
USENIX Association

Proceedings of the
11th USENIX Security

Symposium

San Francisco, California, USA
August 5-9, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Access and Integrity Control in a Public-Access,
High-Assurance Configuration Management System

Jonathan S. Shapiro John Vanderburgh
shap@cs.jhu.edu vandy@srl.cs.jhu.edu

Systems Research Laboratory
Johns Hopkins University

Abstract

OpenCM is a new configuration management system created to support high-assurance develop-
ment in open-source projects. Because OpenCM is designed as an open source tool, robust replica-
tion support is essential, and security requirements are somewhat unusual – preservation of access
is as important as prevention. Also, integrity preservation is a primary focus of the information
architecture. Because some of our supported development activities target high-assurance systems,
traceability and recovery from compromise are also vital concerns.

This paper describes the mechanisms used by OpenCM to meet these needs. While some of
the techniques used are particular to archival stores, others have potentially broader applications in
replication-based distributed systems.

1 Introduction
OpenCM – the Open Configuration Management
System – is a new configuration management (CM)
system created to support high assurance, open
source software development. It uses cryptographic
naming and authentication to achieve distributed,
disconnected, access-controlled configuration man-
agement across multiple administrative domains.

High-assurance CM systems must support require-
ments for audit, traceability, and process enforce-
ment [ISO98]. In particular, higher evaluation as-
surance levels require that every modification to the
trusted computing base be validated (a form of au-
dit) by a second person. Implicit in this requirement
is the need for provenance tracking: knowing who
performed which check-ins. If the same repository is
to be used successfully for trusted and untrusted code
bases, access controls must be present on branches.
For validation to be cost-effective, correct change
sets should be straightforward to generate. This re-
quires that the CM information architecture provide
strong integrity guarantees to guard against falsifica-
tion of prior configurations.

Open source projects introduce a different, and to
some degree competing, set of requirements. These
projects commonly span traditional administrative
and corporate boundaries. Open source develop-
ers make heavy use of disconnected development at

home or while traveling. These practices create mul-
tiple vulnerabilities:

� Code in the developer workspace may be tam-
pered with by a malicious party. With current
CM systems, there is no means to audit and
recover if such code is committed.

� The inability to commit while disconnected
encourages larger change sets that commingle
multiple changes. This facilitates developer
mistakes.

� Existing CM systems require developers to
have a login account on the server to revise ob-
jects in the repository. Allowing such broad
access from untrusted (and potentially com-
promised) clients invites compromise of the
server as well.

Further, the multi-organizational nature of open
source teams means that a supporting CM system
must not rely on a single source of administrative au-
thority for account generation or access control; the
authorization and protection model must provide for
controlled commingling of administrative domains.

The EROS [SSF99] project is developing a high-
assurance operating system using an open source de-
velopment process. To support this project, a new
CM system supporting the combined requirements



of open source and high assurance was required. Ex-
amination of existing configuration management sys-
tems suggested that none could meet our require-
ments, as none provides careful provenance tracking
or supports integrity checks across hostile replicates.
OpenCM [Sha02] was created to resolve this defi-
ciency.

This paper describes the first-generation access and
integrity control mechanisms of OpenCM, which
provide a safely replicatable store while avoiding the
need for distributed trust. We describe the usage
model, threat model, guarantees provided, and dis-
cuss some implications of the OpenCM access con-
trol mechanism. We also identify two vulnerabil-
ities that have emerged from oversights in the in-
tial design, and the changes that are being made in
OpenCM to overcome these vulnerabilities. While
the focus of this paper is OpenCM, we believe that
the underlying information architecture is a general-
purpose schema that provides a wide-area, integrity-
checked distribution and naming system for online
archival content.

2 OpenCM Usage Model
OpenCM is a client/server application. Developers
typically work on individual workstations with the
repository hosted on a centrally managed server. In
small projects these may be the same machine. Typ-
ical use is similar to that of CVS [Ber90]: the devel-
oper checks out a baseline version of some branch,
makes modifications, and commits them back as the
new state of that branch. As with CVS, the model
is “change, then integrate” rather than “lock, then
change.” Experience with both models suggests that
post-integration is more effective for small develop-
ment groups. Reasonable users might disagree with
this view, and lease-based locks are being contem-
plated for a future version of OpenCM.

2.1 Differences from CVS

Key differences between OpenCM and CVS are as
follows:

� OpenCM captures a complete audit trail of all
modifications, provides fine-grain access con-
trols of reads and writes, and preserves content

integrity when replicating across hostile repos-
itory servers.

� OpenCM manages configurations, not collec-
tions. Every “commit” is a unique, atomic ac-
tion. A cleanly reconstructable trail of ver-
sions is therefore preserved – even across re-
names.

� OpenCM supports disconnected commit. A
developer can check into a local repository
when the reference repository is unreachable,
allowing development to proceed and change
history to be tracked when developing in re-
mote locations. Subsequent integration pre-
serves the history trail as well as the changes.

� OpenCM is designed for use as a software
distribution infrastructure. Servers can selec-
tively replicate some or all of various branches
for redistribution or local use.

� OpenCM uses SSL/TLS client authentication
for authorization. It is therefore independent
of the underlying operating system, support-
ing multi-organizational development without
requiring the repository server to support “for-
eign” users.

� OpenCM leverages its integrity checking
mechanisms to reduce the number of network
transactions required when performing devel-
oper operations such as update and revert.

From an assurance perspective, three differences be-
tween OpenCM and CVS are especially important:

First, OpenCM operation is not based on “patches.”
Patches (as generated by diff) describe a change in
the content of a line of development without con-
veying the history or provenance of the changes.
This is insufficient to support audit and traceabil-
ity. OpenCM instead uses an object-based change
description that preserves the entire connected graph
of a development process, allowing the history of
all integrated changes to be reviewed if OpenCM is
properly used. In the process OpenCM preserves a
complete audit of who performed each change.

