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Abstract

Current crypto implementations rely on software
running under general-purpose operating systems
alongside a horde of untrusted applications, ActiveX
controls, web browser plugins, mailers handling
messages with embedded active content, and numerous
other threats to security, with only the OS’s (often
almost nonexistant) security to keep the two apart.  This
paper presents a general-purpose open-source crypto
coprocessor capable of securely performing crypto
operations such as key management, certificate creation
and handling, and email encryption, decryption, and
signing, at a cost one to two orders of magnitude below
that of commercial equivalents while providing
generally equivalent performance and a higher level of
functionality.  The paper examines various issues
involved in designing the coprocessor, and explores
options for hardware acceleration of crypto operations
for extended performance above and beyond that
offered by the basic coprocessor’s COTS hardware.

1. Problems with Crypto on End-user
Systems
The majority of current crypto implementations run
under general-purpose operating systems with a
relatively low level of security, alongside which exist a
limited number of smart-card assisted implementations
which store a private key in, and perform private-key
operations with, a smart card.  Complementing these are
an even smaller number of implementations which
perform further operations in dedicated (and generally
very expensive) hardware.

The advantage of software-only implementations is that
they are inexpensive and easy to deploy.  The
disadvantage of these implementations is that they
provide a very low level of protection for
cryptovariables, and that this low level of security is
unlikely to change in the future.  For example Windows
NT provides a function ReadProcessMemory which
allows a process to read the memory of (almost) any
other process in the system (this was originally intended
to allow debuggers to establish breakpoints and
maintain instance data for other processes [1]), allowing
both passive attacks such as scanning memory for high-
entropy areas which constitute keys [ 2] and active
attacks in which a target processes’ code or data is

modified (in combination with VirtualProtectEx,
which changes the protection on another processes’
memory pages) to provide supplemental functionality of
benefit to a hostile process.  By subclassing an
application such as the Windows shell, the hostile
process can receive notification of any application
(a.k.a. “target”) starting up or shutting down, after
which it can apply the mechanisms mentioned
previously.  A very convenient way to do this is to
subclass a child window of the system tray window,
yielding a system-wide hook for intercepting shell
messages [3].  Another way to obtain access to other
processes’ data is to patch the user-to-kernel-mode
jump table in a processes’ Thread Environment Block
(TEB), which is shared by all processes in the system
rather than being local to each one, so that changing it
in one process affects every other running process [4].

Although the use of functions like
ReadProcessMemory requires Administrator
privileges, most users tend to either run their system as
Administrator or give themselves equivalent privileges
since it’s extremely difficult to make use of the machine
without these privileges.  In the unusual case where the
user isn’t running with these privileges, it’s possible to
use a variety of tricks to bypass any OS security
measures which might be present in order to perform
the desired operations.  For example by installing a
Windows message hook it’s possible to capture
messages intended for another process and have them
dispatched to your own message handler.  Windows
then loads the hook handler into the address space of
the process which owns the thread which the message
was intended for, in effect yanking your code across
into the address space of the victim [5].  Even simpler
are mechanisms such as using the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs key, which
specifies a list of DLLs which are automatically loaded
and called whenever an application uses the USER32
system library (which is automatically used by all GUI
applications and many command-line ones).  Every
DLL specified in this registry key is loaded into the
processes’ address space by USER32, which then calls
the DLL’s DllMain function to initialise the DLL (and,
by extension, trigger whatever other actions the DLL is
designed for).



A more sophisticated attack involves persuading the
system to run your code in ring 0 (the most privileged
security level usually reserved for the OS kernel) or,
alternatively, convincing the OS to allow you to load a
selector which provides access to all physical memory
(under Windows NT, selectors 8 and 10 provide this
capability).  Running user code in ring 0 is possible due
to the peculiar way in which the NT kernel loads.  The
kernel is accessed via the int 2Eh call gate, which
initially provides about 200 functions via
NTOSKRNL.EXE but is then extended to provide
more and more functions as successive parts of the OS
are loaded.  Instead of merely adding new functions to
the existing table, each new portion of the OS which is
loaded takes a copy of the existing table, adds its own
functions to it, and then replaces the old one with the
new one.  To add supplemental functionality at the
kernel level, all that’s necessary is to do the same thing
[6].  Once your code is running at ring 0, an NT system
starts looking a lot like a machine running DOS.

Although the problems mentioned so far have
concentrated on Windows NT, many Unix systems
aren’t much better.  For example the use of ptrace
with the PTRACE_ATTACH option followed by the
use of other ptrace capabilities provides similar
headaches to those arising from
ReadProcessMemory.  The reason why these issues
are more problematic under NT is that users are
practically forced to run with system Administrator
privileges in order to perform any useful work on the
system, since a standard NT system has no equivalent
to Unix’s su functionality and, to complicate things
further, frequently assumes that the user always has
Administrator privileges (that is, it assumes it’s a
single-user system with the user being Administrator).
While it’s possible to provide some measure of
protection on a Unix system by running crypto code as
a daemon in its own memory space, the fact that the
Administrator can dynamically load NT services (which
can use ReadProcessMemory to interfere with any
other running service) means that even implementing
the crypto code as an NT service provides no escape.

1.1. The Root of the Problem
The reason why problems like those described above
persist, and why we’re unlikely to ever see a really
secure consumer OS is because it’s not something
which most consumers care about.  One recent survey
of Fortune 1000 security managers showed that
although 92% of them were concerned about the
security of Java and ActiveX, nearly three quarters
allowed them onto their internal networks, and more
than half didn’t even bother scanning for them [ 7].
Users are used to programs malfunctioning and
computers crashing (every Windows NT user can tell

you what the abbreviation BSOD means even though
it’s never actually mentioned in the documentation),
and see it as normal for software to contain bugs.  Since
program correctness is difficult and expensive to
achieve, and as long as flashiness and features are the
major selling point for products, buggy and insecure
systems will be the normal state of affairs [8].  Unlike
other Major Problems like Y2K (which contain their
own built-in deadline), security generally isn’t regarded
as a pressing issue unless the user has just been
successfully attacked or the corporate auditors are about
to pay a visit, which means that it’s much easier to defer
addressing it to some other time [9].  Even in cases
where the system designers originally intended to
implement a rigorous security system employing a
trusted computing base (TCB), the requirement to add
features to the system inevitably results in all manner of
additions being crammed into the TCB, with the result
that it is neither small, nor verified, nor secure.

