables in the
PHP interpreter.

• Decoding using if-then-else/switch. Sometimes, de-
coding is implemented using a statement of the form:

if (x == ’+’) y = ’ ’;

(Such code is often used for URL-decoding.) Clearly,
the value of y can be determined by the value of x.
More generally, switch statements could be used to
translate between multiple characters. Our transfor-
mation handles them in the same way as a series of
if-then-else statements. Specifically, consider an if-
then-else statement of the form:

if (x == E) { ... y = E′; ... }

If E and E′ are constant-valued, then we add a tag
update tag(y) = tag(x) immediately before the as-
signment to y.
While our current technique seems to identify some of

the common cases where implicit flows are significant, it
is by no means comprehensive. Development of a more
systematic approach that can provide some assurances
about the kinds of implicit flows captured, while ensur-
ing a low false positive rate, is a topic of future research.

7.2 Policy Refinement
Policy development effort is an important concern with
any policy enforcement technique. In particular, there is
a trade-off between policy precision and the level of ef-
fort required. If one is willing to tolerate false positives,
policies that produce very few false negatives can be de-
veloped with modest effort. Alternatively, if false neg-
atives can be tolerated, then false positives can be kept
to a minimum with little effort. To contain both false
positives and false negatives, more effort needs to be
spent on policy development, taking application-specific
or installation-specific characteristics.

The above remarks about policy-based techniques are
generally applicable to our approach as well. For the for-
mat string attack, we used a policy that tended to err on
the side of producing false positives, by disallowing all
use of tainted format directives. However, it is conceiv-
able that some applications may be prepared to receive a
subset of format directives in untrusted inputs, and han-
dle them correctly. In such cases, this application knowl-
edge can be used by a system administrator to use a less

Security ’06: 15th USENIX Security Symposium USENIX Association132



restrictive policy, e.g., allowing the use of format direc-
tives other than %n. This should be done with care, or
else it is possible to write policies that prevent the use of
%n, but allow the use of variants such as %5n that have
essentially the same effect. Alternatively, the policy may
be relaxed to permit specific exceptions to the general
rule that there be no format directives, e.g., the rule:

vfprintf(fmt) |

fmt matches any∗ (Format)T any∗ &&

(!(fmt matches "[ˆ%]*%s[ˆ%]*")) → reject()

allows the use of a single %s format directive from un-
trusted sources, in addition to permitting format strings
that contain untainted format directives.

The directory traversal policy also tends to err on the
side of false positives, since it precludes all accesses
outside the authorized top level directories (e.g. Docu-
mentRoot and cgi-bin) of a web server if components of
the file name being accessed are coming from untrusted
sources. In devising this policy, we relied on application-
specific knowledge, namely, the fact that web servers do
not allow clients to access files outside the top level di-
rectories specified in the server configuration file. An-
other point to be noted about this policy is that variants
of directory traversal attack that do not escape these top
level directories, but simply attempt to fool per-directory
access controls, are not addressed by our policy.

The control-flow hijack policy is already accurate
enough to capture all attacks that use corruption of code
pointers as the basis to alter the control-flow of programs,
so we proceed to discuss the SQL injection policy. The
policy shown in Figure 4 does not address attacks that
inject only SQL keywords (e.g., the UNION operation)
to alter the meaning of a query. This can be addressed by
a policy based on tokenization. The idea is to perform a
lexical analysis on the SQL query to break it up into to-
kens. SQL injection attacks are characterized by the fact
that multiple tokens appear in the place of one, e.g., mul-
tiple keywords and meta-characters were provided by the
attacker in the place of a simple string value in the attack
examples discussed earlier in the paper. Thus, systematic
protection from SQL injections can be obtained using a
policy that prevents tainted strings from spanning mul-
tiple tokens. A similar approach is suggested in [24],
although the conditions are not defined as precisely. Su
et al [27] provide a formal characterization of SQL injec-
tion using a syntax analysis of SQL queries. The essen-
tial idea is to construct a parse tree for the SQL query, and
to examine its subtrees. For any subtree whose root is
tainted, all the nodes below that subtree should be tainted
as well. In other words, tainted input cannot straddle dif-
ferent syntactic constructs. This is a further refinement
over the characterization we suggest, where tainted input
should not straddle different lexical entities.