Second, OpenCM provides access controls on both
branches and “files.” The second is a misnomer,
which will be explained in Section 5.4. A sin-
gle project supported by a one or more OpenCM



repositories can have distinct development branches
and audited branches, and can provide some degree
of support for “social” constraints (e.g. technical
writers typically should not modify C source code).
While separate branches can be used to keep selected
users out of trouble, this can be inconvenient in a
tight-knit project team.

Third, OpenCM provides mechanisms for end-to-
end integrity checks between the originating repos-
itory for a branch and the end client. While it is pos-
sible for malicious replicates to inject bad data, such
injections can be reliably detected by the client given
only a modest amount of externally transmitted, non-
sensitive information (a signature verification key).

2.2 Threat Model

Given that end users typically develop on untrusted
machines, OpenCM does not attempt to prevent the
introduction of bad code. The design goal is to en-
sure that all development changes are performed by
authenticated users, and that an audit trail is pre-
served for all changes. In the event that a client sys-
tem is compromised, the design goal is to (a) quickly
disable that user’s authority to modify, and (b) retain
enough information to successfully audit the changes
made under the now-compromised authority.

A direct consequence of untrusted clients is that
OpenCM is vulnerable to denial of resource attacks.
A compromised client may be used to upload an un-
bounded amount of state to a repository. This is
unavoidable if untrusted clients are to be supported.
Two mechanisms can be used to mitigate this:

1. As a result of the object naming strategy,
OpenCM repositories store duplicate content
only once.

2. Quotas can be imposed on new state intro-
duced per-transaction and on total transaction
duration. We have not (yet) implemented this.

Each of the preceding vulnerabilities results from a
functional requirement. In both cases, the “recovery”
mechanism is the same: disable the compromised
user, perform an audit of the suspected changes, and
garbage collect the damage.

With the inherent conflict between availability
and resource attacks acknowledged, the remaining

threats against OpenCM are relatively few:

1. OpenCM relies on the Secure Sockets Layer
(SSL/TLS) [DA99] for transport security and
client authentication. Any vulnerability in
SSL is a potential vulnerability in OpenCM.

2. More realistically, an attacker might attack
the pass-phrases of the user keys. This is
a widely recognized and ongoing weakness.
[MT79, FK89, Wu99]

3. An attacker may seek to compromise the
OpenCM repository from underneath by com-
promising the operating system or the server
daemon.

4. An attacker may seek to impersonate a repos-
itory, attempting to pass off bad (and perhaps
compromised) content as valid. In high assur-
ance applications, impersonating a repository
that serves trusted content is a particularly ur-
gent concern.

SSL is critical infrastructure to a very large num-
ber of applications. This tends to make it widely at-
tacked, widely tested, and quickly repaired. We are
not cryptography experts, and prefer to let the experts
address these issues.

Our primary concern with SSL is the second vul-
nerability: weak passphrases. Here we have chosen
to compromise. While stronger authentication (e.g.
S/Key [Hal94] or OPIE [MAM95]) is certainly pos-
sible, we suspect that it is not helpful in practice. If
an attacker has compromised the end system, which
would be necessary to steal the private key, we must
assume that they have left a Trojan horse as well. In
that case stronger encryption merely promotes false
confidence.

A second potential concern with SSL is that the op-
erating system cannot assist in access enforcement.
Given the decentralized nature of the OpenCM au-
thorization model, it is not possible for the operating
system to do so.

OpenCM provides scalability by enabling replication
across untrusted repositories. At some cost in prop-
agation delay, this allows load distribution across
replicates. Experience from other projects suggests
that this is a heavily used form of software distribu-
tion [Pol96]. For high-assurance software, this dis-



tribution method introduces potential vulnerabilities,
and the integrity of the distributed content must be
protected. OpenCM uses a combination of crypto-
graphic techniques to achieve this (Section 3.5).

2.3 Guarantees

Provided that a signature verification key can be dis-
tributed via a trusted path, OpenCM provides the fol-
lowing guarantees:

(1) The user can verify that any object obtained
from a repository is valid. By “valid,” we mean
that an integrity check can be performed that re-
veals whether this object is complete, and that it was
checked in by an authorized modifier of the branch.
Valid does not imply correct – verifying the code is
beyond the scope of OpenCM.

(2) While all objects received can be authenticated,
no guarantees are provided about whether the object
is up to date unless the user obtains it from the orig-
inating repository. If the object is obtained from a
replicate repository, it is guaranteed to have come
from earlier valid state of the branch.

(3) If a user’s authentication key or client is com-
promised, total integrity exposure is limited to the set
of branches that the user can modify; OpenCM as a
whole is not compromised.

(4) Integrity verification is designed to be possible
even if the user obtains certain types of partial copies
of a branch. For example, the user may choose to
replicate only selected versions of a branch, and can
validate that the versions obtained are authentic.

(5) Provided the originating repository is not com-
promised, the complete history of each branch orig-
inating at that repository will be available from that
repository. This has implications for merge manage-
ment.

(6) The repository records authentication informa-
tion for every change. In the event of user key com-
promise, this information is sufficient to allow audit
of suspicious changes.

(7) Impersonating a repository requires both steal-
ing the repository’s private key and compromising
the IP routing mechanisms near the client.

3 Information Model
To provide these trust guarantees, OpenCM takes
advantage of the archival character of configuration
management data. Archival information has two un-
usual properties that tremendously simplify integrity
checking. First, most objects in an archival store are
persistent and unchanging; we refer to these objects
as frozen. Second, objects that can be modified allow
modifications only under certain constraints.