An NSA study [10] lists a number of features which are
regarded as “crucial to information security” but which
are absent from all mainstream operating systems.
Features such as mandatory access controls which are
mentioned in the study correspond to Orange Book B-
level security features which can’t be bolted onto an
existing design but generally need to be designed in
from the start, necessitating a complete overhaul of an
existing system in order to provide the required
functionality.  This is often prohibitively resource-
intensive, for example the task of reengineering the
Multics kernel (which contained a “mere” 54,000 lines
of code) to provide a minimised TCB was estimated to
cost $40M (in 1977 dollars) and was never completed
[11].  The work involved in performing the same kernel
upgrade or redesign from scratch with an operating
system containing millions or tens of millions of lines
of code would make it beyond prohibitive.

At the moment security and ease of use are at opposite
ends of the scale, and most users will opt for ease of use
over security.  JavaScript, ActiveX, and embedded
active content may be a security nightmare, but they do
make life a lot easier for most users, leading to
comments from security analysts like “You want to
write up a report with the latest version of Microsoft
Word on your insecure computer or on some piece of
junk with a secure computer?”[12], “Which sells more
products: really secure software or really easy-to-use
software?”[13], and “It’s possible to make money from
a lousy product […] Corporate cultures are focused on
money, not product”[14].  In many cases users don’t
even have a choice, if they can’t process data from
Word, Excel, PowerPoint, and Outlook and view web
pages loaded with JavaScript and ActiveX, their
business doesn’t run, and some companies go so far as
to publish explicit instructions telling users how to



disable security measures in order to maximise their
web-browsing experience [15].  Going beyond basic OS
security, most current security products still don’t
effectively address the problems posed by hostile code
such as trojan horses (which the Orange Book’s Bell-
LaPadula security model was designed to combat), and
the systems the code runs on increase both the power of
the code to do harm and the ease of distributing the
code to other systems.

This presents rather a gloomy outlook for someone
wanting to provide secure crypto services to a user of
these systems.  In order to solve this problem, we adopt
a reversed form of the Mohammed-and-the-mountain
approach: Instead of trying to move the insecurity away
from the crypto through various operating system
security measures, we instead move the crypto away
from the insecurity.  In other words although the user
may be running a system crawling with rogue ActiveX
controls, macro viruses, trojan horses, and other
security nightmares, none of these can come near the
crypto.

1.2. Solving the Problem
The FIPS 140 standard provides us with a number of
guidelines for the development of cryptographic
security modules.  NIST originally allowed only
hardware implementations of cryptographic algorithms
(for example the original NIST DES document allowed
for hardware implementation only [16][17]), however
this requirement was relaxed somewhat in the mid-
1990’s to allow software implementations as well
[18][19].  FIPS 140 defines four security levels ranging
from level 1 (the cryptographic algorithms are
implemented correctly) through to level 4 (the module
or device has a high degree of tamper-resistance
including an active tamper response mechanism which
causes it to zeroise itself when tampering is detected).
To date only one general-purpose product family has
been certified at level 4 [20].

Since FIPS 140 also allows for software
implementations, an attempt has been made to provide
an equivalent measure of security for the software
platform on which the cryptographic module is to run.
This is done by requiring the underlying operating
system to be evaluated at progressively higher Orange
Book levels for each FIPS 140 level, so that security
level 2 would require the software module to be
implemented on a C2-rated operating system.
Unfortunately this provides something if an impedance
mismatch between the actual security of hardware and
software implementations, since it implies that products
such as a Fortezza card [21] or Dallas iButton (a
relatively high-security device) [22] provide the same
level of security as a program running under Windows

NT.  It’s possible that the OS security levels were set so
low out of concern that setting them any higher would
make it impossible to implement the higher FIPS 140
levels in software due to a lack of systems evaluated at
that level.

Even with sights set this low, it doesn’t appear to be
possible to implement secure software-only crypto on a
general-purpose PC.  Trying to protect cryptovariables
(or more generically security-relevant data items,
SRDI’s in FIPS 140-speak) on a system which provides
functions like ReadProcessMemory seems
pointless, even if the system does claim a C2/E2
evaluation.  On the other hand trying to source a B2 or
more realistically B3 system to provide an adequate
level of security for the crypto software is almost
impossible (the practicality of employing an OS in this
class, whose members include Trusted Xenix, XTS 300,
and Multos, speaks for itself).  A simpler solution
would be to implement a crypto coprocessor using a
dedicated machine running at system high, and indeed
FIPS 140 explicitly recognises this by stating that the
OS security requirements only apply in cases where the
system is running programs other than the crypto
module (to compensate for this, FIPS 140 imposes its
own software evaluation requirements which in some
cases are even more arduous than the Orange Book
ones).

An alternative to a pure-hardware approach might be to
try to provide some form of software-only protection
which attempts to compensate for the lack of protection
present in the OS.  Some work has been done in this
area involving the obfuscation of the code to be
protected, either mechanically [23] or manually [ 24].
The use of mechanical obfuscation (for example
reodering of code and insertion of dummy instructions)
is also present in a number of polymorphic viruses, and
can be quite effectively countered [25][26].  Manual
obfuscation techniques are somewhat more difficult to
counter automatically, however computer game vendors
have trained several generations of crackers in the art of
bypassing the most sophisticated software protection
and security features they could come up with
[27][28][29], indicating that this type of protection
won’t provide any relief either, and this doesn’t even go
into the portability and maintenance nightmare which
this type of code presents (it is for these reasons that the
obfuscation provisions were removed from a later
version of the CDSA specification where they were first
proposed [30]).

1.3. Coprocessor Design Issues
The main consideration when designing a coprocessor
to manage crypto operations is how much functionality
we should move from the host into the coprocessor unit.



The baseline, which we’ll call a tier1 0 coprocessor, has
all the functionality in the host, which is what we’re
trying to avoid.  The levels above tier 0 provide varying
levels of protection for cryptovariables and coprocessor
operations, as shown in Figure 1.

Figure 1: Levels of protection offered by crypto
hardware

The minimal level of coprocessor functionality, a tier 1
coprocessor, moves the private key and private-key
operations out of the host.  This type of functionality is
found in smart cards, and is only a small step above
having no protection at all, since although the key itself
is held in the card, all operations performed by the card
are controlled by the host, leaving the card at the mercy
of any malicious software on the host system.  In
addition to these shortcomings, smart cards are very
slow, offer no protection for cryptovariables other than
the private key, and often can’t even protect the private
key fully (for example a card with an RSA private key
intended for signing can be misused to decrypt a key or
message since RSA signing and decryption are
equivalent).