Command injection attacks are similar to SQL injec-
tion attacks in many ways, and hence a tokenization-
based policy may be a good choice for them as well. For
this reason, we omit a detailed discussion of command
injection policies. Nevertheless, it should be mentioned
that there are some differences between SQL and com-
mand injection, e.g., shell syntax is much more complex
than SQL syntax. Moreover, we may want to restrict the
command names so that they are not tainted.

Note that tokenization is a lexical analysis task that
is (almost invariably) implemented using regular expres-
sion based specifications. Thus, the above tokenization-
based policy is amenable to expression using our policy
language. One could argue that a regular expression to
recognize tokens would be complex, and hence a policy
may end up using a simpler approximation to tokeniza-
tion. This discussion shows that the usual trade-off in
policy based attack detection between accuracy and pol-
icy complexity continues in the case of taint-enhanced
policies as well. Nevertheless, it should be noted that for
a given policy development effort, taint-enhanced poli-
cies seem to be significantly more accurate than policies
that do not incorporate any knowledge about taint.

Finally, we discuss the cross-site scripting at-
tack. The policy discussed earlier does not ad-
dress variations of the basic attack, e.g., attack-
ers can evade this policy by injecting the malicious
script code in “onmouseover=malicious()” or “<img
src="javascript:malicious()">”, which is not a
block enclosed by the script tag. To detect these XSS
variations, one has to understand the different HTML tag
patterns in which a malicious script can be injected into
dynamic HTML pages, and develop policies to prevent
the use of such tainted patterns in HTML outputs.

In summary, although the example policies shown in
Figure 4 were able to stop the attacks in our experi-
ments, many of them need further improvement before
they can stand up to skilled attackers that are knowl-
edgeable about the policies being enforced. We outlined
the ways to improve some of these policies, but a com-
prehensive solution to the policy development problem
is not really the focus or contribution of this paper. In-
stead, our contribution is to show the feasibility and prac-
ticality of using fine-grained taint information in devel-
oping policy-based attack protection. The availability of
fine-grained taint information makes our policies signif-
icantly more precise than traditional access-control poli-
cies. Moreover, our approach empowers system admin-
istrators and security professionals to update and refine
these policies to improve protection, without having to
wait for the patches of a newly discovered attack avenue.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 133



8 Related Work
Memory Error Exploit Detection. Buffer overflows
and related memory errors have received a lot of atten-
tion, and several efficient techniques have been devel-
oped to address them. Early approaches such as Stack-
Guard [7] and ProPolice [9] focused on just a single class
of attacks. Recently, more general techniques based on
randomization have been developed, and they promise to
defend against most memory error exploits [16, 2], How-
ever, due to the nature of the C language, these meth-
ods still cannot detect certain types of attacks, e.g., over-
flows from an array within a structure to an adjacent vari-
able. Fine-grained taint analysis can capture these at-
tacks whenever the corrupted data is used as an argument
in a sensitive operation. (This is usually the case, since
the goal of an attacker in corrupting that data was to per-
form a security-sensitive operation.) Although our over-
heads are generally higher than the techniques mentioned
above, we believe that they are more than compensated
by the increase in attack coverage.

Fine-Grained Taint Analysis. The key distinctions
between our work and previous fine-grained taint anal-
ysis techniques of [22, 28, 5] were already discussed in
the introduction, so we limit our discussion to the more
technical points here. As mentioned earlier, [28, 5] rely
on hardware support for taint-tracking. [22] is closer to
our technique than these two techniques. It has an advan-
tage over ours in that it can operate on arbitrary COTS bi-
naries, whereas we require access to the C source code.
This avoids problems such as hand-written assembly
code. Their main drawback is performance: on the ap-
plication Apache that they provide performance numbers
on, their overheads are more than 100 times higher than
ours. This is because (a) they rely on Valgrind, which in
itself introduces more than 40 times overheads as com-
pared to our technique, and (b) they are constrained by
having to work on binary code, and without the benefit of
static analyses and optimizations that have gone into our
work. (Here, we are not only referring to our own analy-
ses and optimizations, but also many of the optimizations
implemented in the GCC compiler that we used to com-
pile the transformed programs.)

