
USENIX Association

Proceedings of the
9th USENIX Security Symposium

Denver, Colorado, USA
August 14 –17, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Encrypting Virtual Memory

Niels Provos

Center for Information Technology Integration

University of Michigan

provos@citi.umich.edu

Abstract

In modern operating systems, cryptographic �le sys-
tems can protect con�dential data from unautho-
rized access. However, once an authorized process
has accessed data from a cryptographic �le system,
the data can appear as plaintext in the unprotected
virtual memory backing store, even after system
shutdown. The solution described in this paper uses
swap encryption for processes in possession of con-
�dential data. Volatile encryption keys are chosen
randomly, and remain valid only for short time peri-
ods. Invalid encryption keys are deleted, e�ectively
erasing all data that was encrypted with them. The
swap encryption system has been implemented for
the UVM [7] virtual memory system and its perfor-
mance is acceptable.

1 Introduction

Many computer systems employ cryptographic �le
systems, e.g. CFS [4], TCFS [6] or encryption lay-
ers [19], to protect con�dential data from prying
eyes. A user without the proper cryptographic key
is unable to read the contents of the cryptographic
�le system, nor is he able to glean any useful infor-
mation from it. However, backing store of the vir-
tual memory system is generally unprotected. Any
data read by a process that was originally encrypted
can be found as plaintext in swap storage if the pro-
cess was swapped out. It is possible for passwords
and pass phrases to reside in swap long after they
have been typed in, even across reboots.

A user expects that all con�dential data vanishes
with process termination, and is completely un-
aware that data can remain on backing store. And
even if she were aware of it, there is next to nothing
she can do to prevent its exposure.

If the integrity of the operating system is compro-
mised and an untrusted party gains root privileges
or physical access to the machine itself, she also
gains access to the potentially sensitive data re-
tained in backing store.

Our solution to this problem is to encrypt pages that
need to be swapped out. These pages are decrypted
when they are brought back into physical memory,
e.g. due to a page fault. After a process terminates,
all its pages stored on backing store are invalid, so
there is no need to be able to decrypt them; on the
contrary, nobody should be able to decrypt them.
This suggests the use of volatile random keys that
exist only for short time periods.

The remainder of this paper is organized as follows.
Section 2 provides further motivation for encrypt-
ing the backing store and describes related work. In
Section 3 we give a brief overview of virtual mem-
ory, note a security problem of secondary storage,
and discuss how it can be resolved with encryption.
Section 4 explains how we implemented swap en-
cryption. In Section 5 we analyse how the paging
times and system throughput are a�ected. Finally,
we conclude in Section 6.

2 Related Work

Computer systems frequently process data that re-
quires protection from unauthorized users. Often
it is enough to use access control mechanisms of
the operating system to determine who may access
speci�c data. In many cases a system also needs
to be secured against physical attacks or protected
against security compromises that allow the circum-
vention of access controls. Blaze addresses data
protection with a cryptographic �le system called
CFS by encrypting all �le system data, preventing
anyone without the proper cryptographic key from

accessing its content [4]. Anderson, Needham and
Shamir aim at hiding the existence of data from an
attacker by using a \Steganographic File System"
[1]. A cryptographic key and the knowledge that a
�le exists are needed to access a �le's contents. How-
ever, security depends on the whole system, and an
investigation of the interaction with other system
components is essential.

Neither paper looks carefully at its operating envi-
ronment, nor do they take into consideration that
con�dential data might inadvertently end up in
backing store. The storage of con�dential data on
a swap device may defeat the purpose of encryption
in CFS. Swap data can also be used to reconstruct
what �les are present in a system, thus defeating
the purpose of steganography.

Swap encryption is meant to protect con�dential
data left on the backing store from intruders who
have gained physical access to the storage medium.
We observe that the same can be achieved by delet-
ing all con�dential data once it is no longer refer-
enced. However, Gutmann has shown that it is diÆ-
cult to delete thoroughly information from magnetic
media or random-access memory [16]. He states:
\the easiest way to solve the problem of erasing sen-
sitive information from magnetic media is to ensure
that it never gets to the media in the �rst place.
Although not practical for general data, it is often
worthwhile to take steps to keep particularly impor-
tant information such as encryption keys from ever
being written to disk."