The next level of functionality, tier 2, moves both
public/private-key operations and conventional
encryption operations along with hybrid mechanisms
such as public-key wrapping of content-encryption keys
into the coprocessor.  This type of functionality is found
in devices such as Fortezza cards and a number of
devices sold as crypto accelerators, and provides rather
more protection than that found in smart cards since no
cryptovariables are ever exposed on the host.  Like
smart cards however, all control over the devices
operation resides in the host, so that even if a malicious
application can’t get at the keys directly, it can still
apply them in a manner other than the intended one.

The next level of functionality, tier 3, moves all crypto-
related processing (for example certificate generation
and message signing and encryption) into the
coprocessor.  The only control the host has over

                                                          
1 The reason for the use of this somewhat unusual term is
because almost every other noun used to denote hierarchies is
already in use; “teir” is unusual enough that noone else has
got around to using it in their security terminology.

processing is at the level of “sign this message” or
“encrypt this message”, all other operations (message
formatting, the addition of additional information such
as the signing time and signers identity, and so on) is
performed by the coprocessor.  In contrast if the
coprocessor has tier 1 functionality the host software
can format the message any way it wants, set the date to
an arbitrary time (in fact it can never really know the
true time since it’s coming from the system clock which
another process could have altered), and generally do
whatever it wants with other message parameters.  Even
with a tier 2 coprocessor such as a Fortezza card which
has a built-in real-time clock (RTC), the host is free to
ignore the RTC and give a signed message any
timestamp it wants.  Similarly, even though protocols
like CSP which is used with Fortezza incorporate
complex mechanisms to handle authorisation and access
control issues [ 31], the enforcement of these
mechanisms is left to the untrusted host system rather
than the card(!).  Other potential problem areas involve
handling of intermediate results and composite call
sequences which shouldn’t be interrupted, for example
loading a key and then using it in a cryptographic
operation [32].  In contrast, with a tier 3 coprocessor
which performs all crypto-related processing
independent of the host the coprocessor controls the
message formatting and the addition of additional
inforation such as a timestamp taken from its own
internal clock, moving them out of reach of any
software running on the host.  The various levels of
protection when the coprocessor is used for message
decryption are shown in Figure 2.

Going beyond tier 3, a tier 4 coprocessor provides
facilities such as command verification which prevent
the coprocessor from acting on commands sent from the
host system without the approval of the user.  The
features of this level of functionality are explained in
more detail in the section on extended security
functionality.

Can we move the functionality to an even higher level,
tier 5, giving the coprocessor even more control over
message handling?  Although it’s possible to do this, it
isn’t a good idea since at this level the coprocessor will
potentially need to run message viewers (to display
messages), editors (to create/modify messages), mail
software (to send and receive them), and a whole host
of other applications, and of course these programs will
need to be able to handle MIME attachments, HTML,
JavaScript, ActiveX, and so on in order to function as
required.  In addition the coprocessor will now require
its own input mechanism (a keyboard), output
mechanism (a monitor), mass storage, and other extras.
At this point the coprocessor has evolved into a second
computer attached to the original one, and since it’s
running a range of untrusted and potentially dangerous



code we need to think about moving the crypto
functionality into a coprocessor for safety.  Lather,
rinse, repeat.

Figure 2: Protection levels for the decrypt operation

The best level of functionality therefore is to move all
crypto and security-related processing into the
coprocessor, but to leave everything else on the host.

2. The Coprocessor
The traditional way to build a crypto coprocessor has
been to create a complete custom implementation,
originally with ASIC’s and more recently with a
mixture of ASIC’s and general-purpose CPU’s, all
controlled by custom software.  This approach leads to
long design cycles, difficulties in making changes at a
later point, high costs (with an accompanying strong
incentive to keep all design details proprietary due to
the investment involved), and reliance on a single
vendor for the product.  In contrast an open-source
coprocessor by definition doesn’t need to be
proprietary, so it can use existing COTS hardware and
software as part of its design, which greatly reduces the
cost (the coprocessor described here is one to two
orders of magnitude cheaper than proprietary designs
while offering generally equivalent performance and
superior functionality), and can be sourced from
multiple vendors and easily migrated to newer hardware
as the current hardware base becomes obsolete.

The coprocessor requires three layers, the processor
hardware, the firmware which manages the hardware
(for example initialisation, communications with the

host, persistent storage, and so on) and the
software which handles the crypto

functionality.  The following
sections describe the coprocessor

hardware and resource management
firmware on which the crypto control software

runs.

2.1. Coprocessor Hardware
Embedded systems have traditionally been based
on the VME bus, a 32-bit data/32-bit address bus
incorporated onto cards in the 3U (10 ×16cm)
and 6U (23×16cm) Eurocard form factor [33].
The VME bus is CPU-independent and supports
all popular microprocessors including Sparc,
Alpha, 68K, and x86.  An x86-specific bus

called PC/104, based on the 104-pin ISA bus,
has become popular in recent years due to
the ready availability of low-cost
components from the PC industry.
PC/104 cards are much more compact at
9×9.5cm than VME cards, and unlike a
VME passive backplane-based system
can provide a complete system on a single

card [ 34].  PC/104-Plus, an extension to
PC/104, adds a 120-pin PCI connector alongside the
existing ISA one, but is otherwise mostly identical to
PC/104 [35]

In addition to PC/104 there are a number of functionally
identical systems with slightly different form factors, of
which the most common is the biscuit PC, a card the
same size as a 3½” or occasionally 5¼” drive, with a
somewhat less common one being the credit card or
SIMM PC roughly the size of a credit card.  A biscuit
PC provides most of the functionality and I/O
connectors of a standard PC motherboard, as the form
factor shrinks the I/O connectors do as well so that a
SIMM PC typically uses a single enormous edge
connector for all its I/O. In addition to these form
factors there also exist card PC’s (sometimes called slot
PC’s), which are biscuit PC’s built as ISA or (more
rarely) PCI-like cards.  A typical configuration for a
low-end system is a 5x86/133 CPU (roughly equivalent
in performance to a 133 MHz Pentium), 8-16MB of
DRAM, 2-8MB of flash memory emulating a disk
drive, and every imaginable kind of I/O (serial ports,
parallel ports, floppy disk, IDE hard drive, IR and USB
ports, keyboard and mouse, and others).  High-end
embedded systems built from components designed for
laptop use provide about the same level of performance
as a current laptop PC, although their price makes them
rather impractical for use as crypto hardware. To



compare this with other well-known types of crypto
hardware, a typical smart card has a 5MHz 8-bit CPU, a
few hundred bytes of RAM, and a few kB of EEPROM,
and a Fortezza card has a 10 or 20MHz ARM CPU,
64kB of RAM and 128kB of flash memory/EEPROM.