There are several other technical differences between
our work and that of [22]. For instance, they track 32-bits
of taint information for each byte of data, whereas we
use 2 bits. Another important difference is our support
for implicit flows, which are not handled in [22].

Dynamic Taint Based Techniques for Detecting At-
tacks on Web Applications. Independently and in par-
allel to our work, which first appeared in [33], [23] and
[24] have proposed the idea of using fine-grained taint
analysis to detect injection attacks on web applications.
The implementations of [23] and [24] are very similar,

using hand-transformation of the PHP interpreter to track
taint data. However, [24] provides a more detailed for-
mulation and discussion of the problem, so we focus on
this work here. They explain that these injection attacks
are the result of ad hoc serialization of complex data such
as SQL queries or shell commands, and develop a de-
tection technique called context-sensitive string evalua-
tion (CSSE), which involves checking the use of tainted
data in strings. Our work improves over theirs in sev-
eral ways. First, by working at the level of the C lan-
guage, we are able to handle many more applications:
most server programs that are written in C, as well as
programs written in interpreted languages such as PHP,
bash and so on. Second, our formulation of the prob-
lem as taint-enhanced policy enforcement is more gen-
eral, and can be applied to stealthy attacks such as those
discussed in Section 2 that do not involve serialization
problems; and to attacks involving arbitrary types of data
rather than being limited to strings. Third, our approach
relies on a simple transformation that is shown in Section
3, and implemented using 3.6KLOC of code, while their
approach relies on manual transformation of a large piece
of software that has over 300KLOC. Other technical con-
tributions of our work include (a) the development of a
simple policy language for concise specification of taint-
enhanced polices, and (b) support for implicit flows that
allow us to provide some support for character encodings
and translations.

As discussed in Section 7, Su et al [27] describe a tech-
nique for detecting SQL injection attacks using syntax
analysis. Their main focus is on providing a precise and
formal characterization of SQL injection attacks. How-
ever, their implementation of taint tracking is not very
reliable. In particular, they suggest a technique that
avoids runtime operations for taint-tracking by “brack-
eting” each input string with two special symbols that
surround untrusted input strings. Assuming that these
brackets would be propagated together with input strings,
checking for the presence of taint would reduce to check-
ing for the presence of these special symbols. However,
this assumption does not hold for programs that extract
parts of their input and use them, e.g., a web applica-
tion may remove non-alphanumeric characters from an
input string and use them, and this process would likely
discard the bracketing characters. In other cases, a web
application may parse a user input into multiple fields,
and use each field independently, once again causing the
special symbols to be lost.

Manual Approaches for Correcting Input Validation
Errors. Taint analysis targets vulnerabilities that arise
due to missing or incorrect input validation code. One
can manually review the code, and try to add all the nec-
essary input validation checks. However, the notion of
validity is determined by the manner in which the input

Security ’06: 15th USENIX Security Symposium USENIX Association134



is used. Thus, one has to trace forward in the program to
identify all possible uses of an input in security sensitive
operations, which is a very time-consuming and error-
prone task. If we try to perform the validation check at
the point of use, we face the problem that the notion of
validity depends on the data source. For instance, it is
perfectly reasonable for an SQL query to contain semi-
colons if these originated within the program text, but
not so if it came from external input. Thus, we have
to trace back from security-sensitive operations to iden-
tify how its arguments were constructed, once again hav-
ing to manually examine large number of program paths.
This leads to situations where validation checks are left
out on some paths, and possibly duplicated on others.
Moreover, the validation checks themselves are notori-
ously hard for programmers to code correctly, and have
frequently been the source of vulnerabilities.

Information Flow. Information flow analysis has been
researched for a long time [1, 10, 8, 18, 30, 20, 25]. Early
research was focused on multi-level security, where fine-
grained analysis was not deemed necessary [1]. More re-
cent work has been focused on tracking information flow
at variable level, and many interesting research results
have been produced. While these techniques are promis-
ing for protecting privacy and integrity of sensitive data,
as discussed in Section 2, the variable-level granularity
is insufficient for detecting most attacks discussed in this
paper.