Schneier and Kelsey describe a secure log system
that keeps the contents of the log �les con�den-
tial even if the system has been compromised [24].
While swap encryption is quite di�erent from secure
logging, the attack scenario and operating environ-
ment is similar.

There are other systems that modify the paging
behavior of a virtual memory system. Notably,
Fred Douglis' compression cache compresses mem-
ory pages to avoid costly disk accesses [10].

3 Virtual Memory System

One purpose of virtual memory is to increase the
size of the address space visible to processes by
caching frequently-accessed subsets of the address

space in physical memory [2]. Data that does not
�t in physical memory is saved on secondary storage
known as the backing store. Paged out memory is
restored to physical memory when a process needs
to access it again [7].

In many operating systems, the virtual memory
pager daemon is responsible for reading and writing
pages to and from their designated backing store.
When a page has been written, it is marked as
\clean" and can be evicted from physical memory.
The next time a process accesses the virtual mem-
ory that was associated with this page, a page fault
occurs.

If the page is still resident in physical memory, it is
marked as \recently used," and additionally \dirty"
if the page fault is caused by a write access. Other-
wise, because the page is no longer resident in phys-
ical memory, the pager allocates a page of physical
memory and retrieves the data from backing store.

3.1 Secondary Storage

Compared to RAM speeds, secondary storage is
usually made up from slow media, e.g. raw par-
titions on disk drives. Unlike primary memory, sec-
ondary storage is nonvolatile, and the data stored
on it is preserved after a system shutdown. Depend-
ing on usage patterns, a swap partition can retain
data for many months or even years.

Con�dential data in a process' address space might
be saved on secondary storage and survive there be-
yond the expectations of a user. She assumes that
all con�dential data is deleted with the termination
of the process. However, the data found by looking
at the content of several swap partitions of machines
at the Center of Information Technology Integra-
tion included: login passwords1, PGP pass phrases,
email messages, cryptographic keys from ssh-agent,
shell command histories, URLs, etc.

To avoid this, we developed a system that makes
data on the backing store impossible for an attacker
to read if it was written a certain time prior to the
operating system's compromise.

One approach is to avoid swapping completely by
not using secondary storage at all. But this is

1The author was amazed to �nd not only his current pass-

word, but also older ones that had not been used for months.

not a general solution, and there are many appli-
cations and environments that require a virtual ad-
dress space bigger than the physical memory present
in the system.

An application can prevent memory from being
swapped out by using the \mlock()" system call to
lock the physical pages associated with a virtual ad-
dress range into memory [16]. There are several
disadvantages with this approach. It requires ap-
plications to be rewritten to use \mlock()", which
might not be possible for legacy applications or dif-
�cult if it requires a complicated analysis of which
parts of the memory contain con�dential data. In
addition, \mlock()" reduces the opportunity of the
virtual memory system to evict stale pages from
physical memory, which can have a severe impact
on system performance.

In general, it is not desirable to prevent the system
from swapping memory to the disk. Instead, encryp-
tion can be used to protect con�dential data when it
is written to secondary storage by the pager. A user
program could install its own encrypting pager [2].
This would lead to greater complexity, require mod-
i�cation of applications and poses diÆcult decisions
about which cryptosystem to use. If a cryptographic
�le system like CFS [4] were available, the virtual
memory pager could be con�gured to swap to a �le
that resided on an encrypted �le system.

However, in contrast to common use of encryp-
tion [20], we require di�erent characteristics for our
cryptographic system:

� When a page on backing store is no longer refer-
enced by its owner, the decryption key for that
page should be irretrievably lost after a suitable
time period (tR) has passed.

� Only the virtual memory pager should be able
to decrypt data read from the backing store.

Clearly, the best protection is achieved with tR = 0.
The decryption key, and indirectly the page's con-
tent, is irretrievably removed immediately when the
page is no longer referenced. This behavior meets
the user's expectation that con�dential data in a
process' address space is deleted with the termina-
tion of the process.