All of the embedded systems described above represent
COTS components available from a large range of
vendors in many different countries, with a
corresponding range of performance and price figures.
Alongside the x86-based systems there also exist
systems based on other CPU’s, typically ARM,
Dragonball (embedded Motorola 68K), and to a lesser
extent PowerPC, however these are available from a
limited number of vendors and can be quite expensive.
Besides the obvious factor of system performance
affecting the overall price, the smaller form factors and
use of exotic hardware such as non-generic-PC
components can also drive up the price.  In general the
best price/performance balance is obtained with a very
generic PC/104 or biscuit PC system.

2.2. Coprocessor Firmware
Once the hardware has been selected the next step is to
determine what software to run on it to control it.  The
coprocessor is in this case acting as a special-purpose
computer system running only the crypto control
software, so that what would normally be thought of as
the operating system is acting as the system firmware,
and the real operating system for the device is the
crypto control software.  The control software therefore
represents an application-specific operating system,
with crypto objects such as encryption contexts,
certificates, and envelopes replacing the user
applications which are managed by conventional OS’s.
The differences between a conventional system and the
crypto coprocessor running one typical type of
firmware-equivalent OS are shown in Figure 3.

Figure 3: Conventional system vs. coprocessor
system layers

Since the hardware is in effect a general-purpose PC,
there’s no need to use a specialised, expensive
embedded or real-time kernel or OS since a general-
purpose OS will function just as well.  The OS choice is
then something simple like one of the free or nearly-

free embeddable forms of MSDOS [36][37][38] or an
open source operating system like one of the x86 BSD’s
or Linux which can be adapted for use in embedded
hardware.  Although embedded DOS is the simplest to
get going and has the smallest resource requirements,
it’s really only a bootstrap loader for real-mode
applications and provides very little access to most of
the resources provided by the hardware.  For this reason
it’s not worth considering except on extremely low-end,
resource-starved hardware (it’s still possible to find
PC/104 cards with 386/40’s on them, although having
to drive them with DOS is probably its own
punishment).

A better choice than DOS is a proper operating system
which can fully utilise the capabilities of the hardware.
The only functionality which is absolutely required of
the OS is a memory manager and some form of
communication with the outside world.  Also useful
(although not absolutely essential) is the ability to store
data such as private keys in some form of persistent
storage.  Finally, the ability to handle multiple threads
may be useful where the device is expected to perform
multiple crypto tasks at once.  Apart from the
multithreading, the OS is just acting as a basic resource
manager, which is why DOS could be pressed into use
if necessary.

Both FreeBSD and Linux have been stripped down in
various ways for use with embedded hardware [39][40].
There’s not really a lot to say about the two, both meet
the requirements given above, both are open source
systems, and both can use a standard full-scale system
as the development environment — whichever one is
the most convenient can be used.  At the moment Linux
is a better choice because its popularity means there’s
better support for devices such as flash memory mass
storage (relatively speaking, as the Linux drivers for the
most widely-used flash disk are for an old kernel while
the FreeBSD ones are mostly undocumented and rather
minimal), so the coprocessor described here uses Linux
as its resource management firmware.  A convenient
feature which gives the free Unixen an extra advantage
over alternatives like embedded DOS is that they’ll
automatically switch to using the serial port for their
consoles if no video drivers and/or hardware are
present, which enables them to be used with cheaper
embedded hardware which doesn’t require additional
video circuitry just for the one-off setup process.  A
particular advantage of Linux is that it’ll halt the CPU
when nothing is going on (which is most of the time),
greatly reducing coprocessor power consumption and
heat problems.



2.3. Firmware Setup
Setting up the coprocessor firmware involves creating a
stripped-down Linux setup capable of running on the
coprocessor hardware.  The services required of the
firmware are:

• Memory management

• Persistent storage services

• Communication with the host

• Process and thread management (optional)

All newer embedded systems support the M-Systems
DiskOnChip (DOC) flash disk, which emulates a
standard IDE hard drive by identifying itself as a BIOS
extension during the system initialisation phase
(allowing it to install a DOC filesystem driver to
provide BIOS support for the drive) and later switching
to a native driver for OS’s which don’t use the BIOS for
hardware access [41].  The first step in installing the
firmware involves formatting the DOC as a standard
hard drive and partitioning it prior to installing Linux.
The DOC is configured to contain two partitions, one
mounted read-only which contains the firmware and
crypto control software, and one mounted read/write
with additional safety precautions like noexec and
nosuid, for storage of configuration information and
encrypted keys.

The firmware consists of a basic Linux kernel with
every unnecessary service and option stripped out.  This
means removing support for video devices, mass
storage (apart from the DOC and floppy drive),
multimedia devices, and other unnecessary bagatelles.
Apart from the TCP/IP stack needed by the crypto
control software to communicate with the host, there
are no networking components running (or even
present) on the system, and even the TCP/IP stack may
be absent if alternative means of communicating with
the host (explained in more detail further on) are
employed.  All configuration tasks are performed
through console access via the serial port, and software
is installed by connecting a floppy drive and copying
across pre-built binaries.  This both minimises the size
of the code base which needs to be installed on the
coprocessor, and eliminates any unnecessary processes
and services which might constitute a security risk.
Although it would be easier if we provided a means of
FTP’ing binaries across, the fact that a user must
explicitly connect a floppy drive and mount it in order
to change the firmware or control software makes it
much harder to accidentally (or maliciously) move
problematic code across to the coprocessor, provides a
workaround for the fact that FTP over alternative
coprocessor communications channels such as a parallel
port is tricky without resorting to the use of even more

potential problem software, and makes it easier to
comply with the FIPS 140 requirements that (where a
non-Orange Book OS is used) it not be possible for
extraneous software to be loaded and run on the system.
Direct console access is also used for other operations
such as setting the onboard real-time clock, which is
used to add timestamps to signatures.  Finally, all
paging is disabled, both because it isn’t needed or safe
to perform with the limited-write-cycle flash disk, and
because it avoids any risk of sensitive data being
written to backing store, eliminating a major headache
which occurs with all virtual-memory operating
systems [42].