Static Analysis. Static taint analysis techniques have
been proposed by many for finding security vulnerabil-
ities, including input validation errors in web applica-
tions [17, 14, 32], user/kernel pointer bugs [15], format
string bugs [26], and bugs in placement of authorization
hooks [34]. The main advantage of static analysis (as
compared to runtime techniques) is that all potential vul-
nerabilities can be found statically, while its drawback is
a relative lack of accuracy. In particular, these techniques
typically detect dependencies rather than vulnerabilities.
For instance, [17] will produce a warning whenever un-
trusted data is used in any manner in an SQL query. This
may not be very useful if such a dependency is an inte-
gral part of application logic. To solve this problem, the
concept of endorsement can be used to indicate “safe”
dependencies. Typically, this is done by first perform-
ing appropriate validation checks on a piece of untrusted
data, and then endorsing it to indicate that it is safe to
use (i.e., no longer “tainted”). However, programmers
are still responsible for determining what is “safe” — as
discussed before, there is no easy way for them to do this.

An important difference between our work and static
analysis is one of intended audience. Static analysis
based tools are typically intended for use by developers,
since they need detailed knowledge about program logic

to determine where to introduce endorsements, and what
validation checks need to be made before endorsement.
In contrast, the audience for our tool is a system admin-
istrator or an outside security engineer that lacks detailed
knowledge of application code.

Other Techniques. SQLrand [4] defeats SQL injec-
tion by randomizing the textual representation of SQL
commands. A drawback of this approach, as compared
to the technique presented in this paper, is that it requires
manual changes to the program so that the program uses
the modified representation for SQL commands gener-
ated by itself. Our approach was inspired by the ef-
fect achieved by SQLrand, namely, that of distinguish-
ing commands generated by the application from those
provided by untrusted users.

AMNESIA[12] is another interesting approach for de-
tecting SQL injection attacks. It uses a static analysis of
Java programs to compute a finite-state machine model
that captures the lexical structure of SQL queries issued
by a program. SQL injection attacks cause SQL queries
issued by the program to deviate from this model, and
hence detected. A key benefit of this approach is that by
using static analysis, it can avoid runtime taint-tracking,
and is hence much more efficient than our approach. Al-
though this approach has been demonstrated to work well
for SQL injections, the conservative nature of its static
analysis and its inability to distinguish different sources
of inputs can lead to a higher rate of false positives when
applied to other types of attacks.

Perl has a taint mode [31] that tracks taint information
at a coarse granularity – that of variables. In Perl, one
has to explicitly untaint data before using it in a secu-
rity sensitive context. This is usually done after perform-
ing appropriate validations. In our approach, due to the
flexibility provided by our policy language, we have not
faced a need for such explicit untainting. Nevertheless,
if a user explicitly wants to trust some input, a primitive
can be easily added to support this.

9 Conclusion
In this paper, we presented a unified approach that ad-
dresses a wide range of commonly reported attacks that
exploit software implementation errors. Our approach
is based on a fully automatic and efficient taint analy-
sis technique that can track the flow of untrusted data
through a program at the granularity of bytes. Through
experiments, we showed that our technique can be ap-
plied to different types of applications written in multiple
programming languages, and that it is effective in detect-
ing attacks without producing false positives.

We believe that a number of software vulnerabilities
arise due to the fact that security checks are interspersed
throughout the program, and it is often difficult to check

Security ’06: 15th USENIX Security SymposiumUSENIX Association 135



if the correct set of checks are being performed on every
program path, especially in complex programs where the
control flows through many, many functions. By decou-
pling policies from application logic, our approach can
provide a higher degree of assurance on the correctness
of policies. Moreover, the flexibility of our approach al-
lows site administrators and third parties to quickly de-
velop policies to prevent new classes of attacks, without
having to wait for patches.

Acknowledgments
This research was supported in part by an ONR grant
N000140110967 and NSF grants CNS-0208877 and
CCR-0205376.

References
[1] D. E. Bell and L. J. LaPadula. Secure computer systems: Math-

ematical foundations. Technical Report MTR-2547, Vol. 1,
MITRE Corp., Bedford, MA, 1973.

[2] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. In USENIX Security Symposium, August 2003.