However, this is diÆcult to achieve, and we have
to trade o� security against performance. Often, a

tR > 0 is still acceptable. In the initial implemen-
tation, we only guarantee tR � system uptime, but
attempt to minimize the average tR.

This implies the use of volatile encryption keys,
valid maximally for the duration of the system's up-
time. Such keys are similar to ephemeral keys used
to achieve perfect forward secrecy [9]. A volatile key
is completely unrelated to all other keys. Knowledge
of it does not allow the decryption of old data on
secondary storage. Encryption keys are used only
by the virtual memory pager and can be generated
on demand when they are required, eliminating the
need for complicated key management.

On the other hand, swapping to a cryptographic
�le system does not ful�ll either of the two require-
ments. Key management is an integral part of an
encrypting �le system [5]. Consequently, permanent
nonvolatile encryption keys are present, making it
possible to read the data on the swap storage after
the system has been shut down. Furthermore, a user
with access rights to the swap �le on the encrypted
�le system - usually the root user - can directly read
its contents.

Instead, we employ encryption at the pager level.
Pages that are swapped out are (optionally) en-
crypted, and encrypted pages that are read from
secondary storage are decrypted.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70
0

20

40

60

80

100

nu
m

be
r

of
 p

ag
es

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 in

 p
er

ce
nt

time in minutes

Figure 1: Histogram of page residency in secondary

storage for a desktop session and corresponding cumu-

lative probability.

We compared page encryption to zeroing a page on
the backing store after it is dereferenced. To get a
better understanding of the overheard incurred by
such a measure, we recorded how long pages reside

on backing store. Figure 1 shows the result for a
desktop session.

Most pages remain in the backing store for only a
few minutes. The strong temporal correlation be-
tween swapping and zeroing can result in unneces-
sary cleaning of pages that will be overwritten im-
mediately, and will impact on system performance
due to expensive write operations. Zeroing pages
also fails to protect against physical attacks that
prevent writes to secondary storage, e.g. an attacker
stealing disks or turning o� the system's power sup-
ply.

In summary, encryption has the following advan-
tages over physically zeroing pages on the backing
store.

� Deleting data by erasing it on disk incurs extra
seek time and additional I/O for writing. On
the other hand, with encryption the content of
a page disappears when its respective encryp-
tion key is deleted. Furthermore, encrypting a
page is fast compared to writing it, and the en-
cryption cost is spread evenly over the whole
swapping process.

� Encryption provides better protection against
physical attacks. Mere possession of the disk
drive is not suÆcient to read its content. The
correct encryption key is required, but many
physical attacks disrupt the operation of the
machine; the content of physical memory is
lost, and thus also the encryption key. Ad-
ditionally, encryption prevents \compromising
emanations" caused by data transfers to sec-
ondary storage, i.e. electromagnetic radiation
that carries sensitive information and can be
received remotely [11].

� Reliably deleting data from magnetic media is
diÆcult, a problem that does not apply when
using encryption [16].

In the next section, we describe our implementation
of swap encryption.

4 Swap Encryption

Swap encryption divides naturally into two separate
functions: encryption and decryption. The former

requires a policy decision about when to encrypt
pages. The latter requires knowing which pages read
from swap need to be decrypted. The encryption
policy can be very simple, e.g. all pages that go
to swap will be encrypted. A more sophisticated
policy might encrypt only pages of processes that
have read data from a cryptographic �le system.
The enumeration of such policies is the subject of
future work.

In all cases, though, the decryption is completely
independent from the decision to encrypt. For that
reason, we keep a bitmap in the swap device that
indicates for each page whether it needs to be de-
crypted after it has been read. Thus, it is possible
to change the encryption policy during the runtime
of the system without a�ecting the decryption of
pages that have been encrypted while a di�erent
policy was in e�ect.

