
1

Computer Security
in the Real World

Butler Lampson

Microsoft

August 2005

2

Real-World Security
It’s about risk, locks, and deterrence.

− Risk management: cost of security < expected value of loss
− Perfect security costs way too much

− Locks good enough that bad guys don’t break in often.

− Bad guys get caught and punished often enough to be
deterred, so police and courts must be good enough.

− You can recover from damage at an acceptable cost.

Internet security is similar, but little accountability
– It’s hard to identify the bad guys, so can’t deter them

3

Accountability

Can’t identify the bad guys, so can’t deter them

How to fix this? End nodes enforce accountability
– They refuse messages that aren’t accountable enough

» or strongly isolate those messages
– All trust is local

Need an ecosystem for
– Senders becoming accountable
– Receivers demanding accountability
– Third party intermediaries

To stop DDOS attacks, ISPs must play

4

How Much Security

Security is expensive—buy only what you need.
– You pay mainly in inconvenience
– If there’s no punishment, you pay a lot

People do behave this way
We don’t tell them this—a big mistake
The best is the enemy of the good

– Perfect security is the worst enemy of real security

Feasible security
– Costs less in inconvenience than the value it protects
– Simple enough for users to configure and manage
– Simple enough for vendors to implement

5

Dangers and Vulnerabilities

Dangers
– Vandalism or sabotage that

» damages information
» disrupts service

– Theft of money
– Theft of information
– Loss of privacy

integrity
availability
integrity
secrecy
secrecy

Vulnerabilities
– Bad (buggy or hostile) programs
– Bad (careless or hostile) people

giving instructions to good programs

6

Defensive strategies

Locks: Control the bad guys
– Coarse: Isolate—keep everybody out
– Medium: Exclude—keep the bad guys out
– Fine: Restrict—Keep them from doing damage

Recover—Undo the damage

Deterrence: Catch the bad guys and punish them
– Auditing, police, courts or other penalties

7

The Access Control Model

Object

Resource

Reference
monitor
Guard

Do
operation

Request

Principal

Source

Authorization

Audit log

Authentication

Policy

1. Isolation boundary

2. Access control

3. Policy

1. Isolation Boundary to prevent attacks outside
access-controlled channels

2. Access Control for channel traffic

3. Policy management

8

Isolation

Attacks on:
– Program
– Isolation
– Policy

Services
Boundary
Creator

G
U
A
R
D

G
U
A
R
D

policy

policy

Program

Data

guard

Host

I am isolated if whatever goes wrong is my (program’s) fault

Object

Resource

Reference
monitor
Guard

Do
operation
Request

Principal

Source

Authorizatio
n

Audit log

Authentication

Policy

1. Isolation boundary

2. Access
control

3.
Policy

9

Mechanisms—The Gold Standard

Authenticate principals: Who made a request
− Mainly people, but also channels, servers, programs

(encryption implements channels, so key is a principal)

Authorize access: Who is trusted with a resource
− Group principals or resources, to simplify management

− Can be defined by a property, such as “type-safe” or “safe
for scripting”

Audit: Who did what when?

Lock = Authenticate + Authorize

Deter = Authenticate + Audit

Object

Resource

Reference
monitor
Guard

Do
operation
Request

Principal

Source

Authorization

Audit log

Authentication

Policy

1. Isolation boundary

2. Access control

3.
Policy

10

Making Security Work

Assurance
– Does it really work as specified by policy?

– Trusted Computing Base (TCB)
» Includes everything that security depends on:

Hardware, software, and configuration

Assessment
– Does formal policy say what I mean?

» Configuration and management

The unavoidable price of reliability is simplicity.—Hoare

11

Resiliency: When TCB Isn’t Perfect

Mitigation: stop bugs from being tickled
– Block known attacks and attack classes

» Anti-virus/spyware, intrusion detection

– Take input only from sources believed good
» Red/green; network isolation. Inputs: code, web pages, …

Recovery: better yesterday’s data than no data
– Restore from a (hopefully good) recent state

Update: today’s bug fix installed today
– Quickly fix the inevitable mistakes
– As fast and automatically as possible

» Not just bugs, but broken crypto, compromised keys, …

12

Why We Don’t Have “Real” Security

A. People don’t buy it:
– Danger is small, so it’s OK to buy features instead.
– Security is expensive.

» Configuring security is a lot of work.

» Secure systems do less because they’re older.

− Security is a pain.
» It stops you from doing things.

» Users have to authenticate themselves.

B. Systems are complicated, so they have bugs.
– Especially the configuration

13

Authentication and Authorization

Alice is at Intel, working on Atom, a joint Intel-
Microsoft project

Alice connects to Spectra, Atom’s web page, with SSL

Chain of responsibility:
 KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒
Atom@Microsoft ⇒r/w Spectra

Object

Resource

Reference
monitor
Guard

Do
operation
Request

Principal

Source

Authorization

Audit log

Authentication

Policy

1. Isolation boundary

2. Access control

3.
Policy

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel AtomProj@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

14

Principals

Authentication: Who sent a message?
Authorization: Who is trusted?