Depending on the application, two management
strategies for modifiable objects are possible:

� Eventual consistency, in which modifications
are performed locally and eventually make
their way by replication to some (possibly fed-
erated) master repository.

� Source-controlled objects, where changes for
a given object are permitted only on an object-
specific “owning” repository. A sequence
number can be used to resolve replication dis-
putes for such objects.

Configuration management applications fall under
the second category, because a total ordering on the
sequence of changes made to a given branch is re-
quired, and this cannot be guaranteed by eventual
consistency.

3.1 The Repository Schema

The basic OpenCM repository is built on a relatively
generic schema consisting of five object types: muta-
bles, revision records, users, groups, and frozen con-
tent (Figure 1). Every mutable carries its own name,
the names of its controlling read and write group(s),
(which are in turn mutables), the number of revisions
that have been performed on this mutable, a human-
readable name and description, and a sequence num-
ber indicating how many times the mutable has been
in some way altered (used in replication). Mutables
also carry a “flags” field. At present, the valid flags
are “frozen,” indicating that the mutable cannot be
revised, and “notrail”, indicating that historical revi-
sion records for this mutable need not be preserved.
A mutable can be legally modified only by its orig-
inating repository, and is signed using that reposi-
tory’s signing key after each revision.



Mutable

Mutable User Mutname
Group Mutname
User Mutname

Group

Frozen
Content

Frozen
Content

Frozen
Content

0

1

2

??
(w)

(r)

(Revisions: Set)

Singleton

(Revisions: Set)

(r) (w)

Figure 1: Repository Schema.

Every mutable has associated with it zero or more
revision records. Each revision record contains a se-
quence number, the name of its associated mutable,
a date stamp, a pointer (a cryptographic hash) to the
frozen content associated with that revision, and a
cryptographic signature performed using the origi-
nating repository’s signing key.

The repository layer knows only two types of
(frozen) content objects. Users hold public keys and
home directory mutable names. Groups hold a set of
user or group mutable names.

Content objects in the OpenCM repository cannot be
modified, and are therefore referred to as “frozen.”
Because these objects are frozen, their semantics de-
pends exclusively on their content, and there is no
reason to keep multiple copies of objects whose con-
tent chances to be identical. Frozen objects are there-
fore named by their cryptographic hash.

Using cryptographic hashes achieves compression
and integrity checking at the cost of imposing a re-
striction on the application-level schema: the content
model must be acyclic. Cycles in object names based
on cryptographic hashes cannot be resolved without
combining the objects into a single bundle. In the
OpenCM repository, cycles can be managed by hav-
ing a frozen object that contains the name of a mu-
table object. The OpenCM application does not re-
quire this.

3.2 OpenCM Content Schema

The content schema of the OpenCM application is
shown in simplified form in Figure 2. Branches are
mutable. Each branch consists of a linked list of con-
figuration objects that in turn hold Entities.

Configuration

Entity

EntityBits

Branch
Mutable

Entity Entity

Cfg. Cfg.

EntityBits EntityBits

Older Configurations

Entity = (name, attribute, EntityBits) tuple

(EntitySet: ObVec)

(ConfigurationList: ObVec)

, , ,

Figure 2: OpenCM Information Architecture.

A Configuration is simply a set of Entity objects.
Each Entity provides a binding between a name, a
set of attributes (client-side workspace permissions,
for example), and an EntityBits object name. The
EntityBits object describes the content, as opposed
to the metadata, of an object. The separation of En-
tity and EntityBits is purely a convenience. It allows
the repository to record permissions and rename op-
erations without needing to re-record the associated
object content.

The Entity/EntityBits combination represents a sin-
gle version of a given object. In OpenCM, all ver-
sioning is performed on configurations. Committing
a change to a single object is accomplished by cre-
ating a new EntityBits object, a new Entity object,
and a new Configuration object. The new Configura-
tion is identical to the old one with the exception that
the EntityBits name for the previous version of the
modified object is replaced by the EntityBits name
for the new version. While there is no implied or re-
quired ordering of the Entity objects within a Config-
uration, unordered collections are serialized in such
a way that their object names are sorted. This max-
imizes the likelihood that the repository will be able



to identify common content between two objects that
can be leveraged for storage compression.

While the described schema is clearly specific to the
CM application, the essential enabling properties for
integrity validation are relatively generic:

� The content model is acyclic. More precisely,
cycles can be present only by having a frozen
object contain the name of a mutable object.

� Each mutable object is signed whenever it is
changed.

Any information pool that can be reduced to these
constraints can use the techniques described in this
paper to provide distributed integrity checks across
untrusted replicating stores.

3.3 Frozen Object Naming

The most important integrity mechanism of
OpenCM is built into its object naming strategy.
Frozen objects are named in the repository by
the cryptographic hash of their content (currently
SHA-1) Thus, a Configuration object is named by
its hash expressed as a string of the form

frz.sha1.01cb4c...7245

where “frz” is a non-normative prefix indicating the
type of the named object (used primarily for reposi-
tory debugging), and “01cb4c...7245” is the SHA-1
cryptographic hash of the frozen object.

Using a cryptographic hash in this way has several
desirable attributes.

First, cryptographic hashes simultaneously provide a
unique naming scheme for all frozen objects and al-
lows the content delivered by any repository to be
checked for integrity failure. No practical technique
is currently known by which to generate a string
whose cryptographic hash collides with a previously
known cryptographic hash. Further, the likelihood
that such a string, if generated, would pass higher
level content checks (such as syntax checking during
compilation) is vanishingly small.