To achieve lower upper bounds on the window of
vulnerability (tR), we divide the backing store into
sections of 512 KByte2, and give each section its
own key. A key consists of a 128-bit encryption key,
a reference counter and an expiration time. For a
backing store of 256 MByte, keys occupy 14 KByte
of memory.

A section's 128-bit cryptographic key is created ran-
domly the �rst time it is needed, and its reference
counter is set to 0. Each time a new page is en-
crypted with it, the counter is incremented.

When a page is freed on the backing store, the ref-
erence counter of the respective key is decremented.
A key is immediately deleted when the reference
counter reaches 0. Thus, all data encrypted with
that key can no longer be decrypted and is e�ec-
tively erased.

At the moment the �rst page in a section becomes
unreferenced, its encryption key is set to expire after
a time period tR. After tR has been reached, all
pages that reference it have to be re-encrypted with
a new key. The number of pages that need to be
processed is bounded by the section size, so that
the additional encryption overhead is con�gurable.

The framework for expiration exists, but we have
yet to implement re-encryption. However, once this
has been done, we can make stricter guarantees for
the time that pages remain readable on the backing

2The section size is con�gurable, and depends on how

much memory is available for cryptographic keys.

store.

Figure 2 describes the paging process in several
steps, and shows where encryption and decryption
take place:

1. A user process references memory.

2. If the referenced address has a valid mapping,
the data is accessed from the mapped physical
page.

3. If the referenced address has an invalid map-
ping, a page fault occurs.

4. The pager reads the corresponding page from
secondary storage.

5. The page is decrypted if its entry in the bitmap
indicates that it is encrypted.

6. Finally, the page is mapped into physical mem-
ory, and the page fault is resolved.

7. Conversely, if the page daemon decides to evict
a page from physical memory,

8. the pager encrypts the page with the encryption
key of the section that the page belongs to.

(a) If the section does not have an encryp-
tion key, e.g. it is the �rst encryption, a
volatile encryption key is initialized from
the kernel's entropy pool.

9. Afterwards, the page is written to secondary
storage.

There is one central di�erence between page en-
cryption and decryption. Pages can be decrypted
in place because immediately after they have been
read into memory, no process is allowed to access
these pages until they have been decrypted. On the
other hand, even after a page has been swapped out,
a process may access it at any time. This precludes
in-place encryption. Instead, we have to allocate
pages into which to store temporarily the encryp-
tion result, placing additional pressure on the al-
ready memory limited VM system.

The volatile keys are stored in an unmanaged part
of the kernel memory. As a result, they are never
paged out.

Pool

Physical Memory

encrypt

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

Virtual Address Space

Mapper

Page Out

Page In

Pager

decrypt

not resident

residentVM System

Secondary Storage

vo
la

til
e

ke
y

1

2

3

4

5

6

7

9

8a

8

Entropy

Figure 2: An overview of the swap encryption process.

4.1 Cipher Selection

To be suitable for swap encryption, a cipher needs
to ful�ll at least three important criteria:

� Encryption and decryption need to be fast com-
pared to disk I/O, so that the encryption does
not become the limiting factor in the swapping
process.

� The generation of a cipher's key schedule
should be inexpensive compared to encrypting
a page, so that changing the key schedule does
not a�ect performance. The key schedule of a
cipher is usually larger than its encryption key.
To conserve system memory we should recom-
pute it every time we switch encryption keys,
e.g. the encryption key changes when pages are
written to di�erent sections.

� The cipher has to support encryption and de-
cryption on a page by page basis, since page in
and page out are not sequential. This precludes
the use of a stream cipher.

Initially, we planned to employ Schneier's Blow-
�sh encryption algorithm [23]. Its software imple-
mentation is very fast, and it has been in use for
several years without any apparent security aws.
Nonetheless, Blow�sh has one critical drawback.
The computation of its key schedule is very expen-
sive, and requires more than 4 KByte of memory.

For that reason, computing the key schedule when
it is needed is too expensive, and precomputation is
not possible due to large memory requirements.

Based on our environmental constraints, the cipher
that matches our needs the best is Rijndael [8]. We
describe it in the next section.