At this point we have a basic system consisting of the
underlying hardware and enough firmware to control it
and provide the services we require.  Running on top of
this will be a daemon which implements the crypto
control software which does the actual work.

3. Crypto Functionality Implementation
Once the hardware and functionality level of the
coprocessor have been established, we need to design
an appropriate programming interface for it.  An
interface which employs complex data structures,
pointers to memory locations, callback functions, and
other such elements won’t work with the coprocessor
unless a complex RPC mechanism is employed.  Once
we get to this level of complexity we run into problems
both with lowered performance due to data marshalling
and copying requirements and potential security
problems arising from inevitable implementation bugs.

Figure 4: cryptlib architecture

A better type of interface is the one used in the cryptlib
security architecture [43] which is depicted in Figure 4.
cryptlib implements an object-based design which
assigns unique handles to crypto-related objects but
hides all further object details inside the architecture.
Objects are controlled through messages sent to them
under the control of a central security kernel, an
interface which is ideally suited for use in a coprocessor
since only the object handle (a small integer value) and



one or two arguments (either an integer value or a byte
string and string length) are needed to perform most
operations.  This use of only basic parameter types
leads to a very simple and lightweight interface, with
only the integer values needing any canonicalisation (to
network byte order) before being passed to the
coprocessor.  A coprocessor call of this type, illustrated
in Figure 5, requires only a few lines of code more than
what is required for a direct call to the same code on the
host system.  In practice the interface is further
simplified by using a pre-encoded template containing
all fixed parameters (for example the type of function
call being performed and a parameter count), copying in
any variable parameters (for example the object handle)
with appropriate canonicalistion, and dispatching the
result to the coprocessor.  The coprocessor returns
results in the same manner.

Figure 5: Communicating with the coprocessor

3.1. Communicating with the Coprocessor
The next step after designing the programming interface
is to determine which type of communications channel
is best suited to controlling the coprocessor.  Since the
embedded controller hardware is intended for
interfacing to almost anything, there are a wide range of
I/O capabilities available for communicating with the
host.  Many embedded controllers provide an ethernet
interface either standard or as an option, so the most
universal interface uses TCP/IP for communications.
For card PC’s which plug into the hosts backplane we
should be able to use the system bus for
communications, and if that isn’t possible we can take
advantage of the fact that the parallel ports on all recent
PC’s provide sophisticated (for what was intended as a
printer port) bidirectional I/O capabilities and run a link
from the parallel port on the host motherboard to the
parallel port on the coprocessor.  Finally, we can use
more exotic I/O capabilities such as USB to
communicate with the coprocessor.

The most universal coprocessor consists of a biscuit PC
which communicates with the host over ethernet (or,
less universally, a parallel port).  One advantage which
an external, removable coprocessor of this type has over
one which plugs directly into the host PC is that it’s

very easy to unplug the entire crypto subsystem and
store it separately from the host, moving it out of reach
of any covert access by outsiders while the owner of the
system is away.  In addition to the card itself, this type
of standalone setup requires a case and a power supply,
either internal to the case or an external wall-wart type
(these are available for about $10 with a universal input
voltage range which allows them to work in any
country).  The same arrangement is used in a number of
commercially-available products, and has the advantage
that it interfaces to virtually any type of system, with
the commensurate disadvantage that it requires a
dedicated ethernet connection to the host (which
typically means adding an extra network card), as well
as adding to the clutter surrounding the machine.

The alternative option for an external coprocessor is to
use the parallel port, which doesn’t require a network

card but does tie up a port which may be required for
one of a range of other devices such as external disk
drives, CD writers, and scanners which have been
kludged onto this interface alongside the more obvious
printers.  Apart from its more obvious use, the printer
port can be used either as an Enhanced Parallel Port
(EPP) or as an Extended Capability Port (ECP) [44].
Both modes provide about 1-2 MB/s data throughput
(depending on which vendors claims are to be believed)
which compares favourably with a parallel port’s
standard software-intensive maximum rate of around
150 kB/s and even with the throughput of a 10Mbps
ethernet interface.  EPP was designed for general-
purpose bidirectional communication with peripherals
and handles intermixed read and write operations and
block transfers without too much trouble, whereas ECP
(which requires a DMA channel which can complicate
the host system’s configuration process) requires
complex data direction negotiation and handling of
DMA transfers in progress, adding a fair amount of
overhead when used with peripherals which employ
mixed reading and writing of small data quantities.
Another disadvantage of DMA is that its use paralyses
the CPU by seizing control of the bus, halting all
threads which may be executing while data is being
transferred.  Because of this the optimal interface
mechanism is EPP.  From a programming point of
view, this communications mechanism looks like a
permanent virtual circuit which is functionally
equivalent to the dumb wire which we’re using the



ethernet link as, so the two can be interchanged with a
minimum of coding effort.

To the user, the most transparent coprocessor would
consist of some form of card PC which plugs directly
into their system’s backplane.  Currently virtually all
card PC’s have ISA bus interfaces (the few which
support PCI use a PCI/ISA hybrid which won’t fit a
standard PCI slot [ 45]) which unfortunately doesn’t
provide much flexibility in terms of communications
capabilities since the only viable means of moving data
to and from the coprocessor is via DMA, which requires
a custom kernel-mode driver on both sides.  The
alternative, using the parallel port, is much simpler
since most operating systems already support EPP
and/or ECP data transfers, but comes at the expense of a
reduced data transfer rate and the loss of use of the
parallel port on the host.  Currently the use of either of
these options is rendered moot since the ISA card PC’s
assume they have full control over a passive-backplane-
bus system, which means they can’t be plugged into a
standard PC which contains its own CPU which is also
assuming that it solely controls the bus.  It’s possible
that in the future card PC’s which function as PCI bus
devices will appear, but until they do it’s not possible to
implement the coprocessor as a plug-in card without
using a custom extender card containing an ISA or PCI
connector for the host side, a PC104 connector for a
PC104-based CPU card, and buffer circuitry in between
to isolate the two buses.  This destroys the COTS nature
of the hardware, limiting availability and raising costs.

The final communications option uses more exotic I/O
capabilities such as USB which are present on newer
embedded systems, these are much like ethernet but
have the disadvantage that they are currently rather
poorly supported by most operating systems.