Second, cryptographic hashes are universally
unique. Partitioned (e.g. disconnected) repositories
can generate names for frozen objects without fear

of collision. This is helpful, as it prepares the ground
for later replication. The only case in which frozen
object names should collide is the case in which an
object has already been copied from one repository
to another. In that case, the content should be
identical, so no conflict resolution mechanism is
required.

Finally, the use of a universally unique naming
scheme allows efficient replication. Before fetching
a frozen object from a source repository, the replica-
tion engine can check with the destination repository
to see if the object is already present.

OpenCM currently uses SHA-1 hashes, and we have
performed extensive testing of real repositories with-
out collision. However, the hashing strategy name is
encoded within the hash as recorded. In the unlikely
event that a collision ever occurs, an alternative hash-
ing strategy can be employed to generate a fallback
name. Given the distributed and semi-connected na-
ture of OpenCM, however, such a collision cannot
necessarily be detected.

3.4 Mutable Object Naming

Regrettably, mutable objects cannot be named by
cryptographic hashes of their content, because
changes to the object would lead to object name
changes, breaking links to these objects. To name
mutable objects, OpenCM relies on cryptographi-
cally strong random number generation. Mutable ob-
ject names are strings of the form:

opencm://7a5d...93/27da...05

where “7a5d...93” is the originating repository’s
name and “27da...05” is a cryptographically gener-
ated unique name for this mutable assigned by the
originating repository. A repository’s name is gen-
erated by taking the SHA-1 hash of its initial public
key (see Section 4.1). This eliminates the risk of in-
advertantly disclosing the signing key [Dav01].

The choice of a URI format for mutable names is not
accidental. We plan to maintain a repository registry
under the opencm.org domain. If the “7a5d...93”
repository has been registered, then

7a5d...93.registry.opencm.org



will resolve to the IP number of the serving host.

Good random number generators are not univer-
sally available, and where available are not al-
ways properly installed. At present, OpenCM re-
lies on the OpenSSL implementation as its source
of random numbers. Unfortunately, current ver-
sions of OpenSSL rely on the underlying native ran-
dom number generator. The /dev/random and
/dev/urandom generators are reasonably good,
but generators on other platforms are quite variable.
The resulting exposure is less than it might at first ap-
pear, because mutable object names are generated on
the originating repository, and can therefore be tested
to prevent collision. The inclusion of the repository’s
name in the mutable object name therefore reduces
the problem of name collision to elimination of col-
lisions among repository public keys.

3.5 Revision and Mutable Signing

To ensure that mutable object integrity can be ver-
ified, a digital signature is computed each time the
mutable object is changed. The signed content in-
cludes the object’s name as well as its content, and
the name includes the repository’s public key. This
makes object substitution detectable. In the usual
case, the mutable object retains its change history.
A mutable object consists of:

sequence-number
mutableURI
r-group
w-group
nRevisions
signature-of-preceding

The associated revision objects consist of:

revision number
mutableURI
contentName
authorURI
date
signature-of-preceding

Provided that the repository’s signature checking key
can be reliably determined, the digital signature pro-
vides both authentication and integrity checking of

the mutable and revision objects. Frozen objects are
named by the cryptographic hash of their content,
which provides an inherent integrity check. Since
the contentName references a frozen object, the
authentication of the digital signature effectively in-
cludes the entire graph of frozen objects reachable
from the contentName object.

4 Authentication
OpenCM authentication is built on SSL client au-
thentication. Every user has (at least) one X.509 key,
and wields this key in response to the SSL client au-
thentication challenge. We are in the process of im-
plementing an OpenCM-agentutility similar to the
ssh-agent [Ylo96] to serve as the user’s proxy for
key management.

4.1 Server Authentication

While OpenCM is built on SSL/TLS, we have cho-
sen to avoid reliance on certificate authorities for key
authentication. The human association provided by
user certificates is not required by this application,
and existing certificate authority mechanisms do not
provide a reliable means to preserve repository iden-
tity across key updates. OpenCM therefore uses self-
signed certificates.

At present, OpenCM implements repository authen-
tication in a fashion similar to SSH [Ylo96]. The
client makes its first connection without knowing
the repository’s public key, and records the pub-
lic key provided by the repository to detect later
substitutions. Security-conscious users can preload
the client-side public key cache by explicitly insert-
ing the correct repository key prior to connection.
While adequate as a first implementation, this solu-
tion is unsatisfactory for secure operation by every-
day users.

The next release of OpenCM will use a certificate
registry mechanism: each repository will have both
an online repository key and an offline registry up-
date key. The update key is used exclusively to sign
registry updates. A repository registry service pub-
lishes a set of (repository name, IP address, current
public key, previous public key, registry public key)
tuples for each repository. The SHA-1 hash of each
update is signed by the registry update key, providing



a checkable sequence of updates. The initial public
key can be checked by comparing its SHA-1 hash to
the server’s name.

By registering a public repository with a modest
number of independent registries, server public keys
can be adequately published and the risk of hostile
registries can be mitigated. In order to forge a server
that publishes trusted content, an attacker must ob-
tain the private key, control a colluding key registry,
and be able to redirect registry connections from the
client to this registry. The last requires compromis-
ing either the client or the IP routing infrastructure
near the client.

Certificate registries require neither a hierarchy nor
a carefully managed certificate authority key. They
are therefore robust against both political interfer-
ence and registry compromise. The cost of this is
that the per-repository registry update key is analo-
gous to a title instrument, and must be guarded.

4.2 User Authentication

OpenCM distinguishes two levels of access control:
access to the repository vs. access rights on objects.
Access to the repository is effectively an authentica-
tion control. The repository access permitted to any
given user is stored independently by each reposi-
tory, and can be updated only by members of the
repository administrative group. Read access allows
the corresponding user to read the repository, subject
to the further constraints of the access control lists
on any objects the user attempts to access. Write ac-
cess conveys the authority to upload objects to the
repository (i.e. to consume storage resources). This
access is honored only on the repository of origin.
Mutable objects are subject to the further constraint
of per-object access controls.

