Motivation

Arrgh! There is so much bad traffic on the internet!
- DoS attacks
- Worms
- Port scans
- Spambots
- Spoofer attacks
- Game cheaters

Question: What can be done?

Client puzzles offer an ideal punishment mechanism:
- Easy to assign punishment
- Can make punishment arbitrarily difficult
- False positives degrade but do not deny service

Other work secures individual protocol vulnerabilities, however the most effective solution should protect all network traffic; thus it must be placed in the IP layer.

Our approach:
- **IP layer client puzzles**

Challenges

Flexible Deployment
- Puzzle issuers at arbitrary network locations

Minimal Overhead
- Puzzles can be generated at line speed
- Constant state at the puzzle issuer
- Minimal packet expansion

Tamper Resistance
- Replay attacks
- Spoofer attacks
- Work ahead attacks

Support for Real Time Apps
- Online games
- Streaming media

Puzzle Protocol

<table>
<thead>
<tr>
<th>Client</th>
<th>Issuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Cookie</td>
<td>Server Cookie, F, Puzzle Parameters</td>
</tr>
<tr>
<td>Client Cookie, Server Cookie, Answer</td>
<td></td>
</tr>
</tbody>
</table>

Puzzle Algorithm

Hint-Based Hash-Reversal

Requirements:
- Keyed HMAC (h)
- High entropy random number generator (rand)

Creating the Puzzle:
1. Answer = rand()
2. Hint = Answer - (rand() mod Difficulty)
3. Puzzle Hash = (Answer)
4. discard the Answer

Solving the Puzzle:
1. Search Value = Hint
2. if (Search Value = Puzzle Hash) then: Answer = Search Value
3. Search Value = Search Value + 1
4. go to step 2

Protocol Extensions

IP Options Cookie:
- Issue Timestamp
- Client Nonce
- F
- Server Cookie
- Server Port
- Protocol
- Maturity Time
- Puzzle Difficulty
- Puzzle Parameters (variable length)

ICMP Puzzle:
- Type = 26
- Code = 0
- Server IP
- Client Port
- Server Port
- Maturity Time
- Puzzle Difficulty
- Puzzle Parameters (variable length)

iptables Implementation

Puzzle Proxy
- Cache Packet
- Add Cookie to IP Header
- Retransmit Packet
- Solve Puzzle
- Add Answer to IP Header

Puzzle Firewall
- Need Puzzle?
- No
- Issue ICMP Puzzle
- Drop Packet
- Valid Answer?
- No
- Next Packet
- Yes

Performance

Constant State at Issuer
- Fast to issue
 - Requires only one hash and two random numbers

Fine Grain Difficulty Control
- Can linearly increment puzzle difficulty

Throughput
- Tests use:
 - Dual 1.8GHz Intel Xeon machines
 - Cisco Catalyst 4000 Gigabit switch

- Firewall:
 - Validate and issue puzzles at 182,000 packets/s
 - Proxy:
 - Solve min-difficulty puzzles at 130,000 packets/s
 - Solve max-difficulty puzzles at << 1 packets/s

Slowing Port Scans

Time to Scan (s)

- As difficulty increases, time to scan increases

Future Work

Reputation-Based Networking
- Keep interaction history about clients
- Determine their reputability
- Use IP Puzzles to punish clients who are bad
- Share knowledge with other IP Puzzle firewalls

Publicly Auditable Puzzles
- Puzzle answers can be independently verified by intermediate IP Puzzle routers
- Answers can indicate amount of work done

Puzzles With Useful Answers
- Puzzle algorithms where the answers provide useful computation for the puzzle issuer
- Puzzle answers must be easily verifiable

OGI SCHOOL OF SCIENCE & ENGINEERING

OREGON HEALTH & SCIENCE UNIVERSITY

http://www.cse.ogi.edu/sysl/

Funded by:

intel