Since we’re using Linux as the resource manager for
the coprocessor hardware, we can use a multithreaded
implementation of the coprocessor software to handle
multiple simultaneous requests from the host.  After
initialising the various cryptlib subsystems, the control
software creates a pool of threads which wait on a
mutex for commands from the host.  When a command
arrives, one of the threads is woken up, processes the
command, and returns the result to the host.  In this
manner the coprocessor can have multiple requests
outstanding at once, and a process running on the host
won’t block whenever another process has an
outstanding request present on the coprocessor.

3.2. Open vs Closed-source Coprocessors
There are a number of vendors who sell various forms
of tier 2 coprocessor, all of which run proprietary
control software and generally go to some lengths to
ensure that no outsiders can ever examine it.  The usual

way in which vendors of proprietary implementations
try to build the same user confidence in their product as
would be provided by having the source code and
design information available for public scrutiny is to
have it evaluated by independent labs and testing
facilities, typically to the FIPS 140 standard when the
product constitutes crypto hardware (the security
implications of open source vs proprietary
implementations have been covered exhaustively in
various fora and won’t be repeated here).
Unfortunately this process leads to prohibitively
expensive products (thousands to tens of thousands of
dollars per unit) and still requires users to trust the
vendor not to insert a backdoor, or accidentally void the
security via a later code update or enhancement added
after the evaluation is complete (strictly speaking such
post-evaluation changes would void the evaluation, but
vendors sometimes forget to mention this in their
marketing literature).  There have been numerous
allegations of the former occurring [ 46][47][48], and
occasional reports of the latter.

In contrast, an open source implementation of the
crypto control software can be seen to be secure by the
end user with no degree of blind trust required.  The
user can (if they feel so inclined) obtain the raw
coprocessor hardware from the vendor of their choice in
the country of their choice, compile the firmware and
control software from the openly-available source code,
and install it knowing that no supplemental
functionality known only to a few insiders exists.  For
this reason the entire suite of coprocessor control
software is available in source code form for anyone to
examine, build, and install as they see fit.

A second, far less theoretical advantage of an open-
source coprocessor is that until the crypto control code
is loaded into it, it isn’t a controlled cryptographic item
as crypto source code and software aren’t controlled in
most of the world.  This means that it’s possible to ship
the hardware and software separately to almost any
destination (or source it locally) without any restrictions
and then combine the two to create a controlled item
once they arrive at their destination (like a two-
component glue, things don’t get sticky until you mix
the parts).

4. Extended Security Functionality
The basic coprocessor design presented so far serves to
move all security-related processing and
cryptovariables out of reach of hostile software, but by
taking advantage of the capabilities of the hardware and
firmware used to implement it, it’s possible to do much
more.  One of the features of the cryptlib architecture is
that all operations are controlled and monitored by a
central security kernel which enforces a single,



consistent security policy across the entire architecture.
By tying the control of some of these operations to
features of the coprocessor, it’s possible to obtain an
extended level of control over its operation as well as
avoiding some of the problems which have traditionally
plagued this type of security device.

4.1. Controlling Coprocessor Actions
The most important type of extra functionality which
can be added to the coprocessor is extended failsafe
control over any actions it performs.  This means that
instead of blindly performing any action requested by
the host (purportedly on behalf of the user), it first seeks
confirmation from the user that they have indeed
requested that the action be taken.  The most obvious
application of this mechanism is for signing documents
where the owner has to indicate their consent through a
trusted I/O path rather than allowing a rogue application
to request arbitrary numbers of signatures on arbitrary
documents.  This contrasts with other tier 1 and 2
processors which are typically enabled through user
entry of a PIN or password, after which they are at the
mercy of any commands coming from the host.  Apart
from the security concerns, the ability to individually
control signing actions and require conscious consent
from the user means that the coprocessor provides a
mechanism required by a number of new digital
signature laws which recognise the dangers inherent in
systems which provide an automated (that is, with little
control from the user) signing capability.

Figure 6: Normal message processing

The means of providing this service is to hook into the
cryptlib kernel’s sign action and decrypt action
processing mechanisms.  In normal processing the
kernel receives the incoming message, applies various
security-policy-related checks to it (for example it
checks to ensure that the object’s ACL allows this type
of access), and then forwards the message to the
intended target, as shown in Figure 6.  In order to obtain
additional confirmation that the action is to be taken,
the coprocessor can indicate the requested action to the
user and request additional confirmation before passing
the message on.  If the user chooses to deny the request
or doesn’t respond within a certain time, the request is
blocked by the kernel in the same manner as if the
objects ACL didn’t allow it, as shown in Figure 7.  This
mechanism is similar to the command confirmation

mechanism in the VAX A1 security kernel, which takes
a command from the untrusted VMS or Ultrix-32 OS’s
running on top of it, requests that the user press the
(non-overridable) secure attention key to communicate
directly with the kernel and confirm the operation
(“Something claiming to be you has requested X.  Is this
OK?”), and then returns the user back to the OS after
performing the operation [49].

Figure 7: Processing with user confirmation

The simplest form of user interface involves two LED’s
and two pushbutton switches connected to a suitable
port on the coprocessor (for example the parallel port or
serial port status lines).  An LED is activated to indicate
that confirmation of a signing or decryption action is
required by the coprocessor.  If the user pushes the
confirmation button, the request is allowed through, if
they push the cancel button or don’t respond within a
certain time, the request is denied.

4.2. Trusted I/O Path
The basic user confirmation mechanism presented
above can be generalised by taking advantage of the
potential for a trusted I/O path which is provided by the
coprocessor.  The main use for a trusted I/O path is to
allow for secure entry of a password or PIN used to
enable access to keys stored in the coprocessor.  Unlike
typical tier 1 devices which assume the entire device is
secure and use a short PIN in combination with a retry
counter to protect cryptovariables, the coprocessor
makes no assumptions about its security and instead
relies on a user-supplied password to encrypt all
cryptovariables held in persistent storage (the only time
keys exist in plaintext form is when they’re decrypted
to volatile memory prior to use).  Because of this, a
simple numeric keypad used to enter a PIN isn’t
sufficient (unless the user enjoys memorising long
strings of digits for use as passwords).  Instead, the
coprocessor can optionally make use of devices such as
PalmPilots for password entry, perhaps in combination
with novel password entry techniques such as graphical
passwords [50].  Note though that, unlike a tier 0 crypto
implementation, obtaining the user password via a
keyboard sniffer on the host doesn’t give access to



private keys since they’re held on the coprocessor and
can never leave it, so that even if the password is
compromised by software on the host, it won’t provide
access to the keys.