Because repository access is controlled on a per-
repository basis, User objects can be replicated for
the sake of traceability and display without grant-
ing authority on the destination repository. In public
replicate repositories, it is usual to grant replicated
users read access on the replicate repository.

OpenCM also provides a “dog house” for keys that
are believed compromised. If a user’s authentication
key has expired, or if it appears in the dog house, it
will not be authenticated. Compromised and expired

keys are retained for purposes of checking historical
signatures.

The use of cryptographic authentication renders
OpenCM administratively “agnostic.” An outside
user (e.g. one from another company) can be “in-
troduced” to a repository simply by adding their user
key to the valid readers list. If they are an active
(modifying) collaborator, they can also be added to
the valid writers list. While these are preconditions
to accessing the OpenCM repository at all, neither
of these actions grants the user the ability to fetch
or modify anything on the repository. Introduction
merely makes the key available so that individual
project administrators can choose to add this user to
their respective project groups. Note, however, that
the resulting authority is entirely limited to OpenCM.
The outside user has no ability to log in or to run pro-
grams outside of the control of OpenCM. OpenCM
authentication is “user to service” rather than “user
to server.”

5 Access Control
All object references in the OpenCM repository orig-
inate with mutable objects. Frozen objects are, in ef-
fect, the content of the mutable objects that reference
them. Therefore, the access control mechanisms ap-
propriate to each are different.

5.1 Access to Mutables

The OpenCM access control mechanism for mutable
objects is similar to conventional ACLs with a twist:
access control lists are first-class, mutable objects,
and are themselves subject to access control lists.

Every mutable object names a “reader” and a
“writer.” These slots may legally contain either the
mutable URI of a user key or the mutable URI of a
group. Group membership is transitive: a user is a
member of a group

���
if (a) they are directly listed

as a current member of
� �

or (b) they are a member
(recursively) of some group

���
, and

���
is in turn

a directly listed member of
� �

. Due to replication,
it is possible for locally undetectable loops to arise
in the group containment relationships. The mem-
bership expansion algorithm is careful to detect and
deal with cycles.



Groups are themselves mutable objects. Like all mu-
tables, groups are initially created as readable and
writable by their creating user. The creating user is
also inserted as a member of this group. User � can
create a group

�
, make

�
the reader or writer of

some branch, and then add other users to
�

, grant-
ing them read (write) authority while retaining the
ability to revoke that authority. It is common in this
situation to make the group’s r-group slot name
the group itself (i.e. make it self-readable) so that
users can see which groups contain them.

The purpose of transitive groups is to facilitate del-
egation. By adding a group � as a member of

�
,

where � is readable and writable by some other user,
user � can revocably delegate access control to this
other user. This is particularly important in cross-
organization collaborations, where each participat-
ing company or entity may need to make its own lo-
cal decisions about access control.

It should be noted that delegation of this type is im-
possible to prevent. Any user with read access to any
object and write access to the repository has suffi-
cient authority to create a new line of development
derived from any existing state – this is required to
allow branch creation. The new branch, however, is
owned by its creating user, which leaves that user
free to alter the access rights of the branch.

Given this, the question to ask is not “How shall we
prevent authorized users from behaving badly?” but
rather “How shall we ensure that when such things
are done reintegration remains possible?” By giving
the user an opportunity not to break the revision trail,
OpenCM preserves the option of later re-integration.

5.2 Access to Frozen Objects

The readability test for frozen objects is reachabil-
ity. If an authenticated user has read permission on
a mutable object, any frozen object reachable from
that mutable object is likewise readable. There are
no ACLs on frozen objects.

This point is a frequent source of confusion about the
architecture, and it may be better understood given a
brief digression on the implementation of access con-
trol lists. Imagine an unchanging (frozen) content
object for which we wish to maintain a revisable ac-
cess control list. To achieve this, there must be some

place where a mutation can occur. Either the access
control list itself must be mutable or there must be
some third, mutable container object that records the
association between the content object and its access
control list. The two designs are functionally inter-
changeable. In either case, the content object has in
effect been rendered mutable. Extending the content
model to be a graph rather than a single blob of bytes
does not change the basic requirements for access
control, nor does it inherently change the security of
the access control model (but see Section 7).

5.3 Impact of Replication

Replication and first-class groups interact in a poten-
tially surprising way. If a group

���
in repository � �

contains as one of its members another group
���

in
repository � � , replication will have the side effect of
copying the reader keys reachable from

� �
onto � � .

This in turn has the effect of allowing those users to
read objects on � � subject to the constraints of their
respective access control lists. In effect, control of
local objects can be delegated to groups that origi-
nate on a remote repository. These groups may in
turn be controlled by remote users. This is either a
bug or a feature, depending on point of view.

We do not yet have enough experience with OpenCM
to understand what the real impact of this will be.
If it proves to be a source of difficulty in practice,
fully local control can be restored by requiring that
if
���

is added as a member of
� �

, the addition will
succeed only if both objects have the same originat-
ing repository. If necessary, we will add a repository
configuration option to enforce this constraint.

We expect, however, that such a configuration option
would not often be used because it would interfere
with disconnected development. When performing a
disconnected commit to a locally created temporary
branch, it is typically desirable to create this tempo-
rary branch using the same read and write groups as
the original branch in order to allow others to see the
development history when the temporary branch is
replicated back to the master repository for integra-
tion.