4.2 Rijndael

Rijndael is one of the �nalists in the advanced en-
cryption standard (AES) competition. It is a vari-
able block and key length cipher. In contrast to
many other block ciphers, its round transformation
does not have the Feistel structure. Instead, the
round transformation is composed of distinct lay-
ers: a linear mixing layer, a non-linear layer, and a
key addition layer. Rijndael's design tries to achieve
resistance against all known attacks while maintain-
ing simplicity [8].

Compared to Blow�sh, Rijndael is faster in all as-
pects, but less studied [12]. We decided to use Rijn-
dael with 128-bit blocks and 128-bit keys. With the
optimized C implementation by Gladman [13], the
encryption key schedule can be computed in 305 cy-
cles on a Pentium Pro; the decryption key schedule
costs 1398 cycles. A block can be encrypted in 374
cycles, and block decryption takes 352 cycles.

However, because all encryption and decryption is
done on 4 KByte units, the cost of the key schedule
computation is amortized. Therefore, even if we
change the key schedule every time, the encryption
cost is only 375 cycles on average, and for decryption
it is 357 cycles.

Normally, the overall performance of an encryp-
tion algorithm is inuenced by word conversion to
accommodate little and big endian architectures.
However, because encryption and decryption hap-
pen on the same machine, the word order of the
algorithm's output is not relevant, and we do not
need to take endianness into consideration.

We use Rijndael in cipher-block chaining (CBC)
mode. The CBC mode of operation involves the use
of a 128-bit initialization vector. Identical plaintext
blocks encrypted under the same key but di�erent
IV s, produce di�erent cipher blocks. With c0 = IV ,
the result of the encryption is de�ned as

ci = EK(ci�1 � xi);

where the xi are the plaintext and ci the ciphertext
blocks. The decryption is similar

xi = ci�1 �E�1
K

(ci):

For swap encryption, the initial 128-bit IV is the
64-bit block number to which the page is written,
concatenated with its bitwise complement. This en-
sures that each page is encrypted uniquely.

Caution is indicated because changing the IV in se-
quential increments for adjacent pages may result
in only small input di�erences to the encryption
function. The attacks described in \From Di�eren-
tial Cryptanalysis to Ciphertext-Only Attacks" [3]
might apply in such a situation. For that reason,
we encrypt the block number and use that for the
IV . Biryukov and Kushilevitz also state, \Another
method of IV choice is the encryption of the data-
gram sequence numbers [...], and sending [the] IV in
[the] clear (explicit IV method) [...]. This method
is also very vulnerable to our analysis, [...]." Nev-
ertheless, in our case the IV is not explicit, and no
IV di�erences can be observed directly.

4.3 Pseudo-random Generator

To initialize a volatile encryption key we require a
source of random bits. The generation of random-
ness with deterministic computers is very hard. In
particular, we do not strive to create perfect ran-
domness characterized by the uniform distribution.
Instead, we use pseudo-random generators.

A pseudo-random generator has the goal that its
output is computationally indistinguishable from
the uniform distribution, while its execution must
be feasible [14]. A pseudo-random generator is re-
alized by a stretching function g that maps strings
of length n to strings of length l(n) > n. If X is
a random variable uniformly distributed on strings
of length n then g(X) appears to be uniformly dis-
tributed on strings of length l(n) [18].

For our purpose, we use the pseudo-random num-
ber generator (PRNG) provided by the OpenBSD
kernel [21]. The PRNG is a cryptographic stream
cipher that uses a source of strong randomness3 for

3The term \source of strong randomness" represents a

generator whose output is not really random, but depends

on so many entropy providing physical processes that an at-

tacker can not practically predict its output.

initialization and reseeding. This source is referred
to as the \entropy pool."

Nonetheless, the problem on how to accumulate
strong randomness for the entropy pool remains.
Fortunately, a multi-user operating system has
many external events from which it can derive some
randomness. Gutmann describes a generic frame-
work for a randomness pool [17].