In a slightly more extreme form, the ability to access
the coprocessor via multiple I/O channels allows us to
enforce strict red/black separation, with plaintext being
accessed through one I/O channel, ciphertext through
another, and keys through a third.  Although cryptlib
doesn’t normally load plaintext keys (they’re generated
and managed internally and can never pass outside the
security perimeter), when the ability to load external
keys is required FIPS 140 mandates that they be loaded
via a separate channel rather than over the one used for
general data, which can be provided for by loading
them over a separate channel such as a serial port (a
number of commercial crypto coprocessors come with a
serial port for this reason).

4.3. Physically Isolated Crypto
It has been said that the only truly tamperproof
computer hardware is Voyager 2, since it has a
considerable air gap (strictly speaking a non-air gap)
which makes access to the hardware somewhat
challenging (space aliens notwithstanding).  We can
take advantage of air-gap security in combination with
cryptlib’s remote-execution capability by siting the
hardware performing the crypto in a safe location well
away from any possible tampering.  For example by
running the crypto on a server in a physically secure
location and tunneling data and control information to it
via its built-in ssh or SSL capabilities, we obtain the
benefits of physical security for the crypto without the
awkwardness of having to use it from a secure location
or the expense of having to use a physically secure
crypto module (the implications of remote execution of
crypto from a country like China with keys and crypto
held in Europe or the US are left as an exercise for the
reader).

Physical isolation at the macroscopic level is also
possible due to the fact that cryptlib employs a
separation kernel for its security [51][52], which allows
different object types (and, at the most extreme level,
individual objects) to be implemented in physically
separate hardware.  For those requiring an extreme level
of isolation and security, it should be possible to
implement the different object types in their own
hardware, for example keyset objects (which don’t
require any real security since certificates contain their
own tamper protection) could be implemented on the
host PC, the kernel (which requires a minimum of
resources) could be implemented on a cheap ARM-
based plug-in card, envelope objects (which can require
a fair bit of memory but very little processing power)

could be implemented on a 486 card with a good
quantity of memory, and encryption contexts (which
can require a fair amount of CPU power but little else)
could be implemented using a faster Pentium-class
CPU.  In practice though it’s unlikely that anyone
would consider this level of isolation worth the expense
and effort.

5. Crypto Hardware Acceleration
So far the discussion of the coprocessor has focused on
the security and functionality enhancements it provides,
avoiding any mention of performance concerns.  The
reason for this is that for the majority of users the
performance is good enough, meaning that for typical
applications such as email encryption, web browsing
with SSL, and remote access via ssh, the presence of the
coprocessor is barely noticeable since the limiting
factors on performance are set by network bandwidth,
disk access times, modem speed, bloatware running on
the host system, and so on.  Although never intended
for use as a special-purpose crypto accelerator of the
type capable of performing hundreds of RSA operations
per second on behalf of a heavily-loaded web server, it
is possible to add extra functionality to the coprocessor
through its built-in PC104 bus to extend its
performance.  By adding a PC104 daughterboard to the
device, it’s possible to enhance its functionality or add
new functionality in a variety of ways, as explained
below (although the prices quoted for devices will
change over time, the price ratios should remain
relatively constant).

5.1. Conventional Encryption/Hashing
Implementing an algorithm like DES which was
originally targeted at hardware implementation, in a
field-programmable gate array (FPGA) is relatively
straightforward, and hash algorithms like MD5 and
SHA-1 can also be implemented fairly easily in
hardware by implementing a single round of the
algorithm and cycling the data through it the
appropriate number of times.  Using a low-cost FPGA,
it should be possible to build a daughterboard which
performs DES and MD5/SHA-1 acceleration for around
$50.  Unfortunately, a number of hardware and software
issues conspire to make this non-viable economically.
The main problem is that although DES is faster to
implement in hardware than in software, most newer
algorithms are much more efficient in software (ones
with large, key-dependent S-boxes are particularly
difficult to implement in FPGA’s because they require
huge numbers of logic cells, requiring very expensive
high-density FPGA’s).  A related problem is the fact
that in many cases the CPU on the coprocessor is
already capable of saturating the I/O channel
(ethernet/ECP/EPP/PC104) using a pure software



implementation, so there’s nothing to be gained by
adding expensive external hardware (all of the
software-optimised algorithms run at several MB/s
whereas the I/O channel is only capable of handling
around 1MB/s).  The imbalance becomes even worse
when any CPU faster than the entry-level 5x86/133
configuration is used, since at this point any common
algorithm (even the rather slow triple DES) can be
executed more quickly in software than the I/O channel
can handle.  Because of this it doesn’t seem profitable
to try to augment software-based conventional
encryption or hashing capabilities with extra hardware.

5.2. Public-key Encryption
Public-key algorithms are less amenable to
implementation in general-purpose CPU’s than
conventional encryption and hashing algorithms, so
there’s more scope for hardware acceleration in this
area.  We have two options for accelerating public-key
operations, either using an ASIC from a vendor or
implementing our own version with an FPGA.  Bignum
ASIC’s are somewhat thin on the ground since the
vendors who produce them usually use them in their
own crypto products and don’t make them available for
sale to the public, however there is one company who
specialise in ASIC’s rather than crypto products who
can supply a bignum ASIC (it’s also possible to license
bignum cores and implement the device yourself, this
option is covered peripherally in the next section).
Using this device, the PCC201 [ 53], it’s possible to
build a bignum acceleration daughterboard for around
$100.

Unfortunately, the device has a number of limitations.
Although impressive when it was first introduced, the
maximum key size of 1024 bits and maximum
throughput of 21 operations/s for 1024-bit keys and 74
operations/s for 512-bit keys compares rather poorly
with software implementations on newer Pentium-class
CPU’s, which can achieve the same performance with a
CPU speed of around 200MHz.  This means that
although one of these devices would serve to accelerate
performance on a coprocessor based on the entry-level
5x86/133 hardware, a better way to utilise the extra
expense of the daughterboard would be to buy the next
level up in coprocessor hardware, giving somewhat
better bignum performance and accelerating all other
operations as well as a free side-effect (the entry level
for Pentium-class cards is one containing a 266MHz
Cyrix MediaGX, although it may be possible to put
together an even cheaper one using a bare card and
populating it with an AMD K6/266, currently selling
for around $30).  A second disadvantage of the PCC201
is that it’s made available under peculiar export control
terms which can make it cumbersome (or even

impossible) to obtain for anyone who isn’t a large
company.