5.4 Finer Access Controls

Experience in our research lab suggests that finer
access controls are extremely useful. For example,
we have students working on drivers for the EROS
project. It is useful for them to be able to modify
these drivers without being able to modify the ker-
nel code. At present, we handle this by creating a
distinct line of development (branch) for each stu-
dent’s work, but this ultimately impedes integration.
The concern is error rather than malice: deleting the
wrong file could cause a fair bit of disruption. Fine-
grain access controls help reduce such errors.

Curiously, this type of access control is not really
access control on files at all. Files in OpenCM are
immutable, so there is no need to prevent their mod-
ification. Rather, these controls restrict the binding
of file names in the client-side workspace. When we
say “Fred can only modify .html files,” we are re-
ally saying that each configuration defines a set of
(client-name, object-name) pairs, and we are going
to restrict Fred’s selection of legal client-names to
those that end in html.

OpenCM provides fine-grain access control in the
form of a table of regular expressions. This table de-
scribes which subsets of the client namespace a given
user or group can modify.

5.5 Summary of Access Checks

Reading an OpenCM object requires that:

1. User key is not in the dog house.

2. User key has read access to repository.

3. User key appears (transitively) in the read or
write group of the mutable object they are try-
ing to access.

Creating a new mutable object requires that:

1. User key is not in the dog house.

2. User key has write access to repository.

Committing a new revision additionally requires
that:

1. User key appears (transitively) in the write
group of the mutable object they are trying to
revise.

2. For all client-side names in the configuration
whose binding has changed relative to the pre-
vious version, the user is permitted to make
binding changes for that name according to the
fine-grain control table.

6 High-Assurance Development
The EROS project is attempting to construct a system
that can evaluate successfully at the highest currently
defined evaluation level (EAL7). OpenCM is de-
signed to facilitate relatively open access, while pro-
viding accountability for modifications. In this sec-
tion, we describe how OpenCM has been deployed
within the Systems Research Laboratory to meet the
EAL7 CM requirements.

The essential vulnerabilities in the system lie in (a)
the possibility that the server host has been compro-
mised, and (b) the possibility that the user’s key has
been compromised. The first presents a chicken and
egg problem: until something like EROS exists in
widely-available form, it is impossible to adequately
protect the EROS code base. For now, we have set-
tled for locking down the machine: OpenCM is the
only application connected to the outside world on
our high-assurance repository host, and periodic off-
line backups are made of the repository.

The key to high-assurance development is to ensure
that commits on the high-assurance branch are made
using offline keys from a known-trusted machine.
When performing these commits, we first inspect (as
a group) the proposed changes, making note of the
signature of the version under inspection. We then
physically log in to a dedicated account on the CM
server, perform an integrity check on the version to
be merged, and perform the merge using the author-
ity of a key stored on a floppy disk.

7 Vulnerabilities
There is little that can be done to protect a user if they
can be convinced to ask initially for a non-authentic
branch. In properly constructed cryptography, the
best that can be achieved is to ensure that users get
what they ask for.

Beyond this, the initial implementation of OpenCM
suffers from two significant vulnerabilities embed-



ded in the information architecture as originally de-
signed. We describe them and possible solutions to
them here.

7.1 History Backwalk

The first exposure concerns access controls on frozen
objects. As discussed in Section 5.2, the access pred-
icate for a frozen object is based on reachability. We
made an initial, naive assumption that cryptographic
hashes were unguessable, and that this provided suf-
ficient protection to prevent unauthorized reads. The
GetFrozenObject() repository operation there-
fore did not perform access checks. Our theory was
that even if such a name leaked, only a single version
of a single branch is exposed, and that repository-
level authentication was a sufficient impediment to
theft. In hindsight, this was mistaken.

In the OpenCM schema, every Configuration object
includes the frozen object name of its predecessor
configuration (the “Older Configurations” arrow in
Figure 2). This “back pointer” is necessary to en-
sure that the merge algorithm works; its presence (or
equivalent) and accessability is a functional require-
ment of the configuration management system. An
unforeseen consequence is that any holder of a valid
Configuration object name who can authenticate to
any replicate repository can obtain the entire history
of development up to that Configuration. For open
source development, this is a non-issue, but for pro-
prietary projects it may be a significant concern.

One solution would be to revise the object request in-
terface to require the specification of a path anchored
at a mutable so that the reachability test can be ex-
plicitly performed. Regrettably, this doesn’t help; an
attacker with access to a client can extract such a path
as easily as they can extract the configuration name.

A second solution might be to encrypt the crypto-
graphic names stored in the client workspace using
the client’s secret key. If the secret key is compro-
mised, the attacker can obtain anything in any case,
so this is effectively the best that is achievable. We
are, however, uncomfortable with this solution, as it
does not solve the problem for content stored in local
repositories.

A third solution is to have each repository maintain
an inverse mapping from every frozen object to its

set of “containing” mutable objects. This is clearly
feasible, but we are hoping for a simpler solution.

At this point, we consider this problem “still un-
solved.” A number of workable strategies have been
proposed, but it is unclear how best to address the
issue. For our own use in open source projects, the
problem is not pressing.

7.2 Mutable Names

As originally designed, mutable object names did not
include the name of their originating repository. This
yielded the possibility that a mutable object could
be forged by providing completely false, signed con-
tent and binding it to the name of the original muta-
ble. This flaw was recognized and diagnosed inde-
pendently by Mark Miller and Chris Riley prior to
the first code release. Miller provided the solution,
which is to include the mutable’s name (including the
repository name) as part of its signed content. This
solution is incorporated in the first OpenCM release.