In OpenBSD, the entropy pool

P := fp1; p2; : : : ; p128g

consists of 128 32-bit words. To increase the pool's
randomness the kernel collects measurements from
various physical events: the inter-keypress timing
from terminals, the mouse interrupt timing and the
reported position of the mouse cursor, the arrival
time of network packets, and the �nishing time of
disk requests.

The measured values from these sources are added
to the entropy pool by a mixing function. For each
value, the function replaces one word in the pool as
follows:

pi u� pi+99 � pi+59 � pi+31 �

pi+9 � pi+7 � pi;

where i is the current position in the pool, and u the
32-bit word that is added. Index addition is modulo
128. After a value has been added i is decremented.
To estimate the randomness in the pool, the entropy
is measured by a heuristic based on the derivatives
of di�erences in the input values.

A random seed is extracted from the entropy pool
as follows: First, the concatenation of p1p2 : : : p128
is given as input to an MD5 hash [22]. Second,
the internal state of the MD5 hash for the previous
computation is added into the entropy pool. Third,
the resulting pool is fed once more into the MD5
hash. Finally, the message digest is calculated. The
output is \folded" in half by XOR-ing its upper and
lower word. The resulting 64 bits are returned as
the seed.

The stretching function is implemented by ARC4,
a cipher equivalent to RSADSI's RC4 [25]. The ci-
pher has an internal memory size of M = n2n+2n,
with in our case n = 8. We use the random seeds
extracted from the entropy pool to initialize the M
bits. The output of RC4 is expected to cycle after
2M�1 iterations. However, Goli�c showed that a cor-
relation between the second binary derivative of the

least signi�cant bit output sequence and 1 can be
detected in signi�cantly fewer iterations [15], which
allows the di�erentiation of RC4 from a uniform dis-
tribution. We can avoid this problem by reseeding
RC4's internal state before the number of critical
iterations has been reached. In fact, the implemen-
tation in OpenBSD reseeds the ARC4 every time
enough new entropy has been accumulated.

The kernel provides the \arc4random(3)" function
to obtain a 32-bit word from the pseudo-random
number generator.

The volatile key of a section is created by �lling it
with the output from \arc4random(3)." We hope
that between the time the system has been booted
and the �rst swap encryption suÆcient randomness
is available in the kernel entropy pool to ensure
good randomness in the RC4 output. Nonetheless,
it should be noted that this construction does not
create a provably pseudo-random generator as de-
scribed in the beginning of this section.

5 Performance Evaluation

In the following, we analyse the e�ect of swap en-
cryption on the paging behavior. We look at page
encryption and decryption times, and assess the
runtime of applications with large working sets.

All measurements were performed on an OpenBSD
2.6 system with 128 MByte main memory and a
333 MHz Celeron processor. The swap partition
was on a 6 GByte Ultra-DMA IDE disk, IBM
model DBCA-206480 running at 4200 revolutions
per minute. The operating system can sustain
an average block write rate of 7.5 MByte/s and a
block read rate of 6.3 MByte/s. OpenBSD uses the
UVM [7] virtual memory system.

5.1 Micro Benchmark

Our micro benchmark measures the time it takes
to encrypt one page. A test program allocates 200
MByte of memory, and �lls the memory sequentially
with zeros. Afterwards, it reads the allocated mem-
ory from the beginning in sequential order. The
process is repeated three times.

We use kernel pro�ling to measure page encryption
frequency, and the cumulative time of the encryp-
tion function. The kernel function \swap encrypt()"
is called 155336 times with a cumulative running
time of 67:96 seconds. One 4 KByte page could
be encrypted in 0:44 ms, resulting in an encryption
bandwidth of 8:9 MByte/s. The total amount of
memory encrypted is 600 MByte.

In UVM, writes to the backing store are asyn-
chronous and reads are synchronous. To determine
if I/O is still the bottleneck of the swapping pro-
cess, we measured the runtime of the test program
for di�erent memory sizes, with and without swap
encryption. We measure an increase in runtime
of about 14% with encryption. To measure asyn-
chronous writes, we modi�ed the test program to
write only to memory. The runtime increase of 26%
- 36% is due to allocation of new pages that store the
encrypted pages until they are written to disk, thus
causing the system to swap more often. Figure 3
shows a graph of the results.