Principal — abstraction of “who”:
– People Alice, Bob
– Services microsoft.com, Exchange
– Groups UW-CS, MS-Employees
– Secure channels key #678532E89A7692F, console

Principals say things:
– “Read file foo”
– “Alice’s key is #678532E89A7692F”

15

Trust: The “Speaks For” Relation

Principal A speaks for B about T: A ⇒Τ Β

– Meaning: if A says something in set T, B says it too.

Thus A is as powerful as B, or trusted like B,
about T

These are the links in the chain of responsibility

– Examples
»Alice ⇒ Atom group of people
»Key #7438 ⇒ Alice key for Alice

16

Delegating Trust: Evidence
How do we establish a link in the chain?

– A link is a fact Q ⇒ R. Example: Key#7438 ⇒ Alice@Intel

The “verifier” of the link needs evidence:
“P says Q ⇒ R”. Example: KIntel says Key#7438 ⇒ Alice@Intel

Three questions about this evidence:
– How do we know that P says the delegation?

» It comes on a secure channel from P, or signed by P’s key

– Why do we trust P for this delegation?
» If P speaks for R, P can delegate this power

– Why is P willing to say it?
» It depends: P needs to know Q, R and their relationship

17

Secure Channel

Examples
– Within a node Operating system (pipes, LPC, etc.)

– Between nodes Secure wire (hard if > 10 feet)

IP Address (fantasy for most networks)

Cryptography (practical)

Secure channel does not mean physical network
channel or path

C ⇒ P KAlice ⇒ Alice@Intelpossible senderIf P is the only
Integritypossible senders
Confidentialitypossible receiversHas known
C says s KSSL says read SpectradirectlySays things

18

Authenticating Channels

Chain of responsibility:
 KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ …

Ktemp says KAlice says
(SSL setup) (via smart card)

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel

Microsoft

Intel

KAlice Spectra
ACL

Atom@Microsoft

19

Authenticating Names: SDSI/SPKI

A name is in a name space, defined by a principal P
– P is like a directory. The root principals are keys.

P speaks for any name in its name space
KIntel ⇒ KIntel / Alice (which is just Alice@Intel)
KIntel says

… Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ …

says

KSSL

says
says

Alice’s smart
card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel

Microsoft

Intel

KAlice
Spectra

ACL

Atom@Microsoft

20

Authenticating Groups
A group is a principal; its members speak for it

– Alice@Intel ⇒ Atom@Microsoft
– Bob@Microsoft ⇒ Atom@Microsoft
– …

Evidence for groups: Just like names and keys.
… KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w …

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel AtomProj@Microsoft

Microsoft

Intel

KAlice
Spectra

ACL

21

View a resource object O as a principal
An ACL entry for P means P can speak for O

– Permissions limit the set of things P can say for O
If Spectra’s ACL says Atom can r/w, that means

Spectra says
… Alice@Intel ⇒ Atom@Microsoft ⇒r/w Spectra

Authorization with ACLs

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

22

End-to-End Example: Summary

Request on SSL channel: KSSL says “read Spectra”

Chain of responsibility:
KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒
Atom@Microsoft ⇒r/w Spectra

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel AtomProj@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

23

Authenticating Programs: Loading
Essential for extensibility of security
A digest X can authenticate a program SQL:

– KMicrosoft says “If file I has digest X then I is SQL”
– formally X ⇒ Kmicrosoft /SQL

To be a principal, a program must be loaded
– By a host H into an execution environment
– Examples: booting OS, launching application

X ⇒ SQL makes H —want to run I if H approves SQL
 —willing to assert H / SQL is running

But H must be trusted to run SQL
– KBoeingITG says H / SQL ⇒ KBoeingITG /SQL

like KAlice ⇒ Alice@Intel

24

Auditing

Auditing: Each step is logged and justified by

– A statement, stored locally or signed (certificate), or

– A built-in delegation rule

Checking access:
– Given a request KAlice says “read Spectra”

an ACL Atom may r/w Spectra

– Check KAlice speaks KAlice ⇒ Atom
for Atom
rights suffice r/w ≥ read

25

Assurance: NGSCB/TPM

A cheap, convenient, physically separate machine
A high-assurance OS stack (we hope)
A systematic notion of program identity

– Identity = digest of (code image + parameters)
» Can abstract this: KMS says digest ⇒ KMS / SQL

– Host certifies the running program’s identity:
 H says K ⇒ H / P

– Host grants the program access to sealed data
» H seals (data, ACL) with its own secret key
» H will unseal for P if P is on the ACL

26

Learn more

Computer Security in the Real World

at research.microsoft.com/lampson
(slides, paper; earlier papers by Abadi, Lampson, Wobber, Burrows)

Also in IEEE Computer, June 2004

Ross Anderson – www.cl.cam.ac.uk/users/rja14

Bruce Schneier – Secrets and Lies

Kevin Mitnick – The Art of Deception