7.3 Server Compromise

It is of course possible for a repository server to be
compromised. If the repository’s private signing key
is stolen, false content can be introduced in the repos-
itory or existing content can be destroyed. While
OpenCM cannot eliminate this vulnerability, it does
provide a means for recovery. Mutual replication be-
tween two repositories can ensure that deleted con-
tent is recoverable. Audit can, with some pain, de-
termine what has been changed improperly, allowing
it to be removed or recovered. Registry updates can
then be used to introduce a new signing key while
preserving the repository identity.

8 Future Plans
OpenCM is currently working, and has been in use in
our lab for several months on a number of software
projects. While it is meeting our needs for file-based
development, a number of opportunities exist for fu-
ture enhancement. Of these, the most pressing is the
need for a secure scripting language.

Scripting is needed in OpenCM for two reasons.
First, various transformations on data streams can
usefully be done on checkout and commit. It would



be useful if the implementation of these transforms
can be accomplished in a machine-independent way
but outside of the OpenCM TCB (which is already
too large for comfort). Second, there are automatable
consistency, access control, and process enforcement
policies whose enforcement we would like to em-
bed in the tool, but in many cases these policies
are project-specific. Use of a safe scripting lan-
guage seems like a reasonable approach. For this
application we are considering integration of W7, a
Scheme-derived security kernel created by Jonathan
Rees [Ree96]. We are also considering integra-
tion of a native implementation of the E capability-
secure scripting langage [MMF00], whose syntax
may prove more approachable to many users.

We are also interested in creating an OpenCM client
for workspace-oriented programming languages, as
has been done for (among others) VisualAge Java
and SmallTalk.

9 Related Work
9.1 CM Systems

There is a great deal of related prior work on con-
figuration management in general. As this paper fo-
cuses on access control, we synopsize it only briefly
here. Interested readers may wish to examine the
more detailed treatment in the original OpenCM pa-
per [Sha02] or various other surveys on this subject.

RCS and SCCS provide file versioning and
branching for individual files. Both provide lock-
ing mechanisms and a limited form of access con-
trol on locks (compromisable by modifying the file).
Neither provides either configuration management or
substantive archival access control features. Further,
each ties the client name of the object to its content,
making them an unsuitable substrate for configura-
tion management.

NUCM uses an information architecture that is su-
perficially similar to that of OpenCM [dHHW96].
NUCM “atoms” correspond roughly to OpenCM
frozen objects, but atoms cannot reference other ob-
jects within the NUCM store. NUCM collections
play a similar role to OpenCM mutables, but the
analogy is not exact: all NUCM collections are mu-
table objects. The NUCM information architecture

includes a notion of “attributes” that can be associ-
ated with atoms or collections. These attributes can
be modified independent of their associated object,
which effectively renders every object in the repos-
itory mutable. NUCM does not provide significant
support for archival access controls or replication.

Subversion is a successor to CVS currently un-
der development by Tigris.org [CS02]. Unlike CVS,
Subversion provides first-class support for configu-
rations. Like CVS, Subversion does not directly sup-
port replication. Subversion’s access control model
is based on usernames, and is therefore unlikely to
scale gracefully across multi-organizational projects
without centralized administration.

WebDAV The “Web Documents and Versioning”
[WG] initiative is intended to provide integrated doc-
ument versioning to the web. It provides branching,
versioning, and integration of multiple versions of a
single file. When the OpenCM project started, Web-
DAV provided no mechanism for managing config-
urations, though several proposals were being eval-
uated. Given the current function of OpenCM,
OpenCM could be used as an implementation vehi-
cle for WebDAV.

BitKeeper incorporates a fairly elegant design for
repository replication and delta compression. To
our knowledge, it does not incorporate adequate
(i.e. cryptographic) provenance controls for high-
assurance development. Further, it does not address
the trusted path problem introduced by the presence
of untrusted intermediaries in the software distribu-
tion chain.

9.2 Other

Various object repositories, most notably Objectiv-
ity and ObjectStore, would be suitable as supporting
systems for the OpenCM repository design. This is
especially true in cases where an originating reposi-
tory is to be run as a distributed, single-image repos-
itory federation. Neither directly provides an access
control mechanism similar to OpenCM.

Both Microsoft’s “Globally Unique Identifiers” and
Lotus Notes object identifiers are generated using
strong random number generators. Miller et al.’s
capability-secure scripting language E [MMF00]
uses strong random numbers as the basis for secure



object capabilities. The Droplets system [Clo98]
by Tyler Close has adapted this idea to cryptographic
capabilities encoded in URLs.

The Xanadu project was probably the first system
to make a strong distinction between mutable and
frozen objects (they referred to them respectively
as “works” and “editions”) and leverage this dis-
tinction as a basis for replication [SMTH91]. In
hindsight, the information architecture of OpenCM
draws much more heavily from Xanadu ideas than
was initially apparent. The OpenCM access con-
trol design is closely derived from the Xanadu
Clubs architecture[SMTH91], originally conceived
by Mark Miller.

OpenCM’s use of cryptographic names was most di-
rectly influenced by Waterken, Inc’s Droplets system
[Clo98]. Related naming schemes are used in Lotus
Notes and in the GUID generation scheme of DCE.

10 Acknowledgements
The Xanadu Clubs architecture [SMTH91] was orig-
inally conceived by Mark Miller and subsequently
refined by Jonathan Shapiro. Comments and feed-
back on this paper were provided by David Chiz-
madia, Mike Hilsdale, Mark Miller, Chris Riley, and
Anshumal Sinha.

Mark Miller’s diagnosis of the mutable substitution
problem came at a critical and fortuitous moment be-
fore we shipped the first release. At a minimum, it
saved us the embarassment of an incompatible ver-
sion 2 shipping weeks after version 1.