[3] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag, and P. Up-
puluri. Building survivable systems: An integrated approach
based on intrusion detection and damage containment. In DIS-
CEX, 2000.

[4] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL
injection attacks. In International Conference on Applied Cryp-
tography and Network Security (ACNS), pages 292–302, 2004.

[5] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. Defeat-
ing memory corruption attacks via pointer taintedness detection.
In IEEE International Conference on Dependable Systems and
Networks (DSN), 2005.

[6] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. For-
matGuard: Automatic protection from printf format string vul-
nerabilities. In USENIX Security Symposium, 2001.

[7] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Automatic de-
tection and prevention of buffer-overflow attacks. In USENIX
Security Symposium, 1998.

[8] D. E. Denning and P. J. Denning. Certification of programs for se-
cure information flow. Communications of the ACM, 20(7):504–
513, July 1977.

[9] H. Etoh and K. Yoda. Protecting from stack-smashing at-
tacks. http://www.trl.ibm.com/projects/security/ssp/main.html,
June 2000.

[10] J. S. Fenton. Memoryless subsystems. Computing Journal,
17(2):143–147, May 1974.

[11] J. Goguen and J. Meseguer. Security policies and security mod-
els. In IEEE Symposium on Security and Privacy, 1982.

[12] W. Halfond and A. Orso. AMNESIA: Analysis and monitoring
for neutralizing SQL-injection. In IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2005.

[13] N. Hardy. The confused deputy: (or why capabilities might
have been invented). ACM SIGOPS Operating Systems Review,
22(4):36–38, October 1988.

[14] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo.
Securing web application code by static analysis and runtime pro-
tection. In International World Wide Web Conference, 2004.

[15] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with
type inference. In USENIX Security Symposium, 2004.

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-
injection attacks with instruction-set randomization. In ACM
Conference on Computer and Communication Security (CCS),
2003.

[17] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in
Java applications with static analysis. In USENIX Security Sym-
posium, 2005.

[18] J. McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In IEEE Symposium on
Security and Privacy, pages 79–93, May 1994.

[19] S. McPeak, G. C. Necula, S. P. Rahul, and W. Weimer. CIL: In-
termediate language and tools for C program analysis and trans-
formation. In Conference on Compiler Construction, 2002.

[20] A. C. Myers. JFlow: Practical mostly-static information flow
control. In ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 228–241, Jan. 1999.

[21] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. In Workshop on Runtime Verification (RV), Boulder,
Colorado, USA, July 2003.

[22] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software. In Network and Distributed System Security
Symposium (NDSS), 2005.

[23] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening web applications using pre-
cise tainting. In 20th IFIP International Information Security
Conference, 2005.

[24] T. Pietraszek and C. V. Berghe. Defending against injection at-
tacks through context-sensitive string evaluation. In Recent Ad-
vances in Intrusion Detection (RAID), 2005.

[25] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. Selected Areas in Communications, 21(1), Jan.
2003.

[26] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format string vulnerabilities with type qualifiers. In USENIX Se-
curity Symposium, 2001.

[27] Z. Su and G. Wassermann. The essence of command injection
attacks in web applications. In ACM Symposium on Principles of
Programming Languages (POPL), January 2006.

[28] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure pro-
gram execution via dynamic information flow tracking. In Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, pages 85–96, Boston, MA,
USA, 2004.

[29] P. Uppuluri and R. Sekar. Experiences with specification based
intrusion detection. In proceedings of the Recent Advances in
Intrusion Detection conference, October 2001.

[30] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167–
187, 1996.

[31] L. Wall, T. Christiansen, and R. Schwartz. Programming Perl.
O’Reilly, 1996.

[32] Y. Xie and A. Aiken. Static detection of security vulnerabilities
in scripting languages. In USENIX Security Symposium, 2006.

[33] W. Xu, S. Bhatkar, and R. Sekar. Practical dynamic taint analysis
for countering input validation attacks on web applications. Tech-
nical Report SECLAB-05-04, Department of Computer Science,
Stony Brook University, May 2005.

[34] X. Zhang, A. Edwards, and T. Jaeger. Using CQual for static
analysis of authorization hook placement. In USENIX Security
Symposium, 2002.

Security ’06: 15th USENIX Security Symposium USENIX Association136




