Computer Security
in the Real World

Butler Lampson
Microsoft
August 2005

Real-World Security

It’s about risk, locks, and deterrence.

— Risk management: cost of security < expected value of loss
— Perfect security costs way too much

— Locks good enough that bad guys don’t break in often.

— Bad guys get caught and punished often enough to be
deterred, so police and courts must be good enough.

— You can recover from damage at an acceptable cost.

Internet security 1s similar, but little accountability
— It’s hard to 1dentify the bad guys, so can’t deter them

Accountability

Can’t 1dentify the bad guys, so can’t deter them

How to fix this? End nodes enforce accountability

— They refuse messages that aren’t accountable enough
» or strongly 1solate those messages

— All trust is local
Need an ecosystem for
— Senders becoming accountable
— Receilvers demanding accountability
— Third party intermediaries

To stop DDOS attacks, ISPs must play

How Much Security

Security 1s expensive—buy only what you need.
— You pay mainly 1n inconvenience
— If there’s no punishment, you pay a lot

People do behave this way
We don’t tell them this—a big mistake

The best is the enemy of the good

— Perfect security 1s the worst enemy of real security

Feasible security
— Costs less 1n inconvenience than the value 1t protects
— Simple enough for users to configure and manage
— Simple enough for vendors to implement

Dangers and Vulnerabilities

Dangers
— Vandalism or sabotage that
» damages information integrity
» disrupts service availability
— Theft of money integrity
— Theft of information secrecy

— Loss of privacy secrecy

Vulnerabilities
— Bad (buggy or hostile) programs

— Bad (careless or hostile) people
giving 1nstructions to good programs

Defensive strategies

Locks: Control the bad guys
— Coarse: Isolate—keep everybody out
— Medium: Exclude—keep the bad guys out
— Fine: Restrict—Keep them from doing damage
Recover—Undo the damage
Deterrence: Catch the bad guys and punish them
— Auditing, police, courts or other penalties

The Access Control Model

1.

Isolation Boundary to prevent attacks outside
access-controlled channels

Access Control for channel traffic
Policy management

‘ Reference
Do Object

Resource

Principal w monitor
Source RequyJ Guard
1. Isolation boundary
2. Access control /v
3. Policy/

Isolation

I am 1solated 1f whatever goes wrong 1s my (program’s) fault

Attacks on:

— Program
— Isolation ====='
Program — Policy =
Data
- inciodl poferencep |

Source Request Guard Resource

Boundary
Creator eorva
H ost Policy

1. Isolation boundary

Services

Mechanisms—The Gold Standard

Authenticate|principals: Who made a request

— Mainly people, but also channels, servers, programs
(encryption implements channels, so key 1s a principal)

Authorize |access: Who 1s trusted with a resource

— Group principals or resources, to simplify management

— Can be defined by a property, such as “type-safe” or “safe

for scripting”

Audit; Who did what when? E: — I_m F\

Deter = Authenticate + Audit

aperation
Source ReunI

Lock = Authenticate + Authorize """~

2. Access control

3/

‘ ard] Resource

Policy

Making Security Work

Assurance
— Does 1t really work as specified by policy?
— Trusted Computing Base (TCB)

» Includes everything that security depends on:

Hardware, software, and configuration

Assessment
— Does formal policy say what I mean?

» Configuration and management

The unavoidable price of reliability is simplicity.—Hoare

10

Resiliency: When TCB Isn’t Perfect

Mitigation: stop bugs from being tickled

— Block known attacks and attack classes
» Anti-virus/spyware, intrusion detection

— Take mput only from sources believed good

» Red/green; network 1solation. Inputs: code, web pages, ...

Recovery: better yesterday’s data than no data
— Restore from a (hopefully good) recent state

Update: today’s bug fix installed today
— Quickly fix the inevitable mistakes

— As fast and automatically as possible
» Not just bugs, but broken crypto, compromised keys, ...

11

Why We Don’t Have “Real” Security

A. People don’t buy 1it:

— Danger 1s small, so 1t’s OK to buy features instead.
— Security 1S expensive.

» Configuring security 1s a lot of work.

» Secure systems do less because they’re older.
— Security 1s a pain.
» It stops you from doing things.

» Users have to authenticate themselves.

B. Systems are complicated, so they have bugs.

— Especially the configuration
12

Authentication and Authorization

Alice 1s at Intel, working on Atom, a joint Intel-
Microsoft project

Alice connects t0 Spectra, Atom’s web page, with SSL

Chain of responsibility:
K =K, =K,

temp lice
Atom@Microsoft =

@CIOSOQ

lsays

— Alice@Intel —

Spectra

r/w

AliceeIntel ' AtomProjeMicrosoft

Kaiice dﬁ Ktemp \

A

- Ks
Alice’s Alice’s login_"™S3L |\ Spectra
smart card sysem | /web page

13

Principals

Authentication: Who sent a message?
Authorization: Who 1s trusted?