11 Conclusions
OpenCM supports the requirements of high-
assurance development in an open-source environ-
ment. It uses cryptographic naming and authenti-
cation to achieve distributed, disconnected, access-
controlled configuration management across multi-
ple administrative domains and to provide strong
integrity guarantees. OpenCM supports multi-
organizational project teams through use of domain-
agnostic cryptographic authentication and discon-
nected commit. It also provides delegation and
strong provenance tracking.

While there are many interdependencies in the de-

sign, there are no clever or excessively complicated
algorithms or techniques in the system. The funda-
mental insight, such as it is, is that successful distri-
bution and configuration management can be built on
only two primitive concepts – naming and identity
– and that cryptographic hashes provide an elegant
means to unify these concepts and provide a basis
for integrity checks.

The OpenCM schema is not limited to configuration
management applications. It is a general-purpose in-
formation model that provides wide-area, integrity-
checked distribution and naming system for online
archival content. Further, it is relatively neutral
with respect to demands on the underlying storage-
system. The one serious “missing link” in the exist-
ing OpenCM architecture as a general-purpose con-
tent substrate is the absence of a self-assuring, even-
tually consistent collection mechanism; we believe
we see a means to realize such collections. It is our
plan to pursue the use of the underlying architecture
for other information spaces.

The core OpenCM system, including command line
client, two local file system repository implementa-
tions, and remoting support, consists of 19,134 lines
of code. Roughly 20% of this code is serializa-
tion support that could be automatically generated.
In contrast, the corresponding CVS core is 52,055
lines (both sets of numbers omit the diff/merge, RCS,
compression libraries, comments, and blank lines).
In spite of this simplicity, OpenCM works reliably,
efficiently, and effectively. It also provides greater
functionality and performance than its predecessor.
One of the significant surprises in this effort has been
the degree to which a straightforward, naive imple-
mentation has proven to be reasonably efficient.

OpenCM was released at the USENIX 2002 confer-
ence. Software is available from the OpenCM web
site at http://www.opencm.org or the EROS
project web site at http://www.eros-os.org.

References
[Ber90] B. Berliner. CVS II: Parallelizing soft-

ware development. In Proceedings
of the USENIX Winter 1990 Technical
Conference, pages 341–352, Berkeley,
CA, 1990. USENIX Association.



[Clo98] Tyler Close. Droplets, 1998.

[CS02] Ben Collins-Sussman. The subversion
project: Building a better cvs. The Linux
Journal, February 2002.

[DA99] T. Dierks and C. Allen. The TLS proto-
col version 1.0, January 1999. Internet
RFC 2246.

[Dav01] Don Davis. Defective sign & encrypt in
S/MIME, PKCS7, MOSS, PEM, PGP,
and XML. In Proc. 2001 USENIX Tech-
nical Conference, Boston, MA, June
2001. USENIX Association.

[dHHW96] A. Van der Hoek, D. Heimbigner, and
A. Wolf. A generic peer-to-peer reposi-
tory for distributed configuration man-
agement. In Proc. 18th International
Conference on Software Engineering,
Berlin, Germiny, March 1996.

[FK89] David C. Feldmeier and Philip R. Karn.
UNIX password security - ten years
later. In CRYPTO, pages 44–63, 1989.

[Hal94] Neil M. Haller. The S/KEY one-time
password system. In Proceedings of the
Symposium on Network and Distributed
System Security, pages 151–157, 1994.

[ISO98] Common Criteria for Information Tech-
nology Security. International Standards
Organization, 1998. International Stan-
dard ISO/IS 15408, Final Committee
Draft, version 2.0.

[MAM95] Daniel L. Mcdonald, Randall J. Atkin-
son, and Craig Metz. One time pass-
words in everything (opie): Experiences
with building and using stronger authen-
tication. In Proc. 5th USENIX Security
Symposium, Salt Lake City, UT, 1995.

[MMF00] Mark S. Miller, Chip Morningstar, and
Bill Frantz. Capability-based financial
instruments. In Proc. Financial Cryp-
tography 2000, Anguila, BWI, 2000.
Springer-Verlag.

[MT79] Robert Morris and Ken Thompson.
Password security: A case history.
CACM, 22(11):594–597, 1979.

[Pol96] J. Polstra. Program source for cvsup,
1996.

[Ree96] Jonathan A. Rees. A security kernel
based on the lambda-calculus. Techni-
cal Report AIM-1564, 1996.

[Sha02] Jonathan S. Shapiro. CPCMS: A con-
figuration management system based
on cryptographic names. In Proc.
FREENIX Track of the 2002 USENIX
Annual Technical Conference. USENIX
Association, 2002.

[SMTH91] Jonathan S. Shapiro, Mark Miller, Dean
Tribble, and Chris Hibbert. The Xanadu
Developer’s Guide. Palo Alto, CA,
USA, 1991.

[SSF99] Jonathan S. Shapiro, Jonathan M.
Smith, and David J. Farber. EROS: A
fast capability system. In Proc. 17th
ACM Symposium on Operating Systems
Principles, pages 170–185, Kiawah Is-
land Resort, near Charleston, SC, USA,
December 1999. ACM.

[WG] E. James Whitehead, Jr. and Yaron Y.
Goland. WebDAV: A network pro-
tocol for remote collaborative author-
ing on the web. In Proc. of the
Sixth European Conf. on Computer Sup-
ported Cooperative Work (ECSCW’99),
Copenhagen, Denmark, September 12-
16, 1999, pages 291–310.

[Wu99] Thomas Wu. A real-world analysis of
kerberos password security. In Proc.
1999 Internet Society Network and Dis-
tributed System Security Symposium,
February 1999.

[Ylo96] Tatu Ylonen. SSH — secure login con-
nections over the Internet. pages 37–42,
1996.