An alternative to using an ASIC is to implement our
own bignum accelerator with an FPGA, with the
advantage that we can make it as fast as required
(within the limits of the available hardware).  Again,
there is the problem that much of the published work in
the area of bignum accelerator design is by crypto
hardware vendors who don’t make the details available,
however there is one reasonably fast implementation
which achieves 83 operations/s for 1024-bit keys and
340 operations/s for 512-bit keys using a total of 6,700
FPGA basic cells (configurable logic blocks or CLB’s)
[54].  The use of such a large number of CLB’s requires
the use of very high-density FPGA’s, of which the most
widely-used representative is the Xilinx XC4000 family
[55].  The cheapest available FPGA capable of
implementing this design, the XC40200, comes with a
pre-printed mortgage application form and a $2000-
$2500 price tag (depending on speed grade and
quantity), providing a clue as to why the design has to
date only been implemented on a simulator.  Again, it’s
possible to buy an awful lot of CPU power for the same
amount of money (an equivalent level of performance
to the FPGA design is obtainable using about $200
worth of AMD Athlon CPU [56]).

This illustrates a problem faced by all hardware crypto
accelerator vendors, which may be stated as a
derivation of Moore’s law: Intel can make it faster
cheaper than you can.  In other words, putting a lot of
effort into designing an ASIC for a crypto accelerator is
a risky investment because, aside from the usual
flexibility problems caused by the use of an ASIC, it’ll
be rendered obsolete by general-purpose CPU’s within
a few years.  This problem is demonstrated by several
products currently sold as crypto hardware accelerators
which in fact act as crypto handbrakes since, when
plugged in or enabled, performance slows down.

For pure acceleration purposes, the optimal
price/performance tradeoff appears to be to populate a
daughterboard with a collection of cheap CPU’s
attached to a small amount of memory and just enough
glue logic to support the CPU (this approach is used by
nCipher, who use a cluster of ARM CPU’s in their SSL
accelerators [57]).  The mode of operation of this CPU
farm would be for the crypto coprocessor to halt the
CPU’s, load the control firmware (a basic protected-
mode kernel and appropriate code to implement the
required bignum operation(s)) into the memory, and
restart the CPU running as a special-purpose bignum
engine.  For x86 CPU’s, there are a number of very
minimal open-source protected-mode kernels which
were originally designed as DOS extenders for games
programming available, these ignore virtual memory,



page protection, and other issues and run the CPU as if
it were very fast a 32-bit real-mode 8086.  By using a
processor like a K6-2 3D/333 (currently selling for
around $35) which contains 32+32K of onboard cache,
the control code can be loaded initially from slow,
cheap external memory but will execute from cache at
the full CPU speed from then on.  Each of these
dedicated bignum units should be capable of ~200 512-
bit RSA operations per second at a cost of around $100
each.

Unfortunately the use of commodity x86 CPU’s of this
kind has several disadvantages.  The first is that they
are designed for use in systems with a certain fixed
configuration (for example SDRAM, PCI and AGP
busses, a 64-bit bus interface, and other high-
performance options) which means that using them with
a single cheap 8-bit memory chip requires a fair amount
of glue logic to fake out the control signals from the
external circuitry which is expected to be present.  The
second problem is that these CPU’s consume significant
amounts of power and dissipate a large amount of heat,
with current drains of 10-15A and dissipations of 20-
40W being common for the range of low-end
processors which might be used as cheap accelerator
engines.  Adding more CPU’s to improve performance
only serves to exacerbate this problem, since the power
supplies and enclosures designed for embedded
controllers are completely overwhelmed by the
requirements of a cluster of these CPU’s.  Although the
low-cost processing power offered by general-purpose
CPU’s appears to make them ideal for this situation, the
practical problems they present rules them out as a
solution.

A final alternative is offered by digital signal processors
(DSP’s), which require virtually no external circuitry
since most newer ones contain enough onboard memory
to hold all data and control code, and don’t expect to
find sophisticated external control logic present.  The
fact that DSP’s are optimised for embedded signal-
processing tasks makes them ideal for use as bignum
accelerators, since a typical configuration contains two
32-bit single-cycle multiply-accumulate (MAC) units
which provide in one instruction the most common
basic operation used in bignum calculations.  The best
DSP choice appears to be the ADSP-21160, which
consumes only 2 watts and contains built-in
multiprocessor support allowing up to 6 DSP’s to be
combined into one cluster [58].  The aggregate 3,600
MFLOPS processing power provided by one of these
clusters should prove sufficient (in its integer
equivalent) to accelerate bignum calculations.  The
feasibility of using DSP’s as low-cost accelerators is
currently under consideration and may be the subject of
a future paper.

5.3. Other Functionality
In addition to pure acceleration purposes, it’s possible
to use a PC104 add-on card to handle a number of other
functions.  The most important of these is a hardware
random number generator (RNG), since the
effectiveness of the standard entropy-polling RNG
using by cryptlib [59] is somewhat impaired by its use
in an embedded environment.  A typical RNG would
take advantage of several physical randomness sources
(typically thermal noise in semiconductor junctions) fed
into a Schmitt trigger with the output mixed into the
standard cryptlib RNG.  The use of multiple
independent sources ensures that even if one fails the
others will still provide entropy, and feeding the RNG
output into the cryptlib PRNG ensures that any possible
bias is removed from the RNG output bits.

A second function which can be performed by the add-
on card is to act as a more general I/O channel than the
basic LED-and-pushbutton interface described earlier,
providing the user with more information (perhaps via
an LCD display) on what it is they’re authorising.

6. Conclusion
This paper has presented a design for an inexpensive,
general-purpose crypto coprocessor capable of keeping
crypto keys and crypto processing operations safe even
in the presence of malicious software on the host which
it is controlled from.  Extended security functionality is
provided by taking advantage of the presence of trusted
I/O channels to the coprocessor.  Although sufficient
for most purposes, the coprocessors processing power
may be augmented through the addition of additional
modules based on DSP’s which should bring the
performance into line with considerably more expensive
commercial equivalents.  Finally, the open-source
nature of the design and use of COTS components
means that anyone can easily reassure themselves of the
security of the implementation and can obtain a
coprocessor in any required location by refraining from
combining the hardware and software components until
they’re at their final destination.
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