0

50

100

150

200

250

300

100 120 140 160 180 200

ru
nt

im
e

in
 s

ec
on

ds

allocated memory in MByte

seq. read and write with encryption
seq. read and write without encryption

seq. write with encryption
seq. write without encryption

Figure 3: Performance di�erence between swap en-

cryption and normal swapping when pages are accessed

sequentially, illustrating the di�erence between asyn-

chronous write and synchronous reads.

5.2 Macro Benchmark

To judge the impact of swap encryption on ap-
plication programs, we used ImageMagick to pro-
cess a 960 � 1280 image with a 16-bit colorspace.
The image was magni�ed and then rotated by 24o.
The runtimes for di�erent magni�cation factors are
shown in Table 1.

No Encryption Encryption
Magni- Major Runtime Major Runtime
�cation Faults (in sec) Faults (in sec)

2:30� 0.4 103 49s 0.4 103 49s
2:35� 19 103 145s 18 103 147s
2:40� 22 103 169s 22 103 180s
2:50� 24 103 179s 24 103 276s

Table 1: Runtime of image processing tool for dif-

ferent magni�cation factors.

The table compares the major faults and program
runtime for a system that does not use encryption
against a system that does. A major fault is a page
fault that requires I/O to service it, and does not
take into account the pages that have been paged
out by the paging daemon.

With increasing magni�cation factor, the working
set size of the program grows larger. We measure
a sharp increase of the running time with swap en-
cryption for a magni�cation factor of 2:5. However,
for the other magni�cation factors the program run-
time is not a�ected that much, even though nearly
half of the program's memory was on backing store.
Thus, we believe that the overhead caused by en-
cryption is tolerable.

6 Conclusion

Con�dential data can remain on backing store long
after the process to which the data originally be-
longed has terminated. This is contrary to a user's
expectations that all con�dential data is deleted
with the termination of the process. An investi-
gation of secondary storage of machines at the Cen-
ter for Information Technology Integration revealed
very con�dential information, such as the author's
PGP pass phrase.

We investigate several alternative solutions to pre-
vent con�dential data from remaining on backing
store, e.g. erasing data physically from the backing
store after pages on it become unreferenced. How-
ever, we �nd that encryption of data on the backing
store with volatile random keys has several advan-
tages over other approaches:

� The content of a page disappears when its re-
spective encryption key is deleted, a very fast

operation.

� Encryption provides protection against physi-
cal attacks, e.g. an attacker stealing the disk
that contains the swap partition

Encryption enables us to make the guarantee that
unreferenced pages on the backing store become un-
readable after a suitable time period upper bounded
by system uptime has passed.

We have demonstrated that the performance of our
encryption system is acceptable, and it proves to be
a viable solution.

The software is freely available as part of the
OpenBSD operating sytem and can also be obtained
by contacting the author.

7 Acknowledgments

I thank Patrick McDaniel and my advisor Peter
Honeyman for careful reviews and helpful comments
on the organization of this paper. I also thank
Chuck Lever for getting me interested in swap en-
cryption, Artur Grabowski for improving my un-
derstanding of UVM and David Wagner for helpful
feedback on cipher selection.

References

[1] R. Anderson, R. Needham, and A. Shamir. The
Steganographic File System. In Proceedings of the

Information Hiding Workshop, April 1998.

[2] A. Appel and K. Li. Virtual Memory Primitives for
User Programs. In Proceedings of the 4th Interna-

tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, April
1991.

[3] Alex Biryukov and Eyal Kushilevitz. From Di�er-
ential Cryptanalysis to Ciphertext-Only Attacks.
In Proceedings of the Advances in Cryptology |

CRYPTO '98, pages 72{88. Springer-Verlag, Au-
gust 1998.

[4] Matt Blaze. A Cryptographic Filesystem for Unix.
In Proceedings of the First ACM Conference on

Computer and Communications Security, pages 9{
16, November 1993.