Principal — abstraction of “who:

— People Alice, Bob
— Services microsoft.com, Exchange
— Groups UW-CS, MS-Employees

— Secure channels key #678532E89A7692F, console

Principals say things:
— “Read file foo”
— “Alice’s key 1s #678532E89A7692F”

14

Trust: The “Speaks For” Relation

Principal 4 speaks for B about 7. 4 = B
— Meaning: if 4 says something 1n set 7, B says 1t too.
Thus A 1s as powerful as B, or trusted like B,
about T
These are the links 1n the chain of responsibility

— Examples
»Alice = Atom group of people
»Key #7438 = Alice key for Alice

15

Delegating Trust: Evidence

How do we establish a link 1n the chain?
— A link 1s a fact O = R. Example: key#7438 = Alice@Intel

The “verifier” of the link needs evidence:
“P Says Q = R”. Example: K, . Says Key#7438 = Alice@Intel

Three questions about this evidence:

— How do we know that P says the delegation?
» It comes on a secure channel from P, or signed by P’s key

— Why do we trust P for this delegation?
» If P speaks for R, P can delegate this power

— Why 1s P willing to say 1t?
» It depends: P needs to know O, R and their relationship

16

Secure Channel

Says thlngs directly C SAYS S| K says read Spectra
Has known possible receivers |Confidentiality

possible senders |Integrity

If P is the only possible sender |C=P| K,.= Alice@lntel

Examples
— Within anode Operating system (pipes, LPC, etc.)
— Between nodes Secure wire (hard if > 10 feet)

[P Address (fantasy for most networks)
Cryptography (practical)

Secure channel does not mean physical network
channel or path

17

Authenticating Channels

Chain of responsibility:

KSSL — K — KAIZC@ — Alice@lntel = ...

K., says K .. SAYS

temp

(SSL setup) (via smart card

iy Spectra

D A
Alice’s—___Alice’s login—"sst | Spectra
smart card system web page

Authenticating Names: SDSI/SPKI

A name 1s 1n a name space, defined by a principal P
— P 1s like a directory. The root principals are keys.

P speaks for any name 1n its name space
K, ., =K, . /2lice (whichisjustalicerintel)

ntel nte

K[ntel Says l

L K — KAlice —> Alice@Intel — ...

temp

<Mi crosoft \
— 77777////
lsays

(Intel) .
Alice@Intel ﬁ Atome@Microsoft

| Spectra
Kaiice éﬁ Kiemp ACL

Alice’s smart Alice’s login Ksst Spectra
card system web page 19

Authenticating Groups

A group 1s a principal; its members speak for it
— Alice@Intel = Atom@Microsoft
— Bob@Microsoft = Atom@Microsoft

Evidence for groups: Just like names and keys.
.. KAlice = Alicel@Intel = Atom@Microsoft =2 4 ...

<\ Microsoft

says
Alice@Intel AtomProj@Microsoft
e

Alice’s Alice’s login]_KsgL [Spectra
smart card system web page 20

Authorization with ACLs

View a resource object O as a principal
An ACL entry for P means P can speak for O

— Permissions limit the set of things P can say for O
If spectra’s ACL says atom can r/w, that means

Spectra saysl

... Alice@Intel = Atom@dMicrosoft — ., Spectra

/W

@croso@
o |says

<i§%tel AlicereIntel Atom@Microsoft

says

w Says

\

/Spectra\

J/ACL

Alice’s login KssL Spectra
system web page

KN@H‘&--iPQam“z-~

Alice’s
smart card

21

End-to-End Example: Summary

Request on SSL channel: K, says “read spectra”

Chain of responsibility:
K =K, =K,

temp
Atom@Microsoft =

lice — AllcelIntel =

Spectra

r/w

Alice@Intel» AtomProjeMicrosoft

says
Kaiice <ﬁ Ktemp
| V&??
Alice’s Alice’s login| "™S3L | Spectra

smart card sysem /web page

22

Authenticating Programs: Loading

Essential for extensibility of security

A digest X can authenticate a program sor:
- K o Says “If tile 7 has digest X then /1s sQL”

Micros

— formally| X = K

microsoft

/SQLllike Ky, = Alice@Intel

To be a principal, a program must be loaded
— By a host H into an execution environment
— Examples: booting OS, launching application

X => sor. makes H —want to run [if H approves sQL
—willing to assert H / SQL 1s running

But A must be trusted to run sor
~ BoeinglTG SayS H/soL = KBoeingITG /SQL

23

Auditing

Auditing: Each step 1s logged and justified by
— A statement, stored locally or signed (certificate), or

— A built-in delegation rule

Checking access:

— (Given arequest K .. says “read Spectra”
an ACL Atom may r/w Spectra

— Check K ;.. speaks K,;..,= Atom
for Atom
rights suffice r/w=read

24

Assurance: NGSCB/TPM

A cheap, convenient, physically separate machine
A high-assurance OS stack (we hope)

A systematic notion of program identity
— Identity = digest of (code 1mage + parameters)

» Can abstract this: K¢ says digest = K, s/ SQL

— Host certifies the running program’s identity:
Hsays K= H/P

— Host grants the program access to sealed data
» H seals (data, ACL) with 1ts own secret key
» H will unseal for P 1f P 1s on the ACL

25

[.earn more

Computer Security in the Real World

at research.microsoft.com/lampson

(slides, paper; earlier papers by Abadi, Lampson, Wobber, Burrows)
Also 1in IEEE Computer, June 2004

Ross Anderson — www.cl.cam.ac.uk/users/rjal4
Bruce Schneier — Secrets and Lies
Kevin Mitnick — The Art of Deception

26