[5] Matt Blaze. Key Management in an Encrypting
File System. In Proceedings of the 1994 USENIX

Summer Technical Conference, pages 27{35, June
1994.

[6] G. Cattaneo and G. Persiano. Design and
Implementation of a Transparent Cryptographic
Filesystem for Unix. Unpublished Technical Re-
port, July 1997. ftp://edu-gw.dia.unisa.it/

pub/tcfs/docs/tcfs.ps.gz.

[7] Charles D. Cranor and Gurudatta M. Parulkar.
The UVM Virtual Memory System. In Proceedings

of the 1999 USENIX Annual Technical Conference,
pages 117{130, June 1999.

[8] Joaen Daemen and Vincent Rijmen. AES Proposal:
Rijndael. AES submission, June 1998. http://

www.esat.kuleuven.ac.be/~rijmen/rijndael/.

[9] Whit�eld DiÆe, Paul C. van Oorschot, and
Michael J. Wiener. Authentication and authenti-
cated key exchanges. Designs, Codes and Cryptog-

raphy, 2(2):107{125, June 1992.

[10] Fred Douglis. The Compression Cache: Using On-
Line Compression to Extend Physial Memory. In
Proceedings of 1993 Winter USENIX Conference,
pages 519{529, 1993.

[11] Berke Durak. Hidden Data Transmission by Con-
trolling Electromagnetic Emanations of Comput-
ers. Webpage.
http://altern.org/berke/tempest/.

[12] Niels Ferguson, John Kelsey, Mike Stay, David
Wagner, and Bruce Schneier. Improved Cryptanal-
ysis of Rijndael. In Fast Software Encryption Work-

shop 2000, April 2000.

[13] Brian Gladman. AES Algorithm EÆciency. Web-
page.
http://www.btinternet.com/~brian.gladman/

cryptography technology/aes/index.html.

[14] Oded Goldreich. Modern Cryptography, Proba-

bilistic Proofs and Pseudo-randomness. Springer-
Verlag, 1999.

[15] Jovan Dj. Goli�c. Linear Statistical Weakness of Al-
leged RC4 Keystream Generator. In Proceedings of

the Advances in Cryptology | Eurocrypt '97, pages
226{238. Springer-Verlag, May 1997.

[16] Peter Gutmann. Secure Deletion of Data fromMag-
netic and Solid-State Memory. In Proceedings of the
Sixth USENIX Security Symposium, pages 77{89,
July 1996.

[17] Peter Gutmann. Software Generation of Practially
Strong Random Numbers. In Proceedings of the

Seventh USENIX Security Symposium, pages 243{
255, June 1998.

[18] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby.
Construction of Pseudorandom Generator from any
One-Way Function, 1993.

[19] J. Heidemann and G. Popek. File-System Develop-
ment with Stackable Layers. ACM Transactions on

Computer Systems, 12(1):58{89, February 1994.

[20] Maurice P. Herlihy and J. D. Tygar. How to Make
Replicated Data Secure. In Proceedings of the Ad-

vances in Cryptology - CRYPTO '87, pages 379{
391. Springer-Verlag, 1988.

[21] Theo de Raadt, Niklas Hallqvist, Artur Grabowski,
Angelos D. Keromytis, and Niels Provos. Cryp-
tography in OpenBSD: An Overview. In Proceed-

ings of the USENIX Annual Technical Conference,

FREENIX Track, June 1999.

[22] R. L. Rivest. The MD5 Message Digest Algorithm.
RFC 1321, April 1992.

[23] Bruce Schneier. Description of a New Variable-
Length Key, 64-Bit Block Cipher (Blow�sh). In
Fast Software Encryption, Cambridge Security

Workshop Proceedings, pages 191{204. Springer-
Verlag, December 1993.

[24] Bruce Schneier and John Kelsey. Cryptographic
Support for Secure Logs on Untrusted Machines. In
Proceedings of the Seventh USENIX Security Sym-

posium, pages 53{62, January 1998.

[25] RSA Data Security. The RC4 Encryption Algo-
rithm, March 1992